xref: /linux/arch/powerpc/kernel/iommu.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation
4  *
5  * Rewrite, cleanup, new allocation schemes, virtual merging:
6  * Copyright (C) 2004 Olof Johansson, IBM Corporation
7  *               and  Ben. Herrenschmidt, IBM Corporation
8  *
9  * Dynamic DMA mapping support, bus-independent parts.
10  */
11 
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/bitmap.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/crash_dump.h>
23 #include <linux/hash.h>
24 #include <linux/fault-inject.h>
25 #include <linux/pci.h>
26 #include <linux/iommu.h>
27 #include <linux/sched.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/iommu.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/kdump.h>
34 #include <asm/fadump.h>
35 #include <asm/vio.h>
36 #include <asm/tce.h>
37 #include <asm/mmu_context.h>
38 
39 #define DBG(...)
40 
41 static int novmerge;
42 
43 static void __iommu_free(struct iommu_table *, dma_addr_t, unsigned int);
44 
45 static int __init setup_iommu(char *str)
46 {
47 	if (!strcmp(str, "novmerge"))
48 		novmerge = 1;
49 	else if (!strcmp(str, "vmerge"))
50 		novmerge = 0;
51 	return 1;
52 }
53 
54 __setup("iommu=", setup_iommu);
55 
56 static DEFINE_PER_CPU(unsigned int, iommu_pool_hash);
57 
58 /*
59  * We precalculate the hash to avoid doing it on every allocation.
60  *
61  * The hash is important to spread CPUs across all the pools. For example,
62  * on a POWER7 with 4 way SMT we want interrupts on the primary threads and
63  * with 4 pools all primary threads would map to the same pool.
64  */
65 static int __init setup_iommu_pool_hash(void)
66 {
67 	unsigned int i;
68 
69 	for_each_possible_cpu(i)
70 		per_cpu(iommu_pool_hash, i) = hash_32(i, IOMMU_POOL_HASHBITS);
71 
72 	return 0;
73 }
74 subsys_initcall(setup_iommu_pool_hash);
75 
76 #ifdef CONFIG_FAIL_IOMMU
77 
78 static DECLARE_FAULT_ATTR(fail_iommu);
79 
80 static int __init setup_fail_iommu(char *str)
81 {
82 	return setup_fault_attr(&fail_iommu, str);
83 }
84 __setup("fail_iommu=", setup_fail_iommu);
85 
86 static bool should_fail_iommu(struct device *dev)
87 {
88 	return dev->archdata.fail_iommu && should_fail(&fail_iommu, 1);
89 }
90 
91 static int __init fail_iommu_debugfs(void)
92 {
93 	struct dentry *dir = fault_create_debugfs_attr("fail_iommu",
94 						       NULL, &fail_iommu);
95 
96 	return PTR_ERR_OR_ZERO(dir);
97 }
98 late_initcall(fail_iommu_debugfs);
99 
100 static ssize_t fail_iommu_show(struct device *dev,
101 			       struct device_attribute *attr, char *buf)
102 {
103 	return sprintf(buf, "%d\n", dev->archdata.fail_iommu);
104 }
105 
106 static ssize_t fail_iommu_store(struct device *dev,
107 				struct device_attribute *attr, const char *buf,
108 				size_t count)
109 {
110 	int i;
111 
112 	if (count > 0 && sscanf(buf, "%d", &i) > 0)
113 		dev->archdata.fail_iommu = (i == 0) ? 0 : 1;
114 
115 	return count;
116 }
117 
118 static DEVICE_ATTR_RW(fail_iommu);
119 
120 static int fail_iommu_bus_notify(struct notifier_block *nb,
121 				 unsigned long action, void *data)
122 {
123 	struct device *dev = data;
124 
125 	if (action == BUS_NOTIFY_ADD_DEVICE) {
126 		if (device_create_file(dev, &dev_attr_fail_iommu))
127 			pr_warn("Unable to create IOMMU fault injection sysfs "
128 				"entries\n");
129 	} else if (action == BUS_NOTIFY_DEL_DEVICE) {
130 		device_remove_file(dev, &dev_attr_fail_iommu);
131 	}
132 
133 	return 0;
134 }
135 
136 static struct notifier_block fail_iommu_bus_notifier = {
137 	.notifier_call = fail_iommu_bus_notify
138 };
139 
140 static int __init fail_iommu_setup(void)
141 {
142 #ifdef CONFIG_PCI
143 	bus_register_notifier(&pci_bus_type, &fail_iommu_bus_notifier);
144 #endif
145 #ifdef CONFIG_IBMVIO
146 	bus_register_notifier(&vio_bus_type, &fail_iommu_bus_notifier);
147 #endif
148 
149 	return 0;
150 }
151 /*
152  * Must execute after PCI and VIO subsystem have initialised but before
153  * devices are probed.
154  */
155 arch_initcall(fail_iommu_setup);
156 #else
157 static inline bool should_fail_iommu(struct device *dev)
158 {
159 	return false;
160 }
161 #endif
162 
163 static unsigned long iommu_range_alloc(struct device *dev,
164 				       struct iommu_table *tbl,
165                                        unsigned long npages,
166                                        unsigned long *handle,
167                                        unsigned long mask,
168                                        unsigned int align_order)
169 {
170 	unsigned long n, end, start;
171 	unsigned long limit;
172 	int largealloc = npages > 15;
173 	int pass = 0;
174 	unsigned long align_mask;
175 	unsigned long boundary_size;
176 	unsigned long flags;
177 	unsigned int pool_nr;
178 	struct iommu_pool *pool;
179 
180 	align_mask = (1ull << align_order) - 1;
181 
182 	/* This allocator was derived from x86_64's bit string search */
183 
184 	/* Sanity check */
185 	if (unlikely(npages == 0)) {
186 		if (printk_ratelimit())
187 			WARN_ON(1);
188 		return DMA_MAPPING_ERROR;
189 	}
190 
191 	if (should_fail_iommu(dev))
192 		return DMA_MAPPING_ERROR;
193 
194 	/*
195 	 * We don't need to disable preemption here because any CPU can
196 	 * safely use any IOMMU pool.
197 	 */
198 	pool_nr = raw_cpu_read(iommu_pool_hash) & (tbl->nr_pools - 1);
199 
200 	if (largealloc)
201 		pool = &(tbl->large_pool);
202 	else
203 		pool = &(tbl->pools[pool_nr]);
204 
205 	spin_lock_irqsave(&(pool->lock), flags);
206 
207 again:
208 	if ((pass == 0) && handle && *handle &&
209 	    (*handle >= pool->start) && (*handle < pool->end))
210 		start = *handle;
211 	else
212 		start = pool->hint;
213 
214 	limit = pool->end;
215 
216 	/* The case below can happen if we have a small segment appended
217 	 * to a large, or when the previous alloc was at the very end of
218 	 * the available space. If so, go back to the initial start.
219 	 */
220 	if (start >= limit)
221 		start = pool->start;
222 
223 	if (limit + tbl->it_offset > mask) {
224 		limit = mask - tbl->it_offset + 1;
225 		/* If we're constrained on address range, first try
226 		 * at the masked hint to avoid O(n) search complexity,
227 		 * but on second pass, start at 0 in pool 0.
228 		 */
229 		if ((start & mask) >= limit || pass > 0) {
230 			spin_unlock(&(pool->lock));
231 			pool = &(tbl->pools[0]);
232 			spin_lock(&(pool->lock));
233 			start = pool->start;
234 		} else {
235 			start &= mask;
236 		}
237 	}
238 
239 	if (dev)
240 		boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
241 				      1 << tbl->it_page_shift);
242 	else
243 		boundary_size = ALIGN(1UL << 32, 1 << tbl->it_page_shift);
244 	/* 4GB boundary for iseries_hv_alloc and iseries_hv_map */
245 
246 	n = iommu_area_alloc(tbl->it_map, limit, start, npages, tbl->it_offset,
247 			     boundary_size >> tbl->it_page_shift, align_mask);
248 	if (n == -1) {
249 		if (likely(pass == 0)) {
250 			/* First try the pool from the start */
251 			pool->hint = pool->start;
252 			pass++;
253 			goto again;
254 
255 		} else if (pass <= tbl->nr_pools) {
256 			/* Now try scanning all the other pools */
257 			spin_unlock(&(pool->lock));
258 			pool_nr = (pool_nr + 1) & (tbl->nr_pools - 1);
259 			pool = &tbl->pools[pool_nr];
260 			spin_lock(&(pool->lock));
261 			pool->hint = pool->start;
262 			pass++;
263 			goto again;
264 
265 		} else {
266 			/* Give up */
267 			spin_unlock_irqrestore(&(pool->lock), flags);
268 			return DMA_MAPPING_ERROR;
269 		}
270 	}
271 
272 	end = n + npages;
273 
274 	/* Bump the hint to a new block for small allocs. */
275 	if (largealloc) {
276 		/* Don't bump to new block to avoid fragmentation */
277 		pool->hint = end;
278 	} else {
279 		/* Overflow will be taken care of at the next allocation */
280 		pool->hint = (end + tbl->it_blocksize - 1) &
281 		                ~(tbl->it_blocksize - 1);
282 	}
283 
284 	/* Update handle for SG allocations */
285 	if (handle)
286 		*handle = end;
287 
288 	spin_unlock_irqrestore(&(pool->lock), flags);
289 
290 	return n;
291 }
292 
293 static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl,
294 			      void *page, unsigned int npages,
295 			      enum dma_data_direction direction,
296 			      unsigned long mask, unsigned int align_order,
297 			      unsigned long attrs)
298 {
299 	unsigned long entry;
300 	dma_addr_t ret = DMA_MAPPING_ERROR;
301 	int build_fail;
302 
303 	entry = iommu_range_alloc(dev, tbl, npages, NULL, mask, align_order);
304 
305 	if (unlikely(entry == DMA_MAPPING_ERROR))
306 		return DMA_MAPPING_ERROR;
307 
308 	entry += tbl->it_offset;	/* Offset into real TCE table */
309 	ret = entry << tbl->it_page_shift;	/* Set the return dma address */
310 
311 	/* Put the TCEs in the HW table */
312 	build_fail = tbl->it_ops->set(tbl, entry, npages,
313 				      (unsigned long)page &
314 				      IOMMU_PAGE_MASK(tbl), direction, attrs);
315 
316 	/* tbl->it_ops->set() only returns non-zero for transient errors.
317 	 * Clean up the table bitmap in this case and return
318 	 * DMA_MAPPING_ERROR. For all other errors the functionality is
319 	 * not altered.
320 	 */
321 	if (unlikely(build_fail)) {
322 		__iommu_free(tbl, ret, npages);
323 		return DMA_MAPPING_ERROR;
324 	}
325 
326 	/* Flush/invalidate TLB caches if necessary */
327 	if (tbl->it_ops->flush)
328 		tbl->it_ops->flush(tbl);
329 
330 	/* Make sure updates are seen by hardware */
331 	mb();
332 
333 	return ret;
334 }
335 
336 static bool iommu_free_check(struct iommu_table *tbl, dma_addr_t dma_addr,
337 			     unsigned int npages)
338 {
339 	unsigned long entry, free_entry;
340 
341 	entry = dma_addr >> tbl->it_page_shift;
342 	free_entry = entry - tbl->it_offset;
343 
344 	if (((free_entry + npages) > tbl->it_size) ||
345 	    (entry < tbl->it_offset)) {
346 		if (printk_ratelimit()) {
347 			printk(KERN_INFO "iommu_free: invalid entry\n");
348 			printk(KERN_INFO "\tentry     = 0x%lx\n", entry);
349 			printk(KERN_INFO "\tdma_addr  = 0x%llx\n", (u64)dma_addr);
350 			printk(KERN_INFO "\tTable     = 0x%llx\n", (u64)tbl);
351 			printk(KERN_INFO "\tbus#      = 0x%llx\n", (u64)tbl->it_busno);
352 			printk(KERN_INFO "\tsize      = 0x%llx\n", (u64)tbl->it_size);
353 			printk(KERN_INFO "\tstartOff  = 0x%llx\n", (u64)tbl->it_offset);
354 			printk(KERN_INFO "\tindex     = 0x%llx\n", (u64)tbl->it_index);
355 			WARN_ON(1);
356 		}
357 
358 		return false;
359 	}
360 
361 	return true;
362 }
363 
364 static struct iommu_pool *get_pool(struct iommu_table *tbl,
365 				   unsigned long entry)
366 {
367 	struct iommu_pool *p;
368 	unsigned long largepool_start = tbl->large_pool.start;
369 
370 	/* The large pool is the last pool at the top of the table */
371 	if (entry >= largepool_start) {
372 		p = &tbl->large_pool;
373 	} else {
374 		unsigned int pool_nr = entry / tbl->poolsize;
375 
376 		BUG_ON(pool_nr > tbl->nr_pools);
377 		p = &tbl->pools[pool_nr];
378 	}
379 
380 	return p;
381 }
382 
383 static void __iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
384 			 unsigned int npages)
385 {
386 	unsigned long entry, free_entry;
387 	unsigned long flags;
388 	struct iommu_pool *pool;
389 
390 	entry = dma_addr >> tbl->it_page_shift;
391 	free_entry = entry - tbl->it_offset;
392 
393 	pool = get_pool(tbl, free_entry);
394 
395 	if (!iommu_free_check(tbl, dma_addr, npages))
396 		return;
397 
398 	tbl->it_ops->clear(tbl, entry, npages);
399 
400 	spin_lock_irqsave(&(pool->lock), flags);
401 	bitmap_clear(tbl->it_map, free_entry, npages);
402 	spin_unlock_irqrestore(&(pool->lock), flags);
403 }
404 
405 static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr,
406 		unsigned int npages)
407 {
408 	__iommu_free(tbl, dma_addr, npages);
409 
410 	/* Make sure TLB cache is flushed if the HW needs it. We do
411 	 * not do an mb() here on purpose, it is not needed on any of
412 	 * the current platforms.
413 	 */
414 	if (tbl->it_ops->flush)
415 		tbl->it_ops->flush(tbl);
416 }
417 
418 int ppc_iommu_map_sg(struct device *dev, struct iommu_table *tbl,
419 		     struct scatterlist *sglist, int nelems,
420 		     unsigned long mask, enum dma_data_direction direction,
421 		     unsigned long attrs)
422 {
423 	dma_addr_t dma_next = 0, dma_addr;
424 	struct scatterlist *s, *outs, *segstart;
425 	int outcount, incount, i, build_fail = 0;
426 	unsigned int align;
427 	unsigned long handle;
428 	unsigned int max_seg_size;
429 
430 	BUG_ON(direction == DMA_NONE);
431 
432 	if ((nelems == 0) || !tbl)
433 		return 0;
434 
435 	outs = s = segstart = &sglist[0];
436 	outcount = 1;
437 	incount = nelems;
438 	handle = 0;
439 
440 	/* Init first segment length for backout at failure */
441 	outs->dma_length = 0;
442 
443 	DBG("sg mapping %d elements:\n", nelems);
444 
445 	max_seg_size = dma_get_max_seg_size(dev);
446 	for_each_sg(sglist, s, nelems, i) {
447 		unsigned long vaddr, npages, entry, slen;
448 
449 		slen = s->length;
450 		/* Sanity check */
451 		if (slen == 0) {
452 			dma_next = 0;
453 			continue;
454 		}
455 		/* Allocate iommu entries for that segment */
456 		vaddr = (unsigned long) sg_virt(s);
457 		npages = iommu_num_pages(vaddr, slen, IOMMU_PAGE_SIZE(tbl));
458 		align = 0;
459 		if (tbl->it_page_shift < PAGE_SHIFT && slen >= PAGE_SIZE &&
460 		    (vaddr & ~PAGE_MASK) == 0)
461 			align = PAGE_SHIFT - tbl->it_page_shift;
462 		entry = iommu_range_alloc(dev, tbl, npages, &handle,
463 					  mask >> tbl->it_page_shift, align);
464 
465 		DBG("  - vaddr: %lx, size: %lx\n", vaddr, slen);
466 
467 		/* Handle failure */
468 		if (unlikely(entry == DMA_MAPPING_ERROR)) {
469 			if (!(attrs & DMA_ATTR_NO_WARN) &&
470 			    printk_ratelimit())
471 				dev_info(dev, "iommu_alloc failed, tbl %p "
472 					 "vaddr %lx npages %lu\n", tbl, vaddr,
473 					 npages);
474 			goto failure;
475 		}
476 
477 		/* Convert entry to a dma_addr_t */
478 		entry += tbl->it_offset;
479 		dma_addr = entry << tbl->it_page_shift;
480 		dma_addr |= (s->offset & ~IOMMU_PAGE_MASK(tbl));
481 
482 		DBG("  - %lu pages, entry: %lx, dma_addr: %lx\n",
483 			    npages, entry, dma_addr);
484 
485 		/* Insert into HW table */
486 		build_fail = tbl->it_ops->set(tbl, entry, npages,
487 					      vaddr & IOMMU_PAGE_MASK(tbl),
488 					      direction, attrs);
489 		if(unlikely(build_fail))
490 			goto failure;
491 
492 		/* If we are in an open segment, try merging */
493 		if (segstart != s) {
494 			DBG("  - trying merge...\n");
495 			/* We cannot merge if:
496 			 * - allocated dma_addr isn't contiguous to previous allocation
497 			 */
498 			if (novmerge || (dma_addr != dma_next) ||
499 			    (outs->dma_length + s->length > max_seg_size)) {
500 				/* Can't merge: create a new segment */
501 				segstart = s;
502 				outcount++;
503 				outs = sg_next(outs);
504 				DBG("    can't merge, new segment.\n");
505 			} else {
506 				outs->dma_length += s->length;
507 				DBG("    merged, new len: %ux\n", outs->dma_length);
508 			}
509 		}
510 
511 		if (segstart == s) {
512 			/* This is a new segment, fill entries */
513 			DBG("  - filling new segment.\n");
514 			outs->dma_address = dma_addr;
515 			outs->dma_length = slen;
516 		}
517 
518 		/* Calculate next page pointer for contiguous check */
519 		dma_next = dma_addr + slen;
520 
521 		DBG("  - dma next is: %lx\n", dma_next);
522 	}
523 
524 	/* Flush/invalidate TLB caches if necessary */
525 	if (tbl->it_ops->flush)
526 		tbl->it_ops->flush(tbl);
527 
528 	DBG("mapped %d elements:\n", outcount);
529 
530 	/* For the sake of ppc_iommu_unmap_sg, we clear out the length in the
531 	 * next entry of the sglist if we didn't fill the list completely
532 	 */
533 	if (outcount < incount) {
534 		outs = sg_next(outs);
535 		outs->dma_address = DMA_MAPPING_ERROR;
536 		outs->dma_length = 0;
537 	}
538 
539 	/* Make sure updates are seen by hardware */
540 	mb();
541 
542 	return outcount;
543 
544  failure:
545 	for_each_sg(sglist, s, nelems, i) {
546 		if (s->dma_length != 0) {
547 			unsigned long vaddr, npages;
548 
549 			vaddr = s->dma_address & IOMMU_PAGE_MASK(tbl);
550 			npages = iommu_num_pages(s->dma_address, s->dma_length,
551 						 IOMMU_PAGE_SIZE(tbl));
552 			__iommu_free(tbl, vaddr, npages);
553 			s->dma_address = DMA_MAPPING_ERROR;
554 			s->dma_length = 0;
555 		}
556 		if (s == outs)
557 			break;
558 	}
559 	return 0;
560 }
561 
562 
563 void ppc_iommu_unmap_sg(struct iommu_table *tbl, struct scatterlist *sglist,
564 			int nelems, enum dma_data_direction direction,
565 			unsigned long attrs)
566 {
567 	struct scatterlist *sg;
568 
569 	BUG_ON(direction == DMA_NONE);
570 
571 	if (!tbl)
572 		return;
573 
574 	sg = sglist;
575 	while (nelems--) {
576 		unsigned int npages;
577 		dma_addr_t dma_handle = sg->dma_address;
578 
579 		if (sg->dma_length == 0)
580 			break;
581 		npages = iommu_num_pages(dma_handle, sg->dma_length,
582 					 IOMMU_PAGE_SIZE(tbl));
583 		__iommu_free(tbl, dma_handle, npages);
584 		sg = sg_next(sg);
585 	}
586 
587 	/* Flush/invalidate TLBs if necessary. As for iommu_free(), we
588 	 * do not do an mb() here, the affected platforms do not need it
589 	 * when freeing.
590 	 */
591 	if (tbl->it_ops->flush)
592 		tbl->it_ops->flush(tbl);
593 }
594 
595 static void iommu_table_clear(struct iommu_table *tbl)
596 {
597 	/*
598 	 * In case of firmware assisted dump system goes through clean
599 	 * reboot process at the time of system crash. Hence it's safe to
600 	 * clear the TCE entries if firmware assisted dump is active.
601 	 */
602 	if (!is_kdump_kernel() || is_fadump_active()) {
603 		/* Clear the table in case firmware left allocations in it */
604 		tbl->it_ops->clear(tbl, tbl->it_offset, tbl->it_size);
605 		return;
606 	}
607 
608 #ifdef CONFIG_CRASH_DUMP
609 	if (tbl->it_ops->get) {
610 		unsigned long index, tceval, tcecount = 0;
611 
612 		/* Reserve the existing mappings left by the first kernel. */
613 		for (index = 0; index < tbl->it_size; index++) {
614 			tceval = tbl->it_ops->get(tbl, index + tbl->it_offset);
615 			/*
616 			 * Freed TCE entry contains 0x7fffffffffffffff on JS20
617 			 */
618 			if (tceval && (tceval != 0x7fffffffffffffffUL)) {
619 				__set_bit(index, tbl->it_map);
620 				tcecount++;
621 			}
622 		}
623 
624 		if ((tbl->it_size - tcecount) < KDUMP_MIN_TCE_ENTRIES) {
625 			printk(KERN_WARNING "TCE table is full; freeing ");
626 			printk(KERN_WARNING "%d entries for the kdump boot\n",
627 				KDUMP_MIN_TCE_ENTRIES);
628 			for (index = tbl->it_size - KDUMP_MIN_TCE_ENTRIES;
629 				index < tbl->it_size; index++)
630 				__clear_bit(index, tbl->it_map);
631 		}
632 	}
633 #endif
634 }
635 
636 static void iommu_table_reserve_pages(struct iommu_table *tbl,
637 		unsigned long res_start, unsigned long res_end)
638 {
639 	int i;
640 
641 	WARN_ON_ONCE(res_end < res_start);
642 	/*
643 	 * Reserve page 0 so it will not be used for any mappings.
644 	 * This avoids buggy drivers that consider page 0 to be invalid
645 	 * to crash the machine or even lose data.
646 	 */
647 	if (tbl->it_offset == 0)
648 		set_bit(0, tbl->it_map);
649 
650 	tbl->it_reserved_start = res_start;
651 	tbl->it_reserved_end = res_end;
652 
653 	/* Check if res_start..res_end isn't empty and overlaps the table */
654 	if (res_start && res_end &&
655 			(tbl->it_offset + tbl->it_size < res_start ||
656 			 res_end < tbl->it_offset))
657 		return;
658 
659 	for (i = tbl->it_reserved_start; i < tbl->it_reserved_end; ++i)
660 		set_bit(i - tbl->it_offset, tbl->it_map);
661 }
662 
663 static void iommu_table_release_pages(struct iommu_table *tbl)
664 {
665 	int i;
666 
667 	/*
668 	 * In case we have reserved the first bit, we should not emit
669 	 * the warning below.
670 	 */
671 	if (tbl->it_offset == 0)
672 		clear_bit(0, tbl->it_map);
673 
674 	for (i = tbl->it_reserved_start; i < tbl->it_reserved_end; ++i)
675 		clear_bit(i - tbl->it_offset, tbl->it_map);
676 }
677 
678 /*
679  * Build a iommu_table structure.  This contains a bit map which
680  * is used to manage allocation of the tce space.
681  */
682 struct iommu_table *iommu_init_table(struct iommu_table *tbl, int nid,
683 		unsigned long res_start, unsigned long res_end)
684 {
685 	unsigned long sz;
686 	static int welcomed = 0;
687 	struct page *page;
688 	unsigned int i;
689 	struct iommu_pool *p;
690 
691 	BUG_ON(!tbl->it_ops);
692 
693 	/* number of bytes needed for the bitmap */
694 	sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long);
695 
696 	page = alloc_pages_node(nid, GFP_KERNEL, get_order(sz));
697 	if (!page)
698 		panic("iommu_init_table: Can't allocate %ld bytes\n", sz);
699 	tbl->it_map = page_address(page);
700 	memset(tbl->it_map, 0, sz);
701 
702 	iommu_table_reserve_pages(tbl, res_start, res_end);
703 
704 	/* We only split the IOMMU table if we have 1GB or more of space */
705 	if ((tbl->it_size << tbl->it_page_shift) >= (1UL * 1024 * 1024 * 1024))
706 		tbl->nr_pools = IOMMU_NR_POOLS;
707 	else
708 		tbl->nr_pools = 1;
709 
710 	/* We reserve the top 1/4 of the table for large allocations */
711 	tbl->poolsize = (tbl->it_size * 3 / 4) / tbl->nr_pools;
712 
713 	for (i = 0; i < tbl->nr_pools; i++) {
714 		p = &tbl->pools[i];
715 		spin_lock_init(&(p->lock));
716 		p->start = tbl->poolsize * i;
717 		p->hint = p->start;
718 		p->end = p->start + tbl->poolsize;
719 	}
720 
721 	p = &tbl->large_pool;
722 	spin_lock_init(&(p->lock));
723 	p->start = tbl->poolsize * i;
724 	p->hint = p->start;
725 	p->end = tbl->it_size;
726 
727 	iommu_table_clear(tbl);
728 
729 	if (!welcomed) {
730 		printk(KERN_INFO "IOMMU table initialized, virtual merging %s\n",
731 		       novmerge ? "disabled" : "enabled");
732 		welcomed = 1;
733 	}
734 
735 	return tbl;
736 }
737 
738 static void iommu_table_free(struct kref *kref)
739 {
740 	unsigned long bitmap_sz;
741 	unsigned int order;
742 	struct iommu_table *tbl;
743 
744 	tbl = container_of(kref, struct iommu_table, it_kref);
745 
746 	if (tbl->it_ops->free)
747 		tbl->it_ops->free(tbl);
748 
749 	if (!tbl->it_map) {
750 		kfree(tbl);
751 		return;
752 	}
753 
754 	iommu_table_release_pages(tbl);
755 
756 	/* verify that table contains no entries */
757 	if (!bitmap_empty(tbl->it_map, tbl->it_size))
758 		pr_warn("%s: Unexpected TCEs\n", __func__);
759 
760 	/* calculate bitmap size in bytes */
761 	bitmap_sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long);
762 
763 	/* free bitmap */
764 	order = get_order(bitmap_sz);
765 	free_pages((unsigned long) tbl->it_map, order);
766 
767 	/* free table */
768 	kfree(tbl);
769 }
770 
771 struct iommu_table *iommu_tce_table_get(struct iommu_table *tbl)
772 {
773 	if (kref_get_unless_zero(&tbl->it_kref))
774 		return tbl;
775 
776 	return NULL;
777 }
778 EXPORT_SYMBOL_GPL(iommu_tce_table_get);
779 
780 int iommu_tce_table_put(struct iommu_table *tbl)
781 {
782 	if (WARN_ON(!tbl))
783 		return 0;
784 
785 	return kref_put(&tbl->it_kref, iommu_table_free);
786 }
787 EXPORT_SYMBOL_GPL(iommu_tce_table_put);
788 
789 /* Creates TCEs for a user provided buffer.  The user buffer must be
790  * contiguous real kernel storage (not vmalloc).  The address passed here
791  * comprises a page address and offset into that page. The dma_addr_t
792  * returned will point to the same byte within the page as was passed in.
793  */
794 dma_addr_t iommu_map_page(struct device *dev, struct iommu_table *tbl,
795 			  struct page *page, unsigned long offset, size_t size,
796 			  unsigned long mask, enum dma_data_direction direction,
797 			  unsigned long attrs)
798 {
799 	dma_addr_t dma_handle = DMA_MAPPING_ERROR;
800 	void *vaddr;
801 	unsigned long uaddr;
802 	unsigned int npages, align;
803 
804 	BUG_ON(direction == DMA_NONE);
805 
806 	vaddr = page_address(page) + offset;
807 	uaddr = (unsigned long)vaddr;
808 
809 	if (tbl) {
810 		npages = iommu_num_pages(uaddr, size, IOMMU_PAGE_SIZE(tbl));
811 		align = 0;
812 		if (tbl->it_page_shift < PAGE_SHIFT && size >= PAGE_SIZE &&
813 		    ((unsigned long)vaddr & ~PAGE_MASK) == 0)
814 			align = PAGE_SHIFT - tbl->it_page_shift;
815 
816 		dma_handle = iommu_alloc(dev, tbl, vaddr, npages, direction,
817 					 mask >> tbl->it_page_shift, align,
818 					 attrs);
819 		if (dma_handle == DMA_MAPPING_ERROR) {
820 			if (!(attrs & DMA_ATTR_NO_WARN) &&
821 			    printk_ratelimit())  {
822 				dev_info(dev, "iommu_alloc failed, tbl %p "
823 					 "vaddr %p npages %d\n", tbl, vaddr,
824 					 npages);
825 			}
826 		} else
827 			dma_handle |= (uaddr & ~IOMMU_PAGE_MASK(tbl));
828 	}
829 
830 	return dma_handle;
831 }
832 
833 void iommu_unmap_page(struct iommu_table *tbl, dma_addr_t dma_handle,
834 		      size_t size, enum dma_data_direction direction,
835 		      unsigned long attrs)
836 {
837 	unsigned int npages;
838 
839 	BUG_ON(direction == DMA_NONE);
840 
841 	if (tbl) {
842 		npages = iommu_num_pages(dma_handle, size,
843 					 IOMMU_PAGE_SIZE(tbl));
844 		iommu_free(tbl, dma_handle, npages);
845 	}
846 }
847 
848 /* Allocates a contiguous real buffer and creates mappings over it.
849  * Returns the virtual address of the buffer and sets dma_handle
850  * to the dma address (mapping) of the first page.
851  */
852 void *iommu_alloc_coherent(struct device *dev, struct iommu_table *tbl,
853 			   size_t size,	dma_addr_t *dma_handle,
854 			   unsigned long mask, gfp_t flag, int node)
855 {
856 	void *ret = NULL;
857 	dma_addr_t mapping;
858 	unsigned int order;
859 	unsigned int nio_pages, io_order;
860 	struct page *page;
861 
862 	size = PAGE_ALIGN(size);
863 	order = get_order(size);
864 
865  	/*
866 	 * Client asked for way too much space.  This is checked later
867 	 * anyway.  It is easier to debug here for the drivers than in
868 	 * the tce tables.
869 	 */
870 	if (order >= IOMAP_MAX_ORDER) {
871 		dev_info(dev, "iommu_alloc_consistent size too large: 0x%lx\n",
872 			 size);
873 		return NULL;
874 	}
875 
876 	if (!tbl)
877 		return NULL;
878 
879 	/* Alloc enough pages (and possibly more) */
880 	page = alloc_pages_node(node, flag, order);
881 	if (!page)
882 		return NULL;
883 	ret = page_address(page);
884 	memset(ret, 0, size);
885 
886 	/* Set up tces to cover the allocated range */
887 	nio_pages = size >> tbl->it_page_shift;
888 	io_order = get_iommu_order(size, tbl);
889 	mapping = iommu_alloc(dev, tbl, ret, nio_pages, DMA_BIDIRECTIONAL,
890 			      mask >> tbl->it_page_shift, io_order, 0);
891 	if (mapping == DMA_MAPPING_ERROR) {
892 		free_pages((unsigned long)ret, order);
893 		return NULL;
894 	}
895 	*dma_handle = mapping;
896 	return ret;
897 }
898 
899 void iommu_free_coherent(struct iommu_table *tbl, size_t size,
900 			 void *vaddr, dma_addr_t dma_handle)
901 {
902 	if (tbl) {
903 		unsigned int nio_pages;
904 
905 		size = PAGE_ALIGN(size);
906 		nio_pages = size >> tbl->it_page_shift;
907 		iommu_free(tbl, dma_handle, nio_pages);
908 		size = PAGE_ALIGN(size);
909 		free_pages((unsigned long)vaddr, get_order(size));
910 	}
911 }
912 
913 unsigned long iommu_direction_to_tce_perm(enum dma_data_direction dir)
914 {
915 	switch (dir) {
916 	case DMA_BIDIRECTIONAL:
917 		return TCE_PCI_READ | TCE_PCI_WRITE;
918 	case DMA_FROM_DEVICE:
919 		return TCE_PCI_WRITE;
920 	case DMA_TO_DEVICE:
921 		return TCE_PCI_READ;
922 	default:
923 		return 0;
924 	}
925 }
926 EXPORT_SYMBOL_GPL(iommu_direction_to_tce_perm);
927 
928 #ifdef CONFIG_IOMMU_API
929 /*
930  * SPAPR TCE API
931  */
932 static void group_release(void *iommu_data)
933 {
934 	struct iommu_table_group *table_group = iommu_data;
935 
936 	table_group->group = NULL;
937 }
938 
939 void iommu_register_group(struct iommu_table_group *table_group,
940 		int pci_domain_number, unsigned long pe_num)
941 {
942 	struct iommu_group *grp;
943 	char *name;
944 
945 	grp = iommu_group_alloc();
946 	if (IS_ERR(grp)) {
947 		pr_warn("powerpc iommu api: cannot create new group, err=%ld\n",
948 				PTR_ERR(grp));
949 		return;
950 	}
951 	table_group->group = grp;
952 	iommu_group_set_iommudata(grp, table_group, group_release);
953 	name = kasprintf(GFP_KERNEL, "domain%d-pe%lx",
954 			pci_domain_number, pe_num);
955 	if (!name)
956 		return;
957 	iommu_group_set_name(grp, name);
958 	kfree(name);
959 }
960 
961 enum dma_data_direction iommu_tce_direction(unsigned long tce)
962 {
963 	if ((tce & TCE_PCI_READ) && (tce & TCE_PCI_WRITE))
964 		return DMA_BIDIRECTIONAL;
965 	else if (tce & TCE_PCI_READ)
966 		return DMA_TO_DEVICE;
967 	else if (tce & TCE_PCI_WRITE)
968 		return DMA_FROM_DEVICE;
969 	else
970 		return DMA_NONE;
971 }
972 EXPORT_SYMBOL_GPL(iommu_tce_direction);
973 
974 void iommu_flush_tce(struct iommu_table *tbl)
975 {
976 	/* Flush/invalidate TLB caches if necessary */
977 	if (tbl->it_ops->flush)
978 		tbl->it_ops->flush(tbl);
979 
980 	/* Make sure updates are seen by hardware */
981 	mb();
982 }
983 EXPORT_SYMBOL_GPL(iommu_flush_tce);
984 
985 int iommu_tce_check_ioba(unsigned long page_shift,
986 		unsigned long offset, unsigned long size,
987 		unsigned long ioba, unsigned long npages)
988 {
989 	unsigned long mask = (1UL << page_shift) - 1;
990 
991 	if (ioba & mask)
992 		return -EINVAL;
993 
994 	ioba >>= page_shift;
995 	if (ioba < offset)
996 		return -EINVAL;
997 
998 	if ((ioba + 1) > (offset + size))
999 		return -EINVAL;
1000 
1001 	return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(iommu_tce_check_ioba);
1004 
1005 int iommu_tce_check_gpa(unsigned long page_shift, unsigned long gpa)
1006 {
1007 	unsigned long mask = (1UL << page_shift) - 1;
1008 
1009 	if (gpa & mask)
1010 		return -EINVAL;
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL_GPL(iommu_tce_check_gpa);
1015 
1016 extern long iommu_tce_xchg_no_kill(struct mm_struct *mm,
1017 		struct iommu_table *tbl,
1018 		unsigned long entry, unsigned long *hpa,
1019 		enum dma_data_direction *direction)
1020 {
1021 	long ret;
1022 	unsigned long size = 0;
1023 
1024 	ret = tbl->it_ops->xchg_no_kill(tbl, entry, hpa, direction, false);
1025 	if (!ret && ((*direction == DMA_FROM_DEVICE) ||
1026 			(*direction == DMA_BIDIRECTIONAL)) &&
1027 			!mm_iommu_is_devmem(mm, *hpa, tbl->it_page_shift,
1028 					&size))
1029 		SetPageDirty(pfn_to_page(*hpa >> PAGE_SHIFT));
1030 
1031 	return ret;
1032 }
1033 EXPORT_SYMBOL_GPL(iommu_tce_xchg_no_kill);
1034 
1035 void iommu_tce_kill(struct iommu_table *tbl,
1036 		unsigned long entry, unsigned long pages)
1037 {
1038 	if (tbl->it_ops->tce_kill)
1039 		tbl->it_ops->tce_kill(tbl, entry, pages, false);
1040 }
1041 EXPORT_SYMBOL_GPL(iommu_tce_kill);
1042 
1043 int iommu_take_ownership(struct iommu_table *tbl)
1044 {
1045 	unsigned long flags, i, sz = (tbl->it_size + 7) >> 3;
1046 	int ret = 0;
1047 
1048 	/*
1049 	 * VFIO does not control TCE entries allocation and the guest
1050 	 * can write new TCEs on top of existing ones so iommu_tce_build()
1051 	 * must be able to release old pages. This functionality
1052 	 * requires exchange() callback defined so if it is not
1053 	 * implemented, we disallow taking ownership over the table.
1054 	 */
1055 	if (!tbl->it_ops->xchg_no_kill)
1056 		return -EINVAL;
1057 
1058 	spin_lock_irqsave(&tbl->large_pool.lock, flags);
1059 	for (i = 0; i < tbl->nr_pools; i++)
1060 		spin_lock(&tbl->pools[i].lock);
1061 
1062 	iommu_table_release_pages(tbl);
1063 
1064 	if (!bitmap_empty(tbl->it_map, tbl->it_size)) {
1065 		pr_err("iommu_tce: it_map is not empty");
1066 		ret = -EBUSY;
1067 		/* Undo iommu_table_release_pages, i.e. restore bit#0, etc */
1068 		iommu_table_reserve_pages(tbl, tbl->it_reserved_start,
1069 				tbl->it_reserved_end);
1070 	} else {
1071 		memset(tbl->it_map, 0xff, sz);
1072 	}
1073 
1074 	for (i = 0; i < tbl->nr_pools; i++)
1075 		spin_unlock(&tbl->pools[i].lock);
1076 	spin_unlock_irqrestore(&tbl->large_pool.lock, flags);
1077 
1078 	return ret;
1079 }
1080 EXPORT_SYMBOL_GPL(iommu_take_ownership);
1081 
1082 void iommu_release_ownership(struct iommu_table *tbl)
1083 {
1084 	unsigned long flags, i, sz = (tbl->it_size + 7) >> 3;
1085 
1086 	spin_lock_irqsave(&tbl->large_pool.lock, flags);
1087 	for (i = 0; i < tbl->nr_pools; i++)
1088 		spin_lock(&tbl->pools[i].lock);
1089 
1090 	memset(tbl->it_map, 0, sz);
1091 
1092 	iommu_table_reserve_pages(tbl, tbl->it_reserved_start,
1093 			tbl->it_reserved_end);
1094 
1095 	for (i = 0; i < tbl->nr_pools; i++)
1096 		spin_unlock(&tbl->pools[i].lock);
1097 	spin_unlock_irqrestore(&tbl->large_pool.lock, flags);
1098 }
1099 EXPORT_SYMBOL_GPL(iommu_release_ownership);
1100 
1101 int iommu_add_device(struct iommu_table_group *table_group, struct device *dev)
1102 {
1103 	/*
1104 	 * The sysfs entries should be populated before
1105 	 * binding IOMMU group. If sysfs entries isn't
1106 	 * ready, we simply bail.
1107 	 */
1108 	if (!device_is_registered(dev))
1109 		return -ENOENT;
1110 
1111 	if (device_iommu_mapped(dev)) {
1112 		pr_debug("%s: Skipping device %s with iommu group %d\n",
1113 			 __func__, dev_name(dev),
1114 			 iommu_group_id(dev->iommu_group));
1115 		return -EBUSY;
1116 	}
1117 
1118 	pr_debug("%s: Adding %s to iommu group %d\n",
1119 		 __func__, dev_name(dev),  iommu_group_id(table_group->group));
1120 
1121 	return iommu_group_add_device(table_group->group, dev);
1122 }
1123 EXPORT_SYMBOL_GPL(iommu_add_device);
1124 
1125 void iommu_del_device(struct device *dev)
1126 {
1127 	/*
1128 	 * Some devices might not have IOMMU table and group
1129 	 * and we needn't detach them from the associated
1130 	 * IOMMU groups
1131 	 */
1132 	if (!device_iommu_mapped(dev)) {
1133 		pr_debug("iommu_tce: skipping device %s with no tbl\n",
1134 			 dev_name(dev));
1135 		return;
1136 	}
1137 
1138 	iommu_group_remove_device(dev);
1139 }
1140 EXPORT_SYMBOL_GPL(iommu_del_device);
1141 #endif /* CONFIG_IOMMU_API */
1142