1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation 4 * 5 * Rewrite, cleanup, new allocation schemes, virtual merging: 6 * Copyright (C) 2004 Olof Johansson, IBM Corporation 7 * and Ben. Herrenschmidt, IBM Corporation 8 * 9 * Dynamic DMA mapping support, bus-independent parts. 10 */ 11 12 13 #include <linux/init.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/mm.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/bitmap.h> 21 #include <linux/iommu-helper.h> 22 #include <linux/crash_dump.h> 23 #include <linux/hash.h> 24 #include <linux/fault-inject.h> 25 #include <linux/pci.h> 26 #include <linux/iommu.h> 27 #include <linux/sched.h> 28 #include <linux/debugfs.h> 29 #include <linux/vmalloc.h> 30 #include <asm/io.h> 31 #include <asm/iommu.h> 32 #include <asm/pci-bridge.h> 33 #include <asm/machdep.h> 34 #include <asm/kdump.h> 35 #include <asm/fadump.h> 36 #include <asm/vio.h> 37 #include <asm/tce.h> 38 #include <asm/mmu_context.h> 39 #include <asm/ppc-pci.h> 40 41 #define DBG(...) 42 43 #ifdef CONFIG_IOMMU_DEBUGFS 44 static int iommu_debugfs_weight_get(void *data, u64 *val) 45 { 46 struct iommu_table *tbl = data; 47 *val = bitmap_weight(tbl->it_map, tbl->it_size); 48 return 0; 49 } 50 DEFINE_DEBUGFS_ATTRIBUTE(iommu_debugfs_fops_weight, iommu_debugfs_weight_get, NULL, "%llu\n"); 51 52 static void iommu_debugfs_add(struct iommu_table *tbl) 53 { 54 char name[10]; 55 struct dentry *liobn_entry; 56 57 sprintf(name, "%08lx", tbl->it_index); 58 liobn_entry = debugfs_create_dir(name, iommu_debugfs_dir); 59 60 debugfs_create_file_unsafe("weight", 0400, liobn_entry, tbl, &iommu_debugfs_fops_weight); 61 debugfs_create_ulong("it_size", 0400, liobn_entry, &tbl->it_size); 62 debugfs_create_ulong("it_page_shift", 0400, liobn_entry, &tbl->it_page_shift); 63 debugfs_create_ulong("it_reserved_start", 0400, liobn_entry, &tbl->it_reserved_start); 64 debugfs_create_ulong("it_reserved_end", 0400, liobn_entry, &tbl->it_reserved_end); 65 debugfs_create_ulong("it_indirect_levels", 0400, liobn_entry, &tbl->it_indirect_levels); 66 debugfs_create_ulong("it_level_size", 0400, liobn_entry, &tbl->it_level_size); 67 } 68 69 static void iommu_debugfs_del(struct iommu_table *tbl) 70 { 71 char name[10]; 72 73 sprintf(name, "%08lx", tbl->it_index); 74 debugfs_lookup_and_remove(name, iommu_debugfs_dir); 75 } 76 #else 77 static void iommu_debugfs_add(struct iommu_table *tbl){} 78 static void iommu_debugfs_del(struct iommu_table *tbl){} 79 #endif 80 81 static int novmerge; 82 83 static void __iommu_free(struct iommu_table *, dma_addr_t, unsigned int); 84 85 static int __init setup_iommu(char *str) 86 { 87 if (!strcmp(str, "novmerge")) 88 novmerge = 1; 89 else if (!strcmp(str, "vmerge")) 90 novmerge = 0; 91 return 1; 92 } 93 94 __setup("iommu=", setup_iommu); 95 96 static DEFINE_PER_CPU(unsigned int, iommu_pool_hash); 97 98 /* 99 * We precalculate the hash to avoid doing it on every allocation. 100 * 101 * The hash is important to spread CPUs across all the pools. For example, 102 * on a POWER7 with 4 way SMT we want interrupts on the primary threads and 103 * with 4 pools all primary threads would map to the same pool. 104 */ 105 static int __init setup_iommu_pool_hash(void) 106 { 107 unsigned int i; 108 109 for_each_possible_cpu(i) 110 per_cpu(iommu_pool_hash, i) = hash_32(i, IOMMU_POOL_HASHBITS); 111 112 return 0; 113 } 114 subsys_initcall(setup_iommu_pool_hash); 115 116 #ifdef CONFIG_FAIL_IOMMU 117 118 static DECLARE_FAULT_ATTR(fail_iommu); 119 120 static int __init setup_fail_iommu(char *str) 121 { 122 return setup_fault_attr(&fail_iommu, str); 123 } 124 __setup("fail_iommu=", setup_fail_iommu); 125 126 static bool should_fail_iommu(struct device *dev) 127 { 128 return dev->archdata.fail_iommu && should_fail(&fail_iommu, 1); 129 } 130 131 static int __init fail_iommu_debugfs(void) 132 { 133 struct dentry *dir = fault_create_debugfs_attr("fail_iommu", 134 NULL, &fail_iommu); 135 136 return PTR_ERR_OR_ZERO(dir); 137 } 138 late_initcall(fail_iommu_debugfs); 139 140 static ssize_t fail_iommu_show(struct device *dev, 141 struct device_attribute *attr, char *buf) 142 { 143 return sprintf(buf, "%d\n", dev->archdata.fail_iommu); 144 } 145 146 static ssize_t fail_iommu_store(struct device *dev, 147 struct device_attribute *attr, const char *buf, 148 size_t count) 149 { 150 int i; 151 152 if (count > 0 && sscanf(buf, "%d", &i) > 0) 153 dev->archdata.fail_iommu = (i == 0) ? 0 : 1; 154 155 return count; 156 } 157 158 static DEVICE_ATTR_RW(fail_iommu); 159 160 static int fail_iommu_bus_notify(struct notifier_block *nb, 161 unsigned long action, void *data) 162 { 163 struct device *dev = data; 164 165 if (action == BUS_NOTIFY_ADD_DEVICE) { 166 if (device_create_file(dev, &dev_attr_fail_iommu)) 167 pr_warn("Unable to create IOMMU fault injection sysfs " 168 "entries\n"); 169 } else if (action == BUS_NOTIFY_DEL_DEVICE) { 170 device_remove_file(dev, &dev_attr_fail_iommu); 171 } 172 173 return 0; 174 } 175 176 /* 177 * PCI and VIO buses need separate notifier_block structs, since they're linked 178 * list nodes. Sharing a notifier_block would mean that any notifiers later 179 * registered for PCI buses would also get called by VIO buses and vice versa. 180 */ 181 static struct notifier_block fail_iommu_pci_bus_notifier = { 182 .notifier_call = fail_iommu_bus_notify 183 }; 184 185 #ifdef CONFIG_IBMVIO 186 static struct notifier_block fail_iommu_vio_bus_notifier = { 187 .notifier_call = fail_iommu_bus_notify 188 }; 189 #endif 190 191 static int __init fail_iommu_setup(void) 192 { 193 #ifdef CONFIG_PCI 194 bus_register_notifier(&pci_bus_type, &fail_iommu_pci_bus_notifier); 195 #endif 196 #ifdef CONFIG_IBMVIO 197 bus_register_notifier(&vio_bus_type, &fail_iommu_vio_bus_notifier); 198 #endif 199 200 return 0; 201 } 202 /* 203 * Must execute after PCI and VIO subsystem have initialised but before 204 * devices are probed. 205 */ 206 arch_initcall(fail_iommu_setup); 207 #else 208 static inline bool should_fail_iommu(struct device *dev) 209 { 210 return false; 211 } 212 #endif 213 214 static unsigned long iommu_range_alloc(struct device *dev, 215 struct iommu_table *tbl, 216 unsigned long npages, 217 unsigned long *handle, 218 unsigned long mask, 219 unsigned int align_order) 220 { 221 unsigned long n, end, start; 222 unsigned long limit; 223 int largealloc = npages > 15; 224 int pass = 0; 225 unsigned long align_mask; 226 unsigned long flags; 227 unsigned int pool_nr; 228 struct iommu_pool *pool; 229 230 align_mask = (1ull << align_order) - 1; 231 232 /* This allocator was derived from x86_64's bit string search */ 233 234 /* Sanity check */ 235 if (unlikely(npages == 0)) { 236 if (printk_ratelimit()) 237 WARN_ON(1); 238 return DMA_MAPPING_ERROR; 239 } 240 241 if (should_fail_iommu(dev)) 242 return DMA_MAPPING_ERROR; 243 244 /* 245 * We don't need to disable preemption here because any CPU can 246 * safely use any IOMMU pool. 247 */ 248 pool_nr = raw_cpu_read(iommu_pool_hash) & (tbl->nr_pools - 1); 249 250 if (largealloc) 251 pool = &(tbl->large_pool); 252 else 253 pool = &(tbl->pools[pool_nr]); 254 255 spin_lock_irqsave(&(pool->lock), flags); 256 257 again: 258 if ((pass == 0) && handle && *handle && 259 (*handle >= pool->start) && (*handle < pool->end)) 260 start = *handle; 261 else 262 start = pool->hint; 263 264 limit = pool->end; 265 266 /* The case below can happen if we have a small segment appended 267 * to a large, or when the previous alloc was at the very end of 268 * the available space. If so, go back to the initial start. 269 */ 270 if (start >= limit) 271 start = pool->start; 272 273 if (limit + tbl->it_offset > mask) { 274 limit = mask - tbl->it_offset + 1; 275 /* If we're constrained on address range, first try 276 * at the masked hint to avoid O(n) search complexity, 277 * but on second pass, start at 0 in pool 0. 278 */ 279 if ((start & mask) >= limit || pass > 0) { 280 spin_unlock(&(pool->lock)); 281 pool = &(tbl->pools[0]); 282 spin_lock(&(pool->lock)); 283 start = pool->start; 284 } else { 285 start &= mask; 286 } 287 } 288 289 n = iommu_area_alloc(tbl->it_map, limit, start, npages, tbl->it_offset, 290 dma_get_seg_boundary_nr_pages(dev, tbl->it_page_shift), 291 align_mask); 292 if (n == -1) { 293 if (likely(pass == 0)) { 294 /* First try the pool from the start */ 295 pool->hint = pool->start; 296 pass++; 297 goto again; 298 299 } else if (pass <= tbl->nr_pools) { 300 /* Now try scanning all the other pools */ 301 spin_unlock(&(pool->lock)); 302 pool_nr = (pool_nr + 1) & (tbl->nr_pools - 1); 303 pool = &tbl->pools[pool_nr]; 304 spin_lock(&(pool->lock)); 305 pool->hint = pool->start; 306 pass++; 307 goto again; 308 309 } else if (pass == tbl->nr_pools + 1) { 310 /* Last resort: try largepool */ 311 spin_unlock(&pool->lock); 312 pool = &tbl->large_pool; 313 spin_lock(&pool->lock); 314 pool->hint = pool->start; 315 pass++; 316 goto again; 317 318 } else { 319 /* Give up */ 320 spin_unlock_irqrestore(&(pool->lock), flags); 321 return DMA_MAPPING_ERROR; 322 } 323 } 324 325 end = n + npages; 326 327 /* Bump the hint to a new block for small allocs. */ 328 if (largealloc) { 329 /* Don't bump to new block to avoid fragmentation */ 330 pool->hint = end; 331 } else { 332 /* Overflow will be taken care of at the next allocation */ 333 pool->hint = (end + tbl->it_blocksize - 1) & 334 ~(tbl->it_blocksize - 1); 335 } 336 337 /* Update handle for SG allocations */ 338 if (handle) 339 *handle = end; 340 341 spin_unlock_irqrestore(&(pool->lock), flags); 342 343 return n; 344 } 345 346 static dma_addr_t iommu_alloc(struct device *dev, struct iommu_table *tbl, 347 void *page, unsigned int npages, 348 enum dma_data_direction direction, 349 unsigned long mask, unsigned int align_order, 350 unsigned long attrs) 351 { 352 unsigned long entry; 353 dma_addr_t ret = DMA_MAPPING_ERROR; 354 int build_fail; 355 356 entry = iommu_range_alloc(dev, tbl, npages, NULL, mask, align_order); 357 358 if (unlikely(entry == DMA_MAPPING_ERROR)) 359 return DMA_MAPPING_ERROR; 360 361 entry += tbl->it_offset; /* Offset into real TCE table */ 362 ret = entry << tbl->it_page_shift; /* Set the return dma address */ 363 364 /* Put the TCEs in the HW table */ 365 build_fail = tbl->it_ops->set(tbl, entry, npages, 366 (unsigned long)page & 367 IOMMU_PAGE_MASK(tbl), direction, attrs); 368 369 /* tbl->it_ops->set() only returns non-zero for transient errors. 370 * Clean up the table bitmap in this case and return 371 * DMA_MAPPING_ERROR. For all other errors the functionality is 372 * not altered. 373 */ 374 if (unlikely(build_fail)) { 375 __iommu_free(tbl, ret, npages); 376 return DMA_MAPPING_ERROR; 377 } 378 379 /* Flush/invalidate TLB caches if necessary */ 380 if (tbl->it_ops->flush) 381 tbl->it_ops->flush(tbl); 382 383 /* Make sure updates are seen by hardware */ 384 mb(); 385 386 return ret; 387 } 388 389 static bool iommu_free_check(struct iommu_table *tbl, dma_addr_t dma_addr, 390 unsigned int npages) 391 { 392 unsigned long entry, free_entry; 393 394 entry = dma_addr >> tbl->it_page_shift; 395 free_entry = entry - tbl->it_offset; 396 397 if (((free_entry + npages) > tbl->it_size) || 398 (entry < tbl->it_offset)) { 399 if (printk_ratelimit()) { 400 printk(KERN_INFO "iommu_free: invalid entry\n"); 401 printk(KERN_INFO "\tentry = 0x%lx\n", entry); 402 printk(KERN_INFO "\tdma_addr = 0x%llx\n", (u64)dma_addr); 403 printk(KERN_INFO "\tTable = 0x%llx\n", (u64)tbl); 404 printk(KERN_INFO "\tbus# = 0x%llx\n", (u64)tbl->it_busno); 405 printk(KERN_INFO "\tsize = 0x%llx\n", (u64)tbl->it_size); 406 printk(KERN_INFO "\tstartOff = 0x%llx\n", (u64)tbl->it_offset); 407 printk(KERN_INFO "\tindex = 0x%llx\n", (u64)tbl->it_index); 408 WARN_ON(1); 409 } 410 411 return false; 412 } 413 414 return true; 415 } 416 417 static struct iommu_pool *get_pool(struct iommu_table *tbl, 418 unsigned long entry) 419 { 420 struct iommu_pool *p; 421 unsigned long largepool_start = tbl->large_pool.start; 422 423 /* The large pool is the last pool at the top of the table */ 424 if (entry >= largepool_start) { 425 p = &tbl->large_pool; 426 } else { 427 unsigned int pool_nr = entry / tbl->poolsize; 428 429 BUG_ON(pool_nr > tbl->nr_pools); 430 p = &tbl->pools[pool_nr]; 431 } 432 433 return p; 434 } 435 436 static void __iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr, 437 unsigned int npages) 438 { 439 unsigned long entry, free_entry; 440 unsigned long flags; 441 struct iommu_pool *pool; 442 443 entry = dma_addr >> tbl->it_page_shift; 444 free_entry = entry - tbl->it_offset; 445 446 pool = get_pool(tbl, free_entry); 447 448 if (!iommu_free_check(tbl, dma_addr, npages)) 449 return; 450 451 tbl->it_ops->clear(tbl, entry, npages); 452 453 spin_lock_irqsave(&(pool->lock), flags); 454 bitmap_clear(tbl->it_map, free_entry, npages); 455 spin_unlock_irqrestore(&(pool->lock), flags); 456 } 457 458 static void iommu_free(struct iommu_table *tbl, dma_addr_t dma_addr, 459 unsigned int npages) 460 { 461 __iommu_free(tbl, dma_addr, npages); 462 463 /* Make sure TLB cache is flushed if the HW needs it. We do 464 * not do an mb() here on purpose, it is not needed on any of 465 * the current platforms. 466 */ 467 if (tbl->it_ops->flush) 468 tbl->it_ops->flush(tbl); 469 } 470 471 int ppc_iommu_map_sg(struct device *dev, struct iommu_table *tbl, 472 struct scatterlist *sglist, int nelems, 473 unsigned long mask, enum dma_data_direction direction, 474 unsigned long attrs) 475 { 476 dma_addr_t dma_next = 0, dma_addr; 477 struct scatterlist *s, *outs, *segstart; 478 int outcount, incount, i, build_fail = 0; 479 unsigned int align; 480 unsigned long handle; 481 unsigned int max_seg_size; 482 483 BUG_ON(direction == DMA_NONE); 484 485 if ((nelems == 0) || !tbl) 486 return -EINVAL; 487 488 outs = s = segstart = &sglist[0]; 489 outcount = 1; 490 incount = nelems; 491 handle = 0; 492 493 /* Init first segment length for backout at failure */ 494 outs->dma_length = 0; 495 496 DBG("sg mapping %d elements:\n", nelems); 497 498 max_seg_size = dma_get_max_seg_size(dev); 499 for_each_sg(sglist, s, nelems, i) { 500 unsigned long vaddr, npages, entry, slen; 501 502 slen = s->length; 503 /* Sanity check */ 504 if (slen == 0) { 505 dma_next = 0; 506 continue; 507 } 508 /* Allocate iommu entries for that segment */ 509 vaddr = (unsigned long) sg_virt(s); 510 npages = iommu_num_pages(vaddr, slen, IOMMU_PAGE_SIZE(tbl)); 511 align = 0; 512 if (tbl->it_page_shift < PAGE_SHIFT && slen >= PAGE_SIZE && 513 (vaddr & ~PAGE_MASK) == 0) 514 align = PAGE_SHIFT - tbl->it_page_shift; 515 entry = iommu_range_alloc(dev, tbl, npages, &handle, 516 mask >> tbl->it_page_shift, align); 517 518 DBG(" - vaddr: %lx, size: %lx\n", vaddr, slen); 519 520 /* Handle failure */ 521 if (unlikely(entry == DMA_MAPPING_ERROR)) { 522 if (!(attrs & DMA_ATTR_NO_WARN) && 523 printk_ratelimit()) 524 dev_info(dev, "iommu_alloc failed, tbl %p " 525 "vaddr %lx npages %lu\n", tbl, vaddr, 526 npages); 527 goto failure; 528 } 529 530 /* Convert entry to a dma_addr_t */ 531 entry += tbl->it_offset; 532 dma_addr = entry << tbl->it_page_shift; 533 dma_addr |= (vaddr & ~IOMMU_PAGE_MASK(tbl)); 534 535 DBG(" - %lu pages, entry: %lx, dma_addr: %lx\n", 536 npages, entry, dma_addr); 537 538 /* Insert into HW table */ 539 build_fail = tbl->it_ops->set(tbl, entry, npages, 540 vaddr & IOMMU_PAGE_MASK(tbl), 541 direction, attrs); 542 if(unlikely(build_fail)) 543 goto failure; 544 545 /* If we are in an open segment, try merging */ 546 if (segstart != s) { 547 DBG(" - trying merge...\n"); 548 /* We cannot merge if: 549 * - allocated dma_addr isn't contiguous to previous allocation 550 */ 551 if (novmerge || (dma_addr != dma_next) || 552 (outs->dma_length + s->length > max_seg_size)) { 553 /* Can't merge: create a new segment */ 554 segstart = s; 555 outcount++; 556 outs = sg_next(outs); 557 DBG(" can't merge, new segment.\n"); 558 } else { 559 outs->dma_length += s->length; 560 DBG(" merged, new len: %ux\n", outs->dma_length); 561 } 562 } 563 564 if (segstart == s) { 565 /* This is a new segment, fill entries */ 566 DBG(" - filling new segment.\n"); 567 outs->dma_address = dma_addr; 568 outs->dma_length = slen; 569 } 570 571 /* Calculate next page pointer for contiguous check */ 572 dma_next = dma_addr + slen; 573 574 DBG(" - dma next is: %lx\n", dma_next); 575 } 576 577 /* Flush/invalidate TLB caches if necessary */ 578 if (tbl->it_ops->flush) 579 tbl->it_ops->flush(tbl); 580 581 DBG("mapped %d elements:\n", outcount); 582 583 /* For the sake of ppc_iommu_unmap_sg, we clear out the length in the 584 * next entry of the sglist if we didn't fill the list completely 585 */ 586 if (outcount < incount) { 587 outs = sg_next(outs); 588 outs->dma_length = 0; 589 } 590 591 /* Make sure updates are seen by hardware */ 592 mb(); 593 594 return outcount; 595 596 failure: 597 for_each_sg(sglist, s, nelems, i) { 598 if (s->dma_length != 0) { 599 unsigned long vaddr, npages; 600 601 vaddr = s->dma_address & IOMMU_PAGE_MASK(tbl); 602 npages = iommu_num_pages(s->dma_address, s->dma_length, 603 IOMMU_PAGE_SIZE(tbl)); 604 __iommu_free(tbl, vaddr, npages); 605 s->dma_length = 0; 606 } 607 if (s == outs) 608 break; 609 } 610 return -EIO; 611 } 612 613 614 void ppc_iommu_unmap_sg(struct iommu_table *tbl, struct scatterlist *sglist, 615 int nelems, enum dma_data_direction direction, 616 unsigned long attrs) 617 { 618 struct scatterlist *sg; 619 620 BUG_ON(direction == DMA_NONE); 621 622 if (!tbl) 623 return; 624 625 sg = sglist; 626 while (nelems--) { 627 unsigned int npages; 628 dma_addr_t dma_handle = sg->dma_address; 629 630 if (sg->dma_length == 0) 631 break; 632 npages = iommu_num_pages(dma_handle, sg->dma_length, 633 IOMMU_PAGE_SIZE(tbl)); 634 __iommu_free(tbl, dma_handle, npages); 635 sg = sg_next(sg); 636 } 637 638 /* Flush/invalidate TLBs if necessary. As for iommu_free(), we 639 * do not do an mb() here, the affected platforms do not need it 640 * when freeing. 641 */ 642 if (tbl->it_ops->flush) 643 tbl->it_ops->flush(tbl); 644 } 645 646 static void iommu_table_clear(struct iommu_table *tbl) 647 { 648 /* 649 * In case of firmware assisted dump system goes through clean 650 * reboot process at the time of system crash. Hence it's safe to 651 * clear the TCE entries if firmware assisted dump is active. 652 */ 653 if (!is_kdump_kernel() || is_fadump_active()) { 654 /* Clear the table in case firmware left allocations in it */ 655 tbl->it_ops->clear(tbl, tbl->it_offset, tbl->it_size); 656 return; 657 } 658 659 #ifdef CONFIG_CRASH_DUMP 660 if (tbl->it_ops->get) { 661 unsigned long index, tceval, tcecount = 0; 662 663 /* Reserve the existing mappings left by the first kernel. */ 664 for (index = 0; index < tbl->it_size; index++) { 665 tceval = tbl->it_ops->get(tbl, index + tbl->it_offset); 666 /* 667 * Freed TCE entry contains 0x7fffffffffffffff on JS20 668 */ 669 if (tceval && (tceval != 0x7fffffffffffffffUL)) { 670 __set_bit(index, tbl->it_map); 671 tcecount++; 672 } 673 } 674 675 if ((tbl->it_size - tcecount) < KDUMP_MIN_TCE_ENTRIES) { 676 printk(KERN_WARNING "TCE table is full; freeing "); 677 printk(KERN_WARNING "%d entries for the kdump boot\n", 678 KDUMP_MIN_TCE_ENTRIES); 679 for (index = tbl->it_size - KDUMP_MIN_TCE_ENTRIES; 680 index < tbl->it_size; index++) 681 __clear_bit(index, tbl->it_map); 682 } 683 } 684 #endif 685 } 686 687 static void iommu_table_reserve_pages(struct iommu_table *tbl, 688 unsigned long res_start, unsigned long res_end) 689 { 690 int i; 691 692 WARN_ON_ONCE(res_end < res_start); 693 /* 694 * Reserve page 0 so it will not be used for any mappings. 695 * This avoids buggy drivers that consider page 0 to be invalid 696 * to crash the machine or even lose data. 697 */ 698 if (tbl->it_offset == 0) 699 set_bit(0, tbl->it_map); 700 701 if (res_start < tbl->it_offset) 702 res_start = tbl->it_offset; 703 704 if (res_end > (tbl->it_offset + tbl->it_size)) 705 res_end = tbl->it_offset + tbl->it_size; 706 707 /* Check if res_start..res_end is a valid range in the table */ 708 if (res_start >= res_end) { 709 tbl->it_reserved_start = tbl->it_offset; 710 tbl->it_reserved_end = tbl->it_offset; 711 return; 712 } 713 714 tbl->it_reserved_start = res_start; 715 tbl->it_reserved_end = res_end; 716 717 for (i = tbl->it_reserved_start; i < tbl->it_reserved_end; ++i) 718 set_bit(i - tbl->it_offset, tbl->it_map); 719 } 720 721 /* 722 * Build a iommu_table structure. This contains a bit map which 723 * is used to manage allocation of the tce space. 724 */ 725 struct iommu_table *iommu_init_table(struct iommu_table *tbl, int nid, 726 unsigned long res_start, unsigned long res_end) 727 { 728 unsigned long sz; 729 static int welcomed = 0; 730 unsigned int i; 731 struct iommu_pool *p; 732 733 BUG_ON(!tbl->it_ops); 734 735 /* number of bytes needed for the bitmap */ 736 sz = BITS_TO_LONGS(tbl->it_size) * sizeof(unsigned long); 737 738 tbl->it_map = vzalloc_node(sz, nid); 739 if (!tbl->it_map) { 740 pr_err("%s: Can't allocate %ld bytes\n", __func__, sz); 741 return NULL; 742 } 743 744 iommu_table_reserve_pages(tbl, res_start, res_end); 745 746 /* We only split the IOMMU table if we have 1GB or more of space */ 747 if ((tbl->it_size << tbl->it_page_shift) >= (1UL * 1024 * 1024 * 1024)) 748 tbl->nr_pools = IOMMU_NR_POOLS; 749 else 750 tbl->nr_pools = 1; 751 752 /* We reserve the top 1/4 of the table for large allocations */ 753 tbl->poolsize = (tbl->it_size * 3 / 4) / tbl->nr_pools; 754 755 for (i = 0; i < tbl->nr_pools; i++) { 756 p = &tbl->pools[i]; 757 spin_lock_init(&(p->lock)); 758 p->start = tbl->poolsize * i; 759 p->hint = p->start; 760 p->end = p->start + tbl->poolsize; 761 } 762 763 p = &tbl->large_pool; 764 spin_lock_init(&(p->lock)); 765 p->start = tbl->poolsize * i; 766 p->hint = p->start; 767 p->end = tbl->it_size; 768 769 iommu_table_clear(tbl); 770 771 if (!welcomed) { 772 printk(KERN_INFO "IOMMU table initialized, virtual merging %s\n", 773 novmerge ? "disabled" : "enabled"); 774 welcomed = 1; 775 } 776 777 iommu_debugfs_add(tbl); 778 779 return tbl; 780 } 781 782 bool iommu_table_in_use(struct iommu_table *tbl) 783 { 784 unsigned long start = 0, end; 785 786 /* ignore reserved bit0 */ 787 if (tbl->it_offset == 0) 788 start = 1; 789 790 /* Simple case with no reserved MMIO32 region */ 791 if (!tbl->it_reserved_start && !tbl->it_reserved_end) 792 return find_next_bit(tbl->it_map, tbl->it_size, start) != tbl->it_size; 793 794 end = tbl->it_reserved_start - tbl->it_offset; 795 if (find_next_bit(tbl->it_map, end, start) != end) 796 return true; 797 798 start = tbl->it_reserved_end - tbl->it_offset; 799 end = tbl->it_size; 800 return find_next_bit(tbl->it_map, end, start) != end; 801 } 802 803 static void iommu_table_free(struct kref *kref) 804 { 805 struct iommu_table *tbl; 806 807 tbl = container_of(kref, struct iommu_table, it_kref); 808 809 if (tbl->it_ops->free) 810 tbl->it_ops->free(tbl); 811 812 if (!tbl->it_map) { 813 kfree(tbl); 814 return; 815 } 816 817 iommu_debugfs_del(tbl); 818 819 /* verify that table contains no entries */ 820 if (iommu_table_in_use(tbl)) 821 pr_warn("%s: Unexpected TCEs\n", __func__); 822 823 /* free bitmap */ 824 vfree(tbl->it_map); 825 826 /* free table */ 827 kfree(tbl); 828 } 829 830 struct iommu_table *iommu_tce_table_get(struct iommu_table *tbl) 831 { 832 if (kref_get_unless_zero(&tbl->it_kref)) 833 return tbl; 834 835 return NULL; 836 } 837 EXPORT_SYMBOL_GPL(iommu_tce_table_get); 838 839 int iommu_tce_table_put(struct iommu_table *tbl) 840 { 841 if (WARN_ON(!tbl)) 842 return 0; 843 844 return kref_put(&tbl->it_kref, iommu_table_free); 845 } 846 EXPORT_SYMBOL_GPL(iommu_tce_table_put); 847 848 /* Creates TCEs for a user provided buffer. The user buffer must be 849 * contiguous real kernel storage (not vmalloc). The address passed here 850 * comprises a page address and offset into that page. The dma_addr_t 851 * returned will point to the same byte within the page as was passed in. 852 */ 853 dma_addr_t iommu_map_page(struct device *dev, struct iommu_table *tbl, 854 struct page *page, unsigned long offset, size_t size, 855 unsigned long mask, enum dma_data_direction direction, 856 unsigned long attrs) 857 { 858 dma_addr_t dma_handle = DMA_MAPPING_ERROR; 859 void *vaddr; 860 unsigned long uaddr; 861 unsigned int npages, align; 862 863 BUG_ON(direction == DMA_NONE); 864 865 vaddr = page_address(page) + offset; 866 uaddr = (unsigned long)vaddr; 867 868 if (tbl) { 869 npages = iommu_num_pages(uaddr, size, IOMMU_PAGE_SIZE(tbl)); 870 align = 0; 871 if (tbl->it_page_shift < PAGE_SHIFT && size >= PAGE_SIZE && 872 ((unsigned long)vaddr & ~PAGE_MASK) == 0) 873 align = PAGE_SHIFT - tbl->it_page_shift; 874 875 dma_handle = iommu_alloc(dev, tbl, vaddr, npages, direction, 876 mask >> tbl->it_page_shift, align, 877 attrs); 878 if (dma_handle == DMA_MAPPING_ERROR) { 879 if (!(attrs & DMA_ATTR_NO_WARN) && 880 printk_ratelimit()) { 881 dev_info(dev, "iommu_alloc failed, tbl %p " 882 "vaddr %p npages %d\n", tbl, vaddr, 883 npages); 884 } 885 } else 886 dma_handle |= (uaddr & ~IOMMU_PAGE_MASK(tbl)); 887 } 888 889 return dma_handle; 890 } 891 892 void iommu_unmap_page(struct iommu_table *tbl, dma_addr_t dma_handle, 893 size_t size, enum dma_data_direction direction, 894 unsigned long attrs) 895 { 896 unsigned int npages; 897 898 BUG_ON(direction == DMA_NONE); 899 900 if (tbl) { 901 npages = iommu_num_pages(dma_handle, size, 902 IOMMU_PAGE_SIZE(tbl)); 903 iommu_free(tbl, dma_handle, npages); 904 } 905 } 906 907 /* Allocates a contiguous real buffer and creates mappings over it. 908 * Returns the virtual address of the buffer and sets dma_handle 909 * to the dma address (mapping) of the first page. 910 */ 911 void *iommu_alloc_coherent(struct device *dev, struct iommu_table *tbl, 912 size_t size, dma_addr_t *dma_handle, 913 unsigned long mask, gfp_t flag, int node) 914 { 915 void *ret = NULL; 916 dma_addr_t mapping; 917 unsigned int order; 918 unsigned int nio_pages, io_order; 919 struct page *page; 920 int tcesize = (1 << tbl->it_page_shift); 921 922 size = PAGE_ALIGN(size); 923 order = get_order(size); 924 925 /* 926 * Client asked for way too much space. This is checked later 927 * anyway. It is easier to debug here for the drivers than in 928 * the tce tables. 929 */ 930 if (order >= IOMAP_MAX_ORDER) { 931 dev_info(dev, "iommu_alloc_consistent size too large: 0x%lx\n", 932 size); 933 return NULL; 934 } 935 936 if (!tbl) 937 return NULL; 938 939 /* Alloc enough pages (and possibly more) */ 940 page = alloc_pages_node(node, flag, order); 941 if (!page) 942 return NULL; 943 ret = page_address(page); 944 memset(ret, 0, size); 945 946 /* Set up tces to cover the allocated range */ 947 nio_pages = IOMMU_PAGE_ALIGN(size, tbl) >> tbl->it_page_shift; 948 949 io_order = get_iommu_order(size, tbl); 950 mapping = iommu_alloc(dev, tbl, ret, nio_pages, DMA_BIDIRECTIONAL, 951 mask >> tbl->it_page_shift, io_order, 0); 952 if (mapping == DMA_MAPPING_ERROR) { 953 free_pages((unsigned long)ret, order); 954 return NULL; 955 } 956 957 *dma_handle = mapping | ((u64)ret & (tcesize - 1)); 958 return ret; 959 } 960 961 void iommu_free_coherent(struct iommu_table *tbl, size_t size, 962 void *vaddr, dma_addr_t dma_handle) 963 { 964 if (tbl) { 965 unsigned int nio_pages; 966 967 size = PAGE_ALIGN(size); 968 nio_pages = IOMMU_PAGE_ALIGN(size, tbl) >> tbl->it_page_shift; 969 iommu_free(tbl, dma_handle, nio_pages); 970 size = PAGE_ALIGN(size); 971 free_pages((unsigned long)vaddr, get_order(size)); 972 } 973 } 974 975 unsigned long iommu_direction_to_tce_perm(enum dma_data_direction dir) 976 { 977 switch (dir) { 978 case DMA_BIDIRECTIONAL: 979 return TCE_PCI_READ | TCE_PCI_WRITE; 980 case DMA_FROM_DEVICE: 981 return TCE_PCI_WRITE; 982 case DMA_TO_DEVICE: 983 return TCE_PCI_READ; 984 default: 985 return 0; 986 } 987 } 988 EXPORT_SYMBOL_GPL(iommu_direction_to_tce_perm); 989 990 #ifdef CONFIG_IOMMU_API 991 /* 992 * SPAPR TCE API 993 */ 994 static void group_release(void *iommu_data) 995 { 996 struct iommu_table_group *table_group = iommu_data; 997 998 table_group->group = NULL; 999 } 1000 1001 void iommu_register_group(struct iommu_table_group *table_group, 1002 int pci_domain_number, unsigned long pe_num) 1003 { 1004 struct iommu_group *grp; 1005 char *name; 1006 1007 grp = iommu_group_alloc(); 1008 if (IS_ERR(grp)) { 1009 pr_warn("powerpc iommu api: cannot create new group, err=%ld\n", 1010 PTR_ERR(grp)); 1011 return; 1012 } 1013 table_group->group = grp; 1014 iommu_group_set_iommudata(grp, table_group, group_release); 1015 name = kasprintf(GFP_KERNEL, "domain%d-pe%lx", 1016 pci_domain_number, pe_num); 1017 if (!name) 1018 return; 1019 iommu_group_set_name(grp, name); 1020 kfree(name); 1021 } 1022 1023 enum dma_data_direction iommu_tce_direction(unsigned long tce) 1024 { 1025 if ((tce & TCE_PCI_READ) && (tce & TCE_PCI_WRITE)) 1026 return DMA_BIDIRECTIONAL; 1027 else if (tce & TCE_PCI_READ) 1028 return DMA_TO_DEVICE; 1029 else if (tce & TCE_PCI_WRITE) 1030 return DMA_FROM_DEVICE; 1031 else 1032 return DMA_NONE; 1033 } 1034 EXPORT_SYMBOL_GPL(iommu_tce_direction); 1035 1036 void iommu_flush_tce(struct iommu_table *tbl) 1037 { 1038 /* Flush/invalidate TLB caches if necessary */ 1039 if (tbl->it_ops->flush) 1040 tbl->it_ops->flush(tbl); 1041 1042 /* Make sure updates are seen by hardware */ 1043 mb(); 1044 } 1045 EXPORT_SYMBOL_GPL(iommu_flush_tce); 1046 1047 int iommu_tce_check_ioba(unsigned long page_shift, 1048 unsigned long offset, unsigned long size, 1049 unsigned long ioba, unsigned long npages) 1050 { 1051 unsigned long mask = (1UL << page_shift) - 1; 1052 1053 if (ioba & mask) 1054 return -EINVAL; 1055 1056 ioba >>= page_shift; 1057 if (ioba < offset) 1058 return -EINVAL; 1059 1060 if ((ioba + 1) > (offset + size)) 1061 return -EINVAL; 1062 1063 return 0; 1064 } 1065 EXPORT_SYMBOL_GPL(iommu_tce_check_ioba); 1066 1067 int iommu_tce_check_gpa(unsigned long page_shift, unsigned long gpa) 1068 { 1069 unsigned long mask = (1UL << page_shift) - 1; 1070 1071 if (gpa & mask) 1072 return -EINVAL; 1073 1074 return 0; 1075 } 1076 EXPORT_SYMBOL_GPL(iommu_tce_check_gpa); 1077 1078 long iommu_tce_xchg_no_kill(struct mm_struct *mm, 1079 struct iommu_table *tbl, 1080 unsigned long entry, unsigned long *hpa, 1081 enum dma_data_direction *direction) 1082 { 1083 long ret; 1084 unsigned long size = 0; 1085 1086 ret = tbl->it_ops->xchg_no_kill(tbl, entry, hpa, direction); 1087 if (!ret && ((*direction == DMA_FROM_DEVICE) || 1088 (*direction == DMA_BIDIRECTIONAL)) && 1089 !mm_iommu_is_devmem(mm, *hpa, tbl->it_page_shift, 1090 &size)) 1091 SetPageDirty(pfn_to_page(*hpa >> PAGE_SHIFT)); 1092 1093 return ret; 1094 } 1095 EXPORT_SYMBOL_GPL(iommu_tce_xchg_no_kill); 1096 1097 void iommu_tce_kill(struct iommu_table *tbl, 1098 unsigned long entry, unsigned long pages) 1099 { 1100 if (tbl->it_ops->tce_kill) 1101 tbl->it_ops->tce_kill(tbl, entry, pages); 1102 } 1103 EXPORT_SYMBOL_GPL(iommu_tce_kill); 1104 1105 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 1106 static int iommu_take_ownership(struct iommu_table *tbl) 1107 { 1108 unsigned long flags, i, sz = (tbl->it_size + 7) >> 3; 1109 int ret = 0; 1110 1111 /* 1112 * VFIO does not control TCE entries allocation and the guest 1113 * can write new TCEs on top of existing ones so iommu_tce_build() 1114 * must be able to release old pages. This functionality 1115 * requires exchange() callback defined so if it is not 1116 * implemented, we disallow taking ownership over the table. 1117 */ 1118 if (!tbl->it_ops->xchg_no_kill) 1119 return -EINVAL; 1120 1121 spin_lock_irqsave(&tbl->large_pool.lock, flags); 1122 for (i = 0; i < tbl->nr_pools; i++) 1123 spin_lock_nest_lock(&tbl->pools[i].lock, &tbl->large_pool.lock); 1124 1125 if (iommu_table_in_use(tbl)) { 1126 pr_err("iommu_tce: it_map is not empty"); 1127 ret = -EBUSY; 1128 } else { 1129 memset(tbl->it_map, 0xff, sz); 1130 } 1131 1132 for (i = 0; i < tbl->nr_pools; i++) 1133 spin_unlock(&tbl->pools[i].lock); 1134 spin_unlock_irqrestore(&tbl->large_pool.lock, flags); 1135 1136 return ret; 1137 } 1138 1139 static void iommu_release_ownership(struct iommu_table *tbl) 1140 { 1141 unsigned long flags, i, sz = (tbl->it_size + 7) >> 3; 1142 1143 spin_lock_irqsave(&tbl->large_pool.lock, flags); 1144 for (i = 0; i < tbl->nr_pools; i++) 1145 spin_lock_nest_lock(&tbl->pools[i].lock, &tbl->large_pool.lock); 1146 1147 memset(tbl->it_map, 0, sz); 1148 1149 iommu_table_reserve_pages(tbl, tbl->it_reserved_start, 1150 tbl->it_reserved_end); 1151 1152 for (i = 0; i < tbl->nr_pools; i++) 1153 spin_unlock(&tbl->pools[i].lock); 1154 spin_unlock_irqrestore(&tbl->large_pool.lock, flags); 1155 } 1156 #endif 1157 1158 int iommu_add_device(struct iommu_table_group *table_group, struct device *dev) 1159 { 1160 /* 1161 * The sysfs entries should be populated before 1162 * binding IOMMU group. If sysfs entries isn't 1163 * ready, we simply bail. 1164 */ 1165 if (!device_is_registered(dev)) 1166 return -ENOENT; 1167 1168 if (device_iommu_mapped(dev)) { 1169 pr_debug("%s: Skipping device %s with iommu group %d\n", 1170 __func__, dev_name(dev), 1171 iommu_group_id(dev->iommu_group)); 1172 return -EBUSY; 1173 } 1174 1175 pr_debug("%s: Adding %s to iommu group %d\n", 1176 __func__, dev_name(dev), iommu_group_id(table_group->group)); 1177 /* 1178 * This is still not adding devices via the IOMMU bus notifier because 1179 * of pcibios_init() from arch/powerpc/kernel/pci_64.c which calls 1180 * pcibios_scan_phb() first (and this guy adds devices and triggers 1181 * the notifier) and only then it calls pci_bus_add_devices() which 1182 * configures DMA for buses which also creates PEs and IOMMU groups. 1183 */ 1184 return iommu_probe_device(dev); 1185 } 1186 EXPORT_SYMBOL_GPL(iommu_add_device); 1187 1188 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 1189 /* 1190 * A simple iommu_table_group_ops which only allows reusing the existing 1191 * iommu_table. This handles VFIO for POWER7 or the nested KVM. 1192 * The ops does not allow creating windows and only allows reusing the existing 1193 * one if it matches table_group->tce32_start/tce32_size/page_shift. 1194 */ 1195 static unsigned long spapr_tce_get_table_size(__u32 page_shift, 1196 __u64 window_size, __u32 levels) 1197 { 1198 unsigned long size; 1199 1200 if (levels > 1) 1201 return ~0U; 1202 size = window_size >> (page_shift - 3); 1203 return size; 1204 } 1205 1206 static long spapr_tce_create_table(struct iommu_table_group *table_group, int num, 1207 __u32 page_shift, __u64 window_size, __u32 levels, 1208 struct iommu_table **ptbl) 1209 { 1210 struct iommu_table *tbl = table_group->tables[0]; 1211 1212 if (num > 0) 1213 return -EPERM; 1214 1215 if (tbl->it_page_shift != page_shift || 1216 tbl->it_size != (window_size >> page_shift) || 1217 tbl->it_indirect_levels != levels - 1) 1218 return -EINVAL; 1219 1220 *ptbl = iommu_tce_table_get(tbl); 1221 return 0; 1222 } 1223 1224 static long spapr_tce_set_window(struct iommu_table_group *table_group, 1225 int num, struct iommu_table *tbl) 1226 { 1227 return tbl == table_group->tables[num] ? 0 : -EPERM; 1228 } 1229 1230 static long spapr_tce_unset_window(struct iommu_table_group *table_group, int num) 1231 { 1232 return 0; 1233 } 1234 1235 static long spapr_tce_take_ownership(struct iommu_table_group *table_group) 1236 { 1237 int i, j, rc = 0; 1238 1239 for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) { 1240 struct iommu_table *tbl = table_group->tables[i]; 1241 1242 if (!tbl || !tbl->it_map) 1243 continue; 1244 1245 rc = iommu_take_ownership(tbl); 1246 if (!rc) 1247 continue; 1248 1249 for (j = 0; j < i; ++j) 1250 iommu_release_ownership(table_group->tables[j]); 1251 return rc; 1252 } 1253 return 0; 1254 } 1255 1256 static void spapr_tce_release_ownership(struct iommu_table_group *table_group) 1257 { 1258 int i; 1259 1260 for (i = 0; i < IOMMU_TABLE_GROUP_MAX_TABLES; ++i) { 1261 struct iommu_table *tbl = table_group->tables[i]; 1262 1263 if (!tbl) 1264 continue; 1265 1266 iommu_table_clear(tbl); 1267 if (tbl->it_map) 1268 iommu_release_ownership(tbl); 1269 } 1270 } 1271 1272 struct iommu_table_group_ops spapr_tce_table_group_ops = { 1273 .get_table_size = spapr_tce_get_table_size, 1274 .create_table = spapr_tce_create_table, 1275 .set_window = spapr_tce_set_window, 1276 .unset_window = spapr_tce_unset_window, 1277 .take_ownership = spapr_tce_take_ownership, 1278 .release_ownership = spapr_tce_release_ownership, 1279 }; 1280 1281 /* 1282 * A simple iommu_ops to allow less cruft in generic VFIO code. 1283 */ 1284 static int 1285 spapr_tce_platform_iommu_attach_dev(struct iommu_domain *platform_domain, 1286 struct device *dev) 1287 { 1288 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1289 struct iommu_group *grp = iommu_group_get(dev); 1290 struct iommu_table_group *table_group; 1291 1292 /* At first attach the ownership is already set */ 1293 if (!domain) { 1294 iommu_group_put(grp); 1295 return 0; 1296 } 1297 1298 table_group = iommu_group_get_iommudata(grp); 1299 /* 1300 * The domain being set to PLATFORM from earlier 1301 * BLOCKED. The table_group ownership has to be released. 1302 */ 1303 table_group->ops->release_ownership(table_group); 1304 iommu_group_put(grp); 1305 1306 return 0; 1307 } 1308 1309 static const struct iommu_domain_ops spapr_tce_platform_domain_ops = { 1310 .attach_dev = spapr_tce_platform_iommu_attach_dev, 1311 }; 1312 1313 static struct iommu_domain spapr_tce_platform_domain = { 1314 .type = IOMMU_DOMAIN_PLATFORM, 1315 .ops = &spapr_tce_platform_domain_ops, 1316 }; 1317 1318 static int 1319 spapr_tce_blocked_iommu_attach_dev(struct iommu_domain *platform_domain, 1320 struct device *dev) 1321 { 1322 struct iommu_group *grp = iommu_group_get(dev); 1323 struct iommu_table_group *table_group; 1324 int ret = -EINVAL; 1325 1326 /* 1327 * FIXME: SPAPR mixes blocked and platform behaviors, the blocked domain 1328 * also sets the dma_api ops 1329 */ 1330 table_group = iommu_group_get_iommudata(grp); 1331 ret = table_group->ops->take_ownership(table_group); 1332 iommu_group_put(grp); 1333 1334 return ret; 1335 } 1336 1337 static const struct iommu_domain_ops spapr_tce_blocked_domain_ops = { 1338 .attach_dev = spapr_tce_blocked_iommu_attach_dev, 1339 }; 1340 1341 static struct iommu_domain spapr_tce_blocked_domain = { 1342 .type = IOMMU_DOMAIN_BLOCKED, 1343 .ops = &spapr_tce_blocked_domain_ops, 1344 }; 1345 1346 static bool spapr_tce_iommu_capable(struct device *dev, enum iommu_cap cap) 1347 { 1348 switch (cap) { 1349 case IOMMU_CAP_CACHE_COHERENCY: 1350 return true; 1351 default: 1352 break; 1353 } 1354 1355 return false; 1356 } 1357 1358 static struct iommu_device *spapr_tce_iommu_probe_device(struct device *dev) 1359 { 1360 struct pci_dev *pdev; 1361 struct pci_controller *hose; 1362 1363 if (!dev_is_pci(dev)) 1364 return ERR_PTR(-ENODEV); 1365 1366 pdev = to_pci_dev(dev); 1367 hose = pdev->bus->sysdata; 1368 1369 return &hose->iommu; 1370 } 1371 1372 static void spapr_tce_iommu_release_device(struct device *dev) 1373 { 1374 } 1375 1376 static struct iommu_group *spapr_tce_iommu_device_group(struct device *dev) 1377 { 1378 struct pci_controller *hose; 1379 struct pci_dev *pdev; 1380 1381 pdev = to_pci_dev(dev); 1382 hose = pdev->bus->sysdata; 1383 1384 if (!hose->controller_ops.device_group) 1385 return ERR_PTR(-ENOENT); 1386 1387 return hose->controller_ops.device_group(hose, pdev); 1388 } 1389 1390 static const struct iommu_ops spapr_tce_iommu_ops = { 1391 .default_domain = &spapr_tce_platform_domain, 1392 .blocked_domain = &spapr_tce_blocked_domain, 1393 .capable = spapr_tce_iommu_capable, 1394 .probe_device = spapr_tce_iommu_probe_device, 1395 .release_device = spapr_tce_iommu_release_device, 1396 .device_group = spapr_tce_iommu_device_group, 1397 }; 1398 1399 static struct attribute *spapr_tce_iommu_attrs[] = { 1400 NULL, 1401 }; 1402 1403 static struct attribute_group spapr_tce_iommu_group = { 1404 .name = "spapr-tce-iommu", 1405 .attrs = spapr_tce_iommu_attrs, 1406 }; 1407 1408 static const struct attribute_group *spapr_tce_iommu_groups[] = { 1409 &spapr_tce_iommu_group, 1410 NULL, 1411 }; 1412 1413 void ppc_iommu_register_device(struct pci_controller *phb) 1414 { 1415 iommu_device_sysfs_add(&phb->iommu, phb->parent, 1416 spapr_tce_iommu_groups, "iommu-phb%04x", 1417 phb->global_number); 1418 iommu_device_register(&phb->iommu, &spapr_tce_iommu_ops, 1419 phb->parent); 1420 } 1421 1422 void ppc_iommu_unregister_device(struct pci_controller *phb) 1423 { 1424 iommu_device_unregister(&phb->iommu); 1425 iommu_device_sysfs_remove(&phb->iommu); 1426 } 1427 1428 /* 1429 * This registers IOMMU devices of PHBs. This needs to happen 1430 * after core_initcall(iommu_init) + postcore_initcall(pci_driver_init) and 1431 * before subsys_initcall(iommu_subsys_init). 1432 */ 1433 static int __init spapr_tce_setup_phb_iommus_initcall(void) 1434 { 1435 struct pci_controller *hose; 1436 1437 list_for_each_entry(hose, &hose_list, list_node) { 1438 ppc_iommu_register_device(hose); 1439 } 1440 return 0; 1441 } 1442 postcore_initcall_sync(spapr_tce_setup_phb_iommus_initcall); 1443 #endif 1444 1445 #endif /* CONFIG_IOMMU_API */ 1446