1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <linux/kdebug.h> 34 #include <linux/slab.h> 35 #include <asm/cacheflush.h> 36 #include <asm/sstep.h> 37 #include <asm/uaccess.h> 38 39 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 40 #define MSR_SINGLESTEP (MSR_DE) 41 #else 42 #define MSR_SINGLESTEP (MSR_SE) 43 #endif 44 45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 47 48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 49 50 int __kprobes arch_prepare_kprobe(struct kprobe *p) 51 { 52 int ret = 0; 53 kprobe_opcode_t insn = *p->addr; 54 55 if ((unsigned long)p->addr & 0x03) { 56 printk("Attempt to register kprobe at an unaligned address\n"); 57 ret = -EINVAL; 58 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 59 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 60 ret = -EINVAL; 61 } 62 63 /* insn must be on a special executable page on ppc64. This is 64 * not explicitly required on ppc32 (right now), but it doesn't hurt */ 65 if (!ret) { 66 p->ainsn.insn = get_insn_slot(); 67 if (!p->ainsn.insn) 68 ret = -ENOMEM; 69 } 70 71 if (!ret) { 72 memcpy(p->ainsn.insn, p->addr, 73 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 74 p->opcode = *p->addr; 75 flush_icache_range((unsigned long)p->ainsn.insn, 76 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 77 } 78 79 p->ainsn.boostable = 0; 80 return ret; 81 } 82 83 void __kprobes arch_arm_kprobe(struct kprobe *p) 84 { 85 *p->addr = BREAKPOINT_INSTRUCTION; 86 flush_icache_range((unsigned long) p->addr, 87 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 88 } 89 90 void __kprobes arch_disarm_kprobe(struct kprobe *p) 91 { 92 *p->addr = p->opcode; 93 flush_icache_range((unsigned long) p->addr, 94 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 95 } 96 97 void __kprobes arch_remove_kprobe(struct kprobe *p) 98 { 99 if (p->ainsn.insn) { 100 free_insn_slot(p->ainsn.insn, 0); 101 p->ainsn.insn = NULL; 102 } 103 } 104 105 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 106 { 107 /* We turn off async exceptions to ensure that the single step will 108 * be for the instruction we have the kprobe on, if we dont its 109 * possible we'd get the single step reported for an exception handler 110 * like Decrementer or External Interrupt */ 111 regs->msr &= ~MSR_EE; 112 regs->msr |= MSR_SINGLESTEP; 113 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 114 regs->msr &= ~MSR_CE; 115 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM); 116 #ifdef CONFIG_PPC_47x 117 isync(); 118 #endif 119 #endif 120 121 /* 122 * On powerpc we should single step on the original 123 * instruction even if the probed insn is a trap 124 * variant as values in regs could play a part in 125 * if the trap is taken or not 126 */ 127 regs->nip = (unsigned long)p->ainsn.insn; 128 } 129 130 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 131 { 132 kcb->prev_kprobe.kp = kprobe_running(); 133 kcb->prev_kprobe.status = kcb->kprobe_status; 134 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 135 } 136 137 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 138 { 139 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 140 kcb->kprobe_status = kcb->prev_kprobe.status; 141 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 142 } 143 144 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 145 struct kprobe_ctlblk *kcb) 146 { 147 __get_cpu_var(current_kprobe) = p; 148 kcb->kprobe_saved_msr = regs->msr; 149 } 150 151 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 152 struct pt_regs *regs) 153 { 154 ri->ret_addr = (kprobe_opcode_t *)regs->link; 155 156 /* Replace the return addr with trampoline addr */ 157 regs->link = (unsigned long)kretprobe_trampoline; 158 } 159 160 static int __kprobes kprobe_handler(struct pt_regs *regs) 161 { 162 struct kprobe *p; 163 int ret = 0; 164 unsigned int *addr = (unsigned int *)regs->nip; 165 struct kprobe_ctlblk *kcb; 166 167 /* 168 * We don't want to be preempted for the entire 169 * duration of kprobe processing 170 */ 171 preempt_disable(); 172 kcb = get_kprobe_ctlblk(); 173 174 /* Check we're not actually recursing */ 175 if (kprobe_running()) { 176 p = get_kprobe(addr); 177 if (p) { 178 kprobe_opcode_t insn = *p->ainsn.insn; 179 if (kcb->kprobe_status == KPROBE_HIT_SS && 180 is_trap(insn)) { 181 /* Turn off 'trace' bits */ 182 regs->msr &= ~MSR_SINGLESTEP; 183 regs->msr |= kcb->kprobe_saved_msr; 184 goto no_kprobe; 185 } 186 /* We have reentered the kprobe_handler(), since 187 * another probe was hit while within the handler. 188 * We here save the original kprobes variables and 189 * just single step on the instruction of the new probe 190 * without calling any user handlers. 191 */ 192 save_previous_kprobe(kcb); 193 set_current_kprobe(p, regs, kcb); 194 kcb->kprobe_saved_msr = regs->msr; 195 kprobes_inc_nmissed_count(p); 196 prepare_singlestep(p, regs); 197 kcb->kprobe_status = KPROBE_REENTER; 198 return 1; 199 } else { 200 if (*addr != BREAKPOINT_INSTRUCTION) { 201 /* If trap variant, then it belongs not to us */ 202 kprobe_opcode_t cur_insn = *addr; 203 if (is_trap(cur_insn)) 204 goto no_kprobe; 205 /* The breakpoint instruction was removed by 206 * another cpu right after we hit, no further 207 * handling of this interrupt is appropriate 208 */ 209 ret = 1; 210 goto no_kprobe; 211 } 212 p = __get_cpu_var(current_kprobe); 213 if (p->break_handler && p->break_handler(p, regs)) { 214 goto ss_probe; 215 } 216 } 217 goto no_kprobe; 218 } 219 220 p = get_kprobe(addr); 221 if (!p) { 222 if (*addr != BREAKPOINT_INSTRUCTION) { 223 /* 224 * PowerPC has multiple variants of the "trap" 225 * instruction. If the current instruction is a 226 * trap variant, it could belong to someone else 227 */ 228 kprobe_opcode_t cur_insn = *addr; 229 if (is_trap(cur_insn)) 230 goto no_kprobe; 231 /* 232 * The breakpoint instruction was removed right 233 * after we hit it. Another cpu has removed 234 * either a probepoint or a debugger breakpoint 235 * at this address. In either case, no further 236 * handling of this interrupt is appropriate. 237 */ 238 ret = 1; 239 } 240 /* Not one of ours: let kernel handle it */ 241 goto no_kprobe; 242 } 243 244 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 245 set_current_kprobe(p, regs, kcb); 246 if (p->pre_handler && p->pre_handler(p, regs)) 247 /* handler has already set things up, so skip ss setup */ 248 return 1; 249 250 ss_probe: 251 if (p->ainsn.boostable >= 0) { 252 unsigned int insn = *p->ainsn.insn; 253 254 /* regs->nip is also adjusted if emulate_step returns 1 */ 255 ret = emulate_step(regs, insn); 256 if (ret > 0) { 257 /* 258 * Once this instruction has been boosted 259 * successfully, set the boostable flag 260 */ 261 if (unlikely(p->ainsn.boostable == 0)) 262 p->ainsn.boostable = 1; 263 264 if (p->post_handler) 265 p->post_handler(p, regs, 0); 266 267 kcb->kprobe_status = KPROBE_HIT_SSDONE; 268 reset_current_kprobe(); 269 preempt_enable_no_resched(); 270 return 1; 271 } else if (ret < 0) { 272 /* 273 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 274 * So, we should never get here... but, its still 275 * good to catch them, just in case... 276 */ 277 printk("Can't step on instruction %x\n", insn); 278 BUG(); 279 } else if (ret == 0) 280 /* This instruction can't be boosted */ 281 p->ainsn.boostable = -1; 282 } 283 prepare_singlestep(p, regs); 284 kcb->kprobe_status = KPROBE_HIT_SS; 285 return 1; 286 287 no_kprobe: 288 preempt_enable_no_resched(); 289 return ret; 290 } 291 292 /* 293 * Function return probe trampoline: 294 * - init_kprobes() establishes a probepoint here 295 * - When the probed function returns, this probe 296 * causes the handlers to fire 297 */ 298 static void __used kretprobe_trampoline_holder(void) 299 { 300 asm volatile(".global kretprobe_trampoline\n" 301 "kretprobe_trampoline:\n" 302 "nop\n"); 303 } 304 305 /* 306 * Called when the probe at kretprobe trampoline is hit 307 */ 308 static int __kprobes trampoline_probe_handler(struct kprobe *p, 309 struct pt_regs *regs) 310 { 311 struct kretprobe_instance *ri = NULL; 312 struct hlist_head *head, empty_rp; 313 struct hlist_node *node, *tmp; 314 unsigned long flags, orig_ret_address = 0; 315 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 316 317 INIT_HLIST_HEAD(&empty_rp); 318 kretprobe_hash_lock(current, &head, &flags); 319 320 /* 321 * It is possible to have multiple instances associated with a given 322 * task either because an multiple functions in the call path 323 * have a return probe installed on them, and/or more than one return 324 * return probe was registered for a target function. 325 * 326 * We can handle this because: 327 * - instances are always inserted at the head of the list 328 * - when multiple return probes are registered for the same 329 * function, the first instance's ret_addr will point to the 330 * real return address, and all the rest will point to 331 * kretprobe_trampoline 332 */ 333 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 334 if (ri->task != current) 335 /* another task is sharing our hash bucket */ 336 continue; 337 338 if (ri->rp && ri->rp->handler) 339 ri->rp->handler(ri, regs); 340 341 orig_ret_address = (unsigned long)ri->ret_addr; 342 recycle_rp_inst(ri, &empty_rp); 343 344 if (orig_ret_address != trampoline_address) 345 /* 346 * This is the real return address. Any other 347 * instances associated with this task are for 348 * other calls deeper on the call stack 349 */ 350 break; 351 } 352 353 kretprobe_assert(ri, orig_ret_address, trampoline_address); 354 regs->nip = orig_ret_address; 355 356 reset_current_kprobe(); 357 kretprobe_hash_unlock(current, &flags); 358 preempt_enable_no_resched(); 359 360 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 361 hlist_del(&ri->hlist); 362 kfree(ri); 363 } 364 /* 365 * By returning a non-zero value, we are telling 366 * kprobe_handler() that we don't want the post_handler 367 * to run (and have re-enabled preemption) 368 */ 369 return 1; 370 } 371 372 /* 373 * Called after single-stepping. p->addr is the address of the 374 * instruction whose first byte has been replaced by the "breakpoint" 375 * instruction. To avoid the SMP problems that can occur when we 376 * temporarily put back the original opcode to single-step, we 377 * single-stepped a copy of the instruction. The address of this 378 * copy is p->ainsn.insn. 379 */ 380 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 381 { 382 struct kprobe *cur = kprobe_running(); 383 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 384 385 if (!cur) 386 return 0; 387 388 /* make sure we got here for instruction we have a kprobe on */ 389 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) 390 return 0; 391 392 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 393 kcb->kprobe_status = KPROBE_HIT_SSDONE; 394 cur->post_handler(cur, regs, 0); 395 } 396 397 /* Adjust nip to after the single-stepped instruction */ 398 regs->nip = (unsigned long)cur->addr + 4; 399 regs->msr |= kcb->kprobe_saved_msr; 400 401 /*Restore back the original saved kprobes variables and continue. */ 402 if (kcb->kprobe_status == KPROBE_REENTER) { 403 restore_previous_kprobe(kcb); 404 goto out; 405 } 406 reset_current_kprobe(); 407 out: 408 preempt_enable_no_resched(); 409 410 /* 411 * if somebody else is singlestepping across a probe point, msr 412 * will have DE/SE set, in which case, continue the remaining processing 413 * of do_debug, as if this is not a probe hit. 414 */ 415 if (regs->msr & MSR_SINGLESTEP) 416 return 0; 417 418 return 1; 419 } 420 421 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 422 { 423 struct kprobe *cur = kprobe_running(); 424 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 425 const struct exception_table_entry *entry; 426 427 switch(kcb->kprobe_status) { 428 case KPROBE_HIT_SS: 429 case KPROBE_REENTER: 430 /* 431 * We are here because the instruction being single 432 * stepped caused a page fault. We reset the current 433 * kprobe and the nip points back to the probe address 434 * and allow the page fault handler to continue as a 435 * normal page fault. 436 */ 437 regs->nip = (unsigned long)cur->addr; 438 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ 439 regs->msr |= kcb->kprobe_saved_msr; 440 if (kcb->kprobe_status == KPROBE_REENTER) 441 restore_previous_kprobe(kcb); 442 else 443 reset_current_kprobe(); 444 preempt_enable_no_resched(); 445 break; 446 case KPROBE_HIT_ACTIVE: 447 case KPROBE_HIT_SSDONE: 448 /* 449 * We increment the nmissed count for accounting, 450 * we can also use npre/npostfault count for accouting 451 * these specific fault cases. 452 */ 453 kprobes_inc_nmissed_count(cur); 454 455 /* 456 * We come here because instructions in the pre/post 457 * handler caused the page_fault, this could happen 458 * if handler tries to access user space by 459 * copy_from_user(), get_user() etc. Let the 460 * user-specified handler try to fix it first. 461 */ 462 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 463 return 1; 464 465 /* 466 * In case the user-specified fault handler returned 467 * zero, try to fix up. 468 */ 469 if ((entry = search_exception_tables(regs->nip)) != NULL) { 470 regs->nip = entry->fixup; 471 return 1; 472 } 473 474 /* 475 * fixup_exception() could not handle it, 476 * Let do_page_fault() fix it. 477 */ 478 break; 479 default: 480 break; 481 } 482 return 0; 483 } 484 485 /* 486 * Wrapper routine to for handling exceptions. 487 */ 488 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 489 unsigned long val, void *data) 490 { 491 struct die_args *args = (struct die_args *)data; 492 int ret = NOTIFY_DONE; 493 494 if (args->regs && user_mode(args->regs)) 495 return ret; 496 497 switch (val) { 498 case DIE_BPT: 499 if (kprobe_handler(args->regs)) 500 ret = NOTIFY_STOP; 501 break; 502 case DIE_SSTEP: 503 if (post_kprobe_handler(args->regs)) 504 ret = NOTIFY_STOP; 505 break; 506 default: 507 break; 508 } 509 return ret; 510 } 511 512 #ifdef CONFIG_PPC64 513 unsigned long arch_deref_entry_point(void *entry) 514 { 515 return ((func_descr_t *)entry)->entry; 516 } 517 #endif 518 519 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 520 { 521 struct jprobe *jp = container_of(p, struct jprobe, kp); 522 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 523 524 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 525 526 /* setup return addr to the jprobe handler routine */ 527 regs->nip = arch_deref_entry_point(jp->entry); 528 #ifdef CONFIG_PPC64 529 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 530 #endif 531 532 return 1; 533 } 534 535 void __used __kprobes jprobe_return(void) 536 { 537 asm volatile("trap" ::: "memory"); 538 } 539 540 static void __used __kprobes jprobe_return_end(void) 541 { 542 }; 543 544 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 545 { 546 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 547 548 /* 549 * FIXME - we should ideally be validating that we got here 'cos 550 * of the "trap" in jprobe_return() above, before restoring the 551 * saved regs... 552 */ 553 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 554 preempt_enable_no_resched(); 555 return 1; 556 } 557 558 static struct kprobe trampoline_p = { 559 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 560 .pre_handler = trampoline_probe_handler 561 }; 562 563 int __init arch_init_kprobes(void) 564 { 565 return register_kprobe(&trampoline_p); 566 } 567 568 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 569 { 570 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 571 return 1; 572 573 return 0; 574 } 575