1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <asm/cacheflush.h> 34 #include <asm/kdebug.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 int __kprobes arch_prepare_kprobe(struct kprobe *p) 42 { 43 int ret = 0; 44 kprobe_opcode_t insn = *p->addr; 45 46 if ((unsigned long)p->addr & 0x03) { 47 printk("Attempt to register kprobe at an unaligned address\n"); 48 ret = -EINVAL; 49 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) { 50 printk("Cannot register a kprobe on rfid or mtmsrd\n"); 51 ret = -EINVAL; 52 } 53 54 /* insn must be on a special executable page on ppc64 */ 55 if (!ret) { 56 p->ainsn.insn = get_insn_slot(); 57 if (!p->ainsn.insn) 58 ret = -ENOMEM; 59 } 60 61 if (!ret) { 62 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 63 p->opcode = *p->addr; 64 } 65 66 return ret; 67 } 68 69 void __kprobes arch_arm_kprobe(struct kprobe *p) 70 { 71 *p->addr = BREAKPOINT_INSTRUCTION; 72 flush_icache_range((unsigned long) p->addr, 73 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 74 } 75 76 void __kprobes arch_disarm_kprobe(struct kprobe *p) 77 { 78 *p->addr = p->opcode; 79 flush_icache_range((unsigned long) p->addr, 80 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 81 } 82 83 void __kprobes arch_remove_kprobe(struct kprobe *p) 84 { 85 mutex_lock(&kprobe_mutex); 86 free_insn_slot(p->ainsn.insn); 87 mutex_unlock(&kprobe_mutex); 88 } 89 90 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 91 { 92 regs->msr |= MSR_SE; 93 94 /* 95 * On powerpc we should single step on the original 96 * instruction even if the probed insn is a trap 97 * variant as values in regs could play a part in 98 * if the trap is taken or not 99 */ 100 regs->nip = (unsigned long)p->ainsn.insn; 101 } 102 103 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 104 { 105 kcb->prev_kprobe.kp = kprobe_running(); 106 kcb->prev_kprobe.status = kcb->kprobe_status; 107 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 108 } 109 110 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 111 { 112 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 113 kcb->kprobe_status = kcb->prev_kprobe.status; 114 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 115 } 116 117 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 118 struct kprobe_ctlblk *kcb) 119 { 120 __get_cpu_var(current_kprobe) = p; 121 kcb->kprobe_saved_msr = regs->msr; 122 } 123 124 /* Called with kretprobe_lock held */ 125 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, 126 struct pt_regs *regs) 127 { 128 struct kretprobe_instance *ri; 129 130 if ((ri = get_free_rp_inst(rp)) != NULL) { 131 ri->rp = rp; 132 ri->task = current; 133 ri->ret_addr = (kprobe_opcode_t *)regs->link; 134 135 /* Replace the return addr with trampoline addr */ 136 regs->link = (unsigned long)kretprobe_trampoline; 137 add_rp_inst(ri); 138 } else { 139 rp->nmissed++; 140 } 141 } 142 143 static int __kprobes kprobe_handler(struct pt_regs *regs) 144 { 145 struct kprobe *p; 146 int ret = 0; 147 unsigned int *addr = (unsigned int *)regs->nip; 148 struct kprobe_ctlblk *kcb; 149 150 /* 151 * We don't want to be preempted for the entire 152 * duration of kprobe processing 153 */ 154 preempt_disable(); 155 kcb = get_kprobe_ctlblk(); 156 157 /* Check we're not actually recursing */ 158 if (kprobe_running()) { 159 p = get_kprobe(addr); 160 if (p) { 161 kprobe_opcode_t insn = *p->ainsn.insn; 162 if (kcb->kprobe_status == KPROBE_HIT_SS && 163 is_trap(insn)) { 164 regs->msr &= ~MSR_SE; 165 regs->msr |= kcb->kprobe_saved_msr; 166 goto no_kprobe; 167 } 168 /* We have reentered the kprobe_handler(), since 169 * another probe was hit while within the handler. 170 * We here save the original kprobes variables and 171 * just single step on the instruction of the new probe 172 * without calling any user handlers. 173 */ 174 save_previous_kprobe(kcb); 175 set_current_kprobe(p, regs, kcb); 176 kcb->kprobe_saved_msr = regs->msr; 177 kprobes_inc_nmissed_count(p); 178 prepare_singlestep(p, regs); 179 kcb->kprobe_status = KPROBE_REENTER; 180 return 1; 181 } else { 182 if (*addr != BREAKPOINT_INSTRUCTION) { 183 /* If trap variant, then it belongs not to us */ 184 kprobe_opcode_t cur_insn = *addr; 185 if (is_trap(cur_insn)) 186 goto no_kprobe; 187 /* The breakpoint instruction was removed by 188 * another cpu right after we hit, no further 189 * handling of this interrupt is appropriate 190 */ 191 ret = 1; 192 goto no_kprobe; 193 } 194 p = __get_cpu_var(current_kprobe); 195 if (p->break_handler && p->break_handler(p, regs)) { 196 goto ss_probe; 197 } 198 } 199 goto no_kprobe; 200 } 201 202 p = get_kprobe(addr); 203 if (!p) { 204 if (*addr != BREAKPOINT_INSTRUCTION) { 205 /* 206 * PowerPC has multiple variants of the "trap" 207 * instruction. If the current instruction is a 208 * trap variant, it could belong to someone else 209 */ 210 kprobe_opcode_t cur_insn = *addr; 211 if (is_trap(cur_insn)) 212 goto no_kprobe; 213 /* 214 * The breakpoint instruction was removed right 215 * after we hit it. Another cpu has removed 216 * either a probepoint or a debugger breakpoint 217 * at this address. In either case, no further 218 * handling of this interrupt is appropriate. 219 */ 220 ret = 1; 221 } 222 /* Not one of ours: let kernel handle it */ 223 goto no_kprobe; 224 } 225 226 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 227 set_current_kprobe(p, regs, kcb); 228 if (p->pre_handler && p->pre_handler(p, regs)) 229 /* handler has already set things up, so skip ss setup */ 230 return 1; 231 232 ss_probe: 233 prepare_singlestep(p, regs); 234 kcb->kprobe_status = KPROBE_HIT_SS; 235 return 1; 236 237 no_kprobe: 238 preempt_enable_no_resched(); 239 return ret; 240 } 241 242 /* 243 * Function return probe trampoline: 244 * - init_kprobes() establishes a probepoint here 245 * - When the probed function returns, this probe 246 * causes the handlers to fire 247 */ 248 void kretprobe_trampoline_holder(void) 249 { 250 asm volatile(".global kretprobe_trampoline\n" 251 "kretprobe_trampoline:\n" 252 "nop\n"); 253 } 254 255 /* 256 * Called when the probe at kretprobe trampoline is hit 257 */ 258 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 259 { 260 struct kretprobe_instance *ri = NULL; 261 struct hlist_head *head; 262 struct hlist_node *node, *tmp; 263 unsigned long flags, orig_ret_address = 0; 264 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 265 266 spin_lock_irqsave(&kretprobe_lock, flags); 267 head = kretprobe_inst_table_head(current); 268 269 /* 270 * It is possible to have multiple instances associated with a given 271 * task either because an multiple functions in the call path 272 * have a return probe installed on them, and/or more then one return 273 * return probe was registered for a target function. 274 * 275 * We can handle this because: 276 * - instances are always inserted at the head of the list 277 * - when multiple return probes are registered for the same 278 * function, the first instance's ret_addr will point to the 279 * real return address, and all the rest will point to 280 * kretprobe_trampoline 281 */ 282 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 283 if (ri->task != current) 284 /* another task is sharing our hash bucket */ 285 continue; 286 287 if (ri->rp && ri->rp->handler) 288 ri->rp->handler(ri, regs); 289 290 orig_ret_address = (unsigned long)ri->ret_addr; 291 recycle_rp_inst(ri); 292 293 if (orig_ret_address != trampoline_address) 294 /* 295 * This is the real return address. Any other 296 * instances associated with this task are for 297 * other calls deeper on the call stack 298 */ 299 break; 300 } 301 302 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); 303 regs->nip = orig_ret_address; 304 305 reset_current_kprobe(); 306 spin_unlock_irqrestore(&kretprobe_lock, flags); 307 preempt_enable_no_resched(); 308 309 /* 310 * By returning a non-zero value, we are telling 311 * kprobe_handler() that we don't want the post_handler 312 * to run (and have re-enabled preemption) 313 */ 314 return 1; 315 } 316 317 /* 318 * Called after single-stepping. p->addr is the address of the 319 * instruction whose first byte has been replaced by the "breakpoint" 320 * instruction. To avoid the SMP problems that can occur when we 321 * temporarily put back the original opcode to single-step, we 322 * single-stepped a copy of the instruction. The address of this 323 * copy is p->ainsn.insn. 324 */ 325 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 326 { 327 int ret; 328 unsigned int insn = *p->ainsn.insn; 329 330 regs->nip = (unsigned long)p->addr; 331 ret = emulate_step(regs, insn); 332 if (ret == 0) 333 regs->nip = (unsigned long)p->addr + 4; 334 } 335 336 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 337 { 338 struct kprobe *cur = kprobe_running(); 339 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 340 341 if (!cur) 342 return 0; 343 344 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 345 kcb->kprobe_status = KPROBE_HIT_SSDONE; 346 cur->post_handler(cur, regs, 0); 347 } 348 349 resume_execution(cur, regs); 350 regs->msr |= kcb->kprobe_saved_msr; 351 352 /*Restore back the original saved kprobes variables and continue. */ 353 if (kcb->kprobe_status == KPROBE_REENTER) { 354 restore_previous_kprobe(kcb); 355 goto out; 356 } 357 reset_current_kprobe(); 358 out: 359 preempt_enable_no_resched(); 360 361 /* 362 * if somebody else is singlestepping across a probe point, msr 363 * will have SE set, in which case, continue the remaining processing 364 * of do_debug, as if this is not a probe hit. 365 */ 366 if (regs->msr & MSR_SE) 367 return 0; 368 369 return 1; 370 } 371 372 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 373 { 374 struct kprobe *cur = kprobe_running(); 375 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 376 const struct exception_table_entry *entry; 377 378 switch(kcb->kprobe_status) { 379 case KPROBE_HIT_SS: 380 case KPROBE_REENTER: 381 /* 382 * We are here because the instruction being single 383 * stepped caused a page fault. We reset the current 384 * kprobe and the nip points back to the probe address 385 * and allow the page fault handler to continue as a 386 * normal page fault. 387 */ 388 regs->nip = (unsigned long)cur->addr; 389 regs->msr &= ~MSR_SE; 390 regs->msr |= kcb->kprobe_saved_msr; 391 if (kcb->kprobe_status == KPROBE_REENTER) 392 restore_previous_kprobe(kcb); 393 else 394 reset_current_kprobe(); 395 preempt_enable_no_resched(); 396 break; 397 case KPROBE_HIT_ACTIVE: 398 case KPROBE_HIT_SSDONE: 399 /* 400 * We increment the nmissed count for accounting, 401 * we can also use npre/npostfault count for accouting 402 * these specific fault cases. 403 */ 404 kprobes_inc_nmissed_count(cur); 405 406 /* 407 * We come here because instructions in the pre/post 408 * handler caused the page_fault, this could happen 409 * if handler tries to access user space by 410 * copy_from_user(), get_user() etc. Let the 411 * user-specified handler try to fix it first. 412 */ 413 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 414 return 1; 415 416 /* 417 * In case the user-specified fault handler returned 418 * zero, try to fix up. 419 */ 420 if ((entry = search_exception_tables(regs->nip)) != NULL) { 421 regs->nip = entry->fixup; 422 return 1; 423 } 424 425 /* 426 * fixup_exception() could not handle it, 427 * Let do_page_fault() fix it. 428 */ 429 break; 430 default: 431 break; 432 } 433 return 0; 434 } 435 436 /* 437 * Wrapper routine to for handling exceptions. 438 */ 439 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 440 unsigned long val, void *data) 441 { 442 struct die_args *args = (struct die_args *)data; 443 int ret = NOTIFY_DONE; 444 445 if (args->regs && user_mode(args->regs)) 446 return ret; 447 448 switch (val) { 449 case DIE_BPT: 450 if (kprobe_handler(args->regs)) 451 ret = NOTIFY_STOP; 452 break; 453 case DIE_SSTEP: 454 if (post_kprobe_handler(args->regs)) 455 ret = NOTIFY_STOP; 456 break; 457 case DIE_PAGE_FAULT: 458 /* kprobe_running() needs smp_processor_id() */ 459 preempt_disable(); 460 if (kprobe_running() && 461 kprobe_fault_handler(args->regs, args->trapnr)) 462 ret = NOTIFY_STOP; 463 preempt_enable(); 464 break; 465 default: 466 break; 467 } 468 return ret; 469 } 470 471 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 472 { 473 struct jprobe *jp = container_of(p, struct jprobe, kp); 474 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 475 476 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 477 478 /* setup return addr to the jprobe handler routine */ 479 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); 480 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 481 482 return 1; 483 } 484 485 void __kprobes jprobe_return(void) 486 { 487 asm volatile("trap" ::: "memory"); 488 } 489 490 void __kprobes jprobe_return_end(void) 491 { 492 }; 493 494 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 495 { 496 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 497 498 /* 499 * FIXME - we should ideally be validating that we got here 'cos 500 * of the "trap" in jprobe_return() above, before restoring the 501 * saved regs... 502 */ 503 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 504 preempt_enable_no_resched(); 505 return 1; 506 } 507 508 static struct kprobe trampoline_p = { 509 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 510 .pre_handler = trampoline_probe_handler 511 }; 512 513 int __init arch_init_kprobes(void) 514 { 515 return register_kprobe(&trampoline_p); 516 } 517