xref: /linux/arch/powerpc/kernel/kgdb.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * PowerPC backend to the KGDB stub.
3  *
4  * 1998 (c) Michael AK Tesch (tesch@cs.wisc.edu)
5  * Copyright (C) 2003 Timesys Corporation.
6  * Copyright (C) 2004-2006 MontaVista Software, Inc.
7  * PPC64 Mods (C) 2005 Frank Rowand (frowand@mvista.com)
8  * PPC32 support restored by Vitaly Wool <vwool@ru.mvista.com> and
9  * Sergei Shtylyov <sshtylyov@ru.mvista.com>
10  * Copyright (C) 2007-2008 Wind River Systems, Inc.
11  *
12  * This file is licensed under the terms of the GNU General Public License
13  * version 2. This program as licensed "as is" without any warranty of any
14  * kind, whether express or implied.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/kgdb.h>
19 #include <linux/smp.h>
20 #include <linux/signal.h>
21 #include <linux/ptrace.h>
22 #include <linux/kdebug.h>
23 #include <asm/current.h>
24 #include <asm/processor.h>
25 #include <asm/machdep.h>
26 #include <asm/debug.h>
27 #include <linux/slab.h>
28 
29 /*
30  * This table contains the mapping between PowerPC hardware trap types, and
31  * signals, which are primarily what GDB understands.  GDB and the kernel
32  * don't always agree on values, so we use constants taken from gdb-6.2.
33  */
34 static struct hard_trap_info
35 {
36 	unsigned int tt;		/* Trap type code for powerpc */
37 	unsigned char signo;		/* Signal that we map this trap into */
38 } hard_trap_info[] = {
39 	{ 0x0100, 0x02 /* SIGINT */  },		/* system reset */
40 	{ 0x0200, 0x0b /* SIGSEGV */ },		/* machine check */
41 	{ 0x0300, 0x0b /* SIGSEGV */ },		/* data access */
42 	{ 0x0400, 0x0b /* SIGSEGV */ },		/* instruction access */
43 	{ 0x0500, 0x02 /* SIGINT */  },		/* external interrupt */
44 	{ 0x0600, 0x0a /* SIGBUS */  },		/* alignment */
45 	{ 0x0700, 0x05 /* SIGTRAP */ },		/* program check */
46 	{ 0x0800, 0x08 /* SIGFPE */  },		/* fp unavailable */
47 	{ 0x0900, 0x0e /* SIGALRM */ },		/* decrementer */
48 	{ 0x0c00, 0x14 /* SIGCHLD */ },		/* system call */
49 #if defined(CONFIG_40x) || defined(CONFIG_BOOKE)
50 	{ 0x2002, 0x05 /* SIGTRAP */ },		/* debug */
51 #if defined(CONFIG_FSL_BOOKE)
52 	{ 0x2010, 0x08 /* SIGFPE */  },		/* spe unavailable */
53 	{ 0x2020, 0x08 /* SIGFPE */  },		/* spe unavailable */
54 	{ 0x2030, 0x08 /* SIGFPE */  },		/* spe fp data */
55 	{ 0x2040, 0x08 /* SIGFPE */  },		/* spe fp data */
56 	{ 0x2050, 0x08 /* SIGFPE */  },		/* spe fp round */
57 	{ 0x2060, 0x0e /* SIGILL */  },		/* performance monitor */
58 	{ 0x2900, 0x08 /* SIGFPE */  },		/* apu unavailable */
59 	{ 0x3100, 0x0e /* SIGALRM */ },		/* fixed interval timer */
60 	{ 0x3200, 0x02 /* SIGINT */  }, 	/* watchdog */
61 #else /* ! CONFIG_FSL_BOOKE */
62 	{ 0x1000, 0x0e /* SIGALRM */ },		/* prog interval timer */
63 	{ 0x1010, 0x0e /* SIGALRM */ },		/* fixed interval timer */
64 	{ 0x1020, 0x02 /* SIGINT */  }, 	/* watchdog */
65 	{ 0x2010, 0x08 /* SIGFPE */  },		/* fp unavailable */
66 	{ 0x2020, 0x08 /* SIGFPE */  },		/* ap unavailable */
67 #endif
68 #else /* ! (defined(CONFIG_40x) || defined(CONFIG_BOOKE)) */
69 	{ 0x0d00, 0x05 /* SIGTRAP */ },		/* single-step */
70 #if defined(CONFIG_8xx)
71 	{ 0x1000, 0x04 /* SIGILL */  },		/* software emulation */
72 #else /* ! CONFIG_8xx */
73 	{ 0x0f00, 0x04 /* SIGILL */  },		/* performance monitor */
74 	{ 0x0f20, 0x08 /* SIGFPE */  },		/* altivec unavailable */
75 	{ 0x1300, 0x05 /* SIGTRAP */ }, 	/* instruction address break */
76 #if defined(CONFIG_PPC64)
77 	{ 0x1200, 0x05 /* SIGILL */  },		/* system error */
78 	{ 0x1500, 0x04 /* SIGILL */  },		/* soft patch */
79 	{ 0x1600, 0x04 /* SIGILL */  },		/* maintenance */
80 	{ 0x1700, 0x08 /* SIGFPE */  },		/* altivec assist */
81 	{ 0x1800, 0x04 /* SIGILL */  },		/* thermal */
82 #else /* ! CONFIG_PPC64 */
83 	{ 0x1400, 0x02 /* SIGINT */  },		/* SMI */
84 	{ 0x1600, 0x08 /* SIGFPE */  },		/* altivec assist */
85 	{ 0x1700, 0x04 /* SIGILL */  },		/* TAU */
86 	{ 0x2000, 0x05 /* SIGTRAP */ },		/* run mode */
87 #endif
88 #endif
89 #endif
90 	{ 0x0000, 0x00 }			/* Must be last */
91 };
92 
93 static int computeSignal(unsigned int tt)
94 {
95 	struct hard_trap_info *ht;
96 
97 	for (ht = hard_trap_info; ht->tt && ht->signo; ht++)
98 		if (ht->tt == tt)
99 			return ht->signo;
100 
101 	return SIGHUP;		/* default for things we don't know about */
102 }
103 
104 /**
105  *
106  *	kgdb_skipexception - Bail out of KGDB when we've been triggered.
107  *	@exception: Exception vector number
108  *	@regs: Current &struct pt_regs.
109  *
110  *	On some architectures we need to skip a breakpoint exception when
111  *	it occurs after a breakpoint has been removed.
112  *
113  */
114 int kgdb_skipexception(int exception, struct pt_regs *regs)
115 {
116 	return kgdb_isremovedbreak(regs->nip);
117 }
118 
119 static int kgdb_call_nmi_hook(struct pt_regs *regs)
120 {
121 	kgdb_nmicallback(raw_smp_processor_id(), regs);
122 	return 0;
123 }
124 
125 #ifdef CONFIG_SMP
126 void kgdb_roundup_cpus(unsigned long flags)
127 {
128 	smp_send_debugger_break();
129 }
130 #endif
131 
132 /* KGDB functions to use existing PowerPC64 hooks. */
133 static int kgdb_debugger(struct pt_regs *regs)
134 {
135 	return !kgdb_handle_exception(1, computeSignal(TRAP(regs)),
136 				      DIE_OOPS, regs);
137 }
138 
139 static int kgdb_handle_breakpoint(struct pt_regs *regs)
140 {
141 	if (user_mode(regs))
142 		return 0;
143 
144 	if (kgdb_handle_exception(1, SIGTRAP, 0, regs) != 0)
145 		return 0;
146 
147 	if (*(u32 *) (regs->nip) == *(u32 *) (&arch_kgdb_ops.gdb_bpt_instr))
148 		regs->nip += BREAK_INSTR_SIZE;
149 
150 	return 1;
151 }
152 
153 static DEFINE_PER_CPU(struct thread_info, kgdb_thread_info);
154 static int kgdb_singlestep(struct pt_regs *regs)
155 {
156 	struct thread_info *thread_info, *exception_thread_info;
157 	struct thread_info *backup_current_thread_info =
158 		this_cpu_ptr(&kgdb_thread_info);
159 
160 	if (user_mode(regs))
161 		return 0;
162 
163 	/*
164 	 * On Book E and perhaps other processors, singlestep is handled on
165 	 * the critical exception stack.  This causes current_thread_info()
166 	 * to fail, since it it locates the thread_info by masking off
167 	 * the low bits of the current stack pointer.  We work around
168 	 * this issue by copying the thread_info from the kernel stack
169 	 * before calling kgdb_handle_exception, and copying it back
170 	 * afterwards.  On most processors the copy is avoided since
171 	 * exception_thread_info == thread_info.
172 	 */
173 	thread_info = (struct thread_info *)(regs->gpr[1] & ~(THREAD_SIZE-1));
174 	exception_thread_info = current_thread_info();
175 
176 	if (thread_info != exception_thread_info) {
177 		/* Save the original current_thread_info. */
178 		memcpy(backup_current_thread_info, exception_thread_info, sizeof *thread_info);
179 		memcpy(exception_thread_info, thread_info, sizeof *thread_info);
180 	}
181 
182 	kgdb_handle_exception(0, SIGTRAP, 0, regs);
183 
184 	if (thread_info != exception_thread_info)
185 		/* Restore current_thread_info lastly. */
186 		memcpy(exception_thread_info, backup_current_thread_info, sizeof *thread_info);
187 
188 	return 1;
189 }
190 
191 static int kgdb_iabr_match(struct pt_regs *regs)
192 {
193 	if (user_mode(regs))
194 		return 0;
195 
196 	if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0)
197 		return 0;
198 	return 1;
199 }
200 
201 static int kgdb_break_match(struct pt_regs *regs)
202 {
203 	if (user_mode(regs))
204 		return 0;
205 
206 	if (kgdb_handle_exception(0, computeSignal(TRAP(regs)), 0, regs) != 0)
207 		return 0;
208 	return 1;
209 }
210 
211 #define PACK64(ptr, src) do { *(ptr++) = (src); } while (0)
212 
213 #define PACK32(ptr, src) do {          \
214 	u32 *ptr32;                   \
215 	ptr32 = (u32 *)ptr;           \
216 	*(ptr32++) = (src);           \
217 	ptr = (unsigned long *)ptr32; \
218 	} while (0)
219 
220 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
221 {
222 	struct pt_regs *regs = (struct pt_regs *)(p->thread.ksp +
223 						  STACK_FRAME_OVERHEAD);
224 	unsigned long *ptr = gdb_regs;
225 	int reg;
226 
227 	memset(gdb_regs, 0, NUMREGBYTES);
228 
229 	/* Regs GPR0-2 */
230 	for (reg = 0; reg < 3; reg++)
231 		PACK64(ptr, regs->gpr[reg]);
232 
233 	/* Regs GPR3-13 are caller saved, not in regs->gpr[] */
234 	ptr += 11;
235 
236 	/* Regs GPR14-31 */
237 	for (reg = 14; reg < 32; reg++)
238 		PACK64(ptr, regs->gpr[reg]);
239 
240 #ifdef CONFIG_FSL_BOOKE
241 #ifdef CONFIG_SPE
242 	for (reg = 0; reg < 32; reg++)
243 		PACK64(ptr, p->thread.evr[reg]);
244 #else
245 	ptr += 32;
246 #endif
247 #else
248 	/* fp registers not used by kernel, leave zero */
249 	ptr += 32 * 8 / sizeof(long);
250 #endif
251 
252 	PACK64(ptr, regs->nip);
253 	PACK64(ptr, regs->msr);
254 	PACK32(ptr, regs->ccr);
255 	PACK64(ptr, regs->link);
256 	PACK64(ptr, regs->ctr);
257 	PACK32(ptr, regs->xer);
258 
259 	BUG_ON((unsigned long)ptr >
260 	       (unsigned long)(((void *)gdb_regs) + NUMREGBYTES));
261 }
262 
263 #define GDB_SIZEOF_REG sizeof(unsigned long)
264 #define GDB_SIZEOF_REG_U32 sizeof(u32)
265 
266 #ifdef CONFIG_FSL_BOOKE
267 #define GDB_SIZEOF_FLOAT_REG sizeof(unsigned long)
268 #else
269 #define GDB_SIZEOF_FLOAT_REG sizeof(u64)
270 #endif
271 
272 struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
273 {
274 	{ "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[0]) },
275 	{ "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[1]) },
276 	{ "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[2]) },
277 	{ "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[3]) },
278 	{ "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[4]) },
279 	{ "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[5]) },
280 	{ "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[6]) },
281 	{ "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[7]) },
282 	{ "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[8]) },
283 	{ "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[9]) },
284 	{ "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[10]) },
285 	{ "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[11]) },
286 	{ "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[12]) },
287 	{ "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[13]) },
288 	{ "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[14]) },
289 	{ "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[15]) },
290 	{ "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[16]) },
291 	{ "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[17]) },
292 	{ "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[18]) },
293 	{ "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[19]) },
294 	{ "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[20]) },
295 	{ "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[21]) },
296 	{ "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[22]) },
297 	{ "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[23]) },
298 	{ "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[24]) },
299 	{ "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[25]) },
300 	{ "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[26]) },
301 	{ "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[27]) },
302 	{ "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[28]) },
303 	{ "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[29]) },
304 	{ "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[30]) },
305 	{ "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, gpr[31]) },
306 
307 	{ "f0", GDB_SIZEOF_FLOAT_REG, 0 },
308 	{ "f1", GDB_SIZEOF_FLOAT_REG, 1 },
309 	{ "f2", GDB_SIZEOF_FLOAT_REG, 2 },
310 	{ "f3", GDB_SIZEOF_FLOAT_REG, 3 },
311 	{ "f4", GDB_SIZEOF_FLOAT_REG, 4 },
312 	{ "f5", GDB_SIZEOF_FLOAT_REG, 5 },
313 	{ "f6", GDB_SIZEOF_FLOAT_REG, 6 },
314 	{ "f7", GDB_SIZEOF_FLOAT_REG, 7 },
315 	{ "f8", GDB_SIZEOF_FLOAT_REG, 8 },
316 	{ "f9", GDB_SIZEOF_FLOAT_REG, 9 },
317 	{ "f10", GDB_SIZEOF_FLOAT_REG, 10 },
318 	{ "f11", GDB_SIZEOF_FLOAT_REG, 11 },
319 	{ "f12", GDB_SIZEOF_FLOAT_REG, 12 },
320 	{ "f13", GDB_SIZEOF_FLOAT_REG, 13 },
321 	{ "f14", GDB_SIZEOF_FLOAT_REG, 14 },
322 	{ "f15", GDB_SIZEOF_FLOAT_REG, 15 },
323 	{ "f16", GDB_SIZEOF_FLOAT_REG, 16 },
324 	{ "f17", GDB_SIZEOF_FLOAT_REG, 17 },
325 	{ "f18", GDB_SIZEOF_FLOAT_REG, 18 },
326 	{ "f19", GDB_SIZEOF_FLOAT_REG, 19 },
327 	{ "f20", GDB_SIZEOF_FLOAT_REG, 20 },
328 	{ "f21", GDB_SIZEOF_FLOAT_REG, 21 },
329 	{ "f22", GDB_SIZEOF_FLOAT_REG, 22 },
330 	{ "f23", GDB_SIZEOF_FLOAT_REG, 23 },
331 	{ "f24", GDB_SIZEOF_FLOAT_REG, 24 },
332 	{ "f25", GDB_SIZEOF_FLOAT_REG, 25 },
333 	{ "f26", GDB_SIZEOF_FLOAT_REG, 26 },
334 	{ "f27", GDB_SIZEOF_FLOAT_REG, 27 },
335 	{ "f28", GDB_SIZEOF_FLOAT_REG, 28 },
336 	{ "f29", GDB_SIZEOF_FLOAT_REG, 29 },
337 	{ "f30", GDB_SIZEOF_FLOAT_REG, 30 },
338 	{ "f31", GDB_SIZEOF_FLOAT_REG, 31 },
339 
340 	{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, nip) },
341 	{ "msr", GDB_SIZEOF_REG, offsetof(struct pt_regs, msr) },
342 	{ "cr", GDB_SIZEOF_REG_U32, offsetof(struct pt_regs, ccr) },
343 	{ "lr", GDB_SIZEOF_REG, offsetof(struct pt_regs, link) },
344 	{ "ctr", GDB_SIZEOF_REG_U32, offsetof(struct pt_regs, ctr) },
345 	{ "xer", GDB_SIZEOF_REG, offsetof(struct pt_regs, xer) },
346 };
347 
348 char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
349 {
350 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
351 		return NULL;
352 
353 	if (regno < 32 || regno >= 64)
354 		/* First 0 -> 31 gpr registers*/
355 		/* pc, msr, ls... registers 64 -> 69 */
356 		memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
357 				dbg_reg_def[regno].size);
358 
359 	if (regno >= 32 && regno < 64) {
360 		/* FP registers 32 -> 63 */
361 #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_SPE)
362 		if (current)
363 			memcpy(mem, &current->thread.evr[regno-32],
364 					dbg_reg_def[regno].size);
365 #else
366 		/* fp registers not used by kernel, leave zero */
367 		memset(mem, 0, dbg_reg_def[regno].size);
368 #endif
369 	}
370 
371 	return dbg_reg_def[regno].name;
372 }
373 
374 int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
375 {
376 	if (regno >= DBG_MAX_REG_NUM || regno < 0)
377 		return -EINVAL;
378 
379 	if (regno < 32 || regno >= 64)
380 		/* First 0 -> 31 gpr registers*/
381 		/* pc, msr, ls... registers 64 -> 69 */
382 		memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
383 				dbg_reg_def[regno].size);
384 
385 	if (regno >= 32 && regno < 64) {
386 		/* FP registers 32 -> 63 */
387 #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_SPE)
388 		memcpy(&current->thread.evr[regno-32], mem,
389 				dbg_reg_def[regno].size);
390 #else
391 		/* fp registers not used by kernel, leave zero */
392 		return 0;
393 #endif
394 	}
395 
396 	return 0;
397 }
398 
399 void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
400 {
401 	regs->nip = pc;
402 }
403 
404 /*
405  * This function does PowerPC specific procesing for interfacing to gdb.
406  */
407 int kgdb_arch_handle_exception(int vector, int signo, int err_code,
408 			       char *remcom_in_buffer, char *remcom_out_buffer,
409 			       struct pt_regs *linux_regs)
410 {
411 	char *ptr = &remcom_in_buffer[1];
412 	unsigned long addr;
413 
414 	switch (remcom_in_buffer[0]) {
415 		/*
416 		 * sAA..AA   Step one instruction from AA..AA
417 		 * This will return an error to gdb ..
418 		 */
419 	case 's':
420 	case 'c':
421 		/* handle the optional parameter */
422 		if (kgdb_hex2long(&ptr, &addr))
423 			linux_regs->nip = addr;
424 
425 		atomic_set(&kgdb_cpu_doing_single_step, -1);
426 		/* set the trace bit if we're stepping */
427 		if (remcom_in_buffer[0] == 's') {
428 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
429 			mtspr(SPRN_DBCR0,
430 			      mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM);
431 			linux_regs->msr |= MSR_DE;
432 #else
433 			linux_regs->msr |= MSR_SE;
434 #endif
435 			atomic_set(&kgdb_cpu_doing_single_step,
436 				   raw_smp_processor_id());
437 		}
438 		return 0;
439 	}
440 
441 	return -1;
442 }
443 
444 /*
445  * Global data
446  */
447 struct kgdb_arch arch_kgdb_ops = {
448 	.gdb_bpt_instr = {0x7d, 0x82, 0x10, 0x08},
449 };
450 
451 static int kgdb_not_implemented(struct pt_regs *regs)
452 {
453 	return 0;
454 }
455 
456 static void *old__debugger_ipi;
457 static void *old__debugger;
458 static void *old__debugger_bpt;
459 static void *old__debugger_sstep;
460 static void *old__debugger_iabr_match;
461 static void *old__debugger_break_match;
462 static void *old__debugger_fault_handler;
463 
464 int kgdb_arch_init(void)
465 {
466 	old__debugger_ipi = __debugger_ipi;
467 	old__debugger = __debugger;
468 	old__debugger_bpt = __debugger_bpt;
469 	old__debugger_sstep = __debugger_sstep;
470 	old__debugger_iabr_match = __debugger_iabr_match;
471 	old__debugger_break_match = __debugger_break_match;
472 	old__debugger_fault_handler = __debugger_fault_handler;
473 
474 	__debugger_ipi = kgdb_call_nmi_hook;
475 	__debugger = kgdb_debugger;
476 	__debugger_bpt = kgdb_handle_breakpoint;
477 	__debugger_sstep = kgdb_singlestep;
478 	__debugger_iabr_match = kgdb_iabr_match;
479 	__debugger_break_match = kgdb_break_match;
480 	__debugger_fault_handler = kgdb_not_implemented;
481 
482 	return 0;
483 }
484 
485 void kgdb_arch_exit(void)
486 {
487 	__debugger_ipi = old__debugger_ipi;
488 	__debugger = old__debugger;
489 	__debugger_bpt = old__debugger_bpt;
490 	__debugger_sstep = old__debugger_sstep;
491 	__debugger_iabr_match = old__debugger_iabr_match;
492 	__debugger_break_match = old__debugger_break_match;
493 	__debugger_fault_handler = old__debugger_fault_handler;
494 }
495