xref: /linux/arch/powerpc/kernel/hw_breakpoint.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
4  * using the CPU's debug registers. Derived from
5  * "arch/x86/kernel/hw_breakpoint.c"
6  *
7  * Copyright 2010 IBM Corporation
8  * Author: K.Prasad <prasad@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/hw_breakpoint.h>
12 #include <linux/notifier.h>
13 #include <linux/kprobes.h>
14 #include <linux/percpu.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/debugfs.h>
19 #include <linux/init.h>
20 
21 #include <asm/hw_breakpoint.h>
22 #include <asm/processor.h>
23 #include <asm/sstep.h>
24 #include <asm/debug.h>
25 #include <asm/debugfs.h>
26 #include <asm/hvcall.h>
27 #include <asm/inst.h>
28 #include <linux/uaccess.h>
29 
30 /*
31  * Stores the breakpoints currently in use on each breakpoint address
32  * register for every cpu
33  */
34 static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
35 
36 /*
37  * Returns total number of data or instruction breakpoints available.
38  */
39 int hw_breakpoint_slots(int type)
40 {
41 	if (type == TYPE_DATA)
42 		return nr_wp_slots();
43 	return 0;		/* no instruction breakpoints available */
44 }
45 
46 static bool single_step_pending(void)
47 {
48 	int i;
49 
50 	for (i = 0; i < nr_wp_slots(); i++) {
51 		if (current->thread.last_hit_ubp[i])
52 			return true;
53 	}
54 	return false;
55 }
56 
57 /*
58  * Install a perf counter breakpoint.
59  *
60  * We seek a free debug address register and use it for this
61  * breakpoint.
62  *
63  * Atomic: we hold the counter->ctx->lock and we only handle variables
64  * and registers local to this cpu.
65  */
66 int arch_install_hw_breakpoint(struct perf_event *bp)
67 {
68 	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
69 	struct perf_event **slot;
70 	int i;
71 
72 	for (i = 0; i < nr_wp_slots(); i++) {
73 		slot = this_cpu_ptr(&bp_per_reg[i]);
74 		if (!*slot) {
75 			*slot = bp;
76 			break;
77 		}
78 	}
79 
80 	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
81 		return -EBUSY;
82 
83 	/*
84 	 * Do not install DABR values if the instruction must be single-stepped.
85 	 * If so, DABR will be populated in single_step_dabr_instruction().
86 	 */
87 	if (!single_step_pending())
88 		__set_breakpoint(i, info);
89 
90 	return 0;
91 }
92 
93 /*
94  * Uninstall the breakpoint contained in the given counter.
95  *
96  * First we search the debug address register it uses and then we disable
97  * it.
98  *
99  * Atomic: we hold the counter->ctx->lock and we only handle variables
100  * and registers local to this cpu.
101  */
102 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
103 {
104 	struct arch_hw_breakpoint null_brk = {0};
105 	struct perf_event **slot;
106 	int i;
107 
108 	for (i = 0; i < nr_wp_slots(); i++) {
109 		slot = this_cpu_ptr(&bp_per_reg[i]);
110 		if (*slot == bp) {
111 			*slot = NULL;
112 			break;
113 		}
114 	}
115 
116 	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
117 		return;
118 
119 	__set_breakpoint(i, &null_brk);
120 }
121 
122 static bool is_ptrace_bp(struct perf_event *bp)
123 {
124 	return bp->overflow_handler == ptrace_triggered;
125 }
126 
127 struct breakpoint {
128 	struct list_head list;
129 	struct perf_event *bp;
130 	bool ptrace_bp;
131 };
132 
133 static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
134 static LIST_HEAD(task_bps);
135 
136 static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
137 {
138 	struct breakpoint *tmp;
139 
140 	tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
141 	if (!tmp)
142 		return ERR_PTR(-ENOMEM);
143 	tmp->bp = bp;
144 	tmp->ptrace_bp = is_ptrace_bp(bp);
145 	return tmp;
146 }
147 
148 static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
149 {
150 	__u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
151 
152 	bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
153 	bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
154 	bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
155 	bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
156 
157 	return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
158 }
159 
160 static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
161 {
162 	return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
163 }
164 
165 static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
166 {
167 	return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
168 }
169 
170 static int task_bps_add(struct perf_event *bp)
171 {
172 	struct breakpoint *tmp;
173 
174 	tmp = alloc_breakpoint(bp);
175 	if (IS_ERR(tmp))
176 		return PTR_ERR(tmp);
177 
178 	list_add(&tmp->list, &task_bps);
179 	return 0;
180 }
181 
182 static void task_bps_remove(struct perf_event *bp)
183 {
184 	struct list_head *pos, *q;
185 
186 	list_for_each_safe(pos, q, &task_bps) {
187 		struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
188 
189 		if (tmp->bp == bp) {
190 			list_del(&tmp->list);
191 			kfree(tmp);
192 			break;
193 		}
194 	}
195 }
196 
197 /*
198  * If any task has breakpoint from alternate infrastructure,
199  * return true. Otherwise return false.
200  */
201 static bool all_task_bps_check(struct perf_event *bp)
202 {
203 	struct breakpoint *tmp;
204 
205 	list_for_each_entry(tmp, &task_bps, list) {
206 		if (!can_co_exist(tmp, bp))
207 			return true;
208 	}
209 	return false;
210 }
211 
212 /*
213  * If same task has breakpoint from alternate infrastructure,
214  * return true. Otherwise return false.
215  */
216 static bool same_task_bps_check(struct perf_event *bp)
217 {
218 	struct breakpoint *tmp;
219 
220 	list_for_each_entry(tmp, &task_bps, list) {
221 		if (tmp->bp->hw.target == bp->hw.target &&
222 		    !can_co_exist(tmp, bp))
223 			return true;
224 	}
225 	return false;
226 }
227 
228 static int cpu_bps_add(struct perf_event *bp)
229 {
230 	struct breakpoint **cpu_bp;
231 	struct breakpoint *tmp;
232 	int i = 0;
233 
234 	tmp = alloc_breakpoint(bp);
235 	if (IS_ERR(tmp))
236 		return PTR_ERR(tmp);
237 
238 	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
239 	for (i = 0; i < nr_wp_slots(); i++) {
240 		if (!cpu_bp[i]) {
241 			cpu_bp[i] = tmp;
242 			break;
243 		}
244 	}
245 	return 0;
246 }
247 
248 static void cpu_bps_remove(struct perf_event *bp)
249 {
250 	struct breakpoint **cpu_bp;
251 	int i = 0;
252 
253 	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
254 	for (i = 0; i < nr_wp_slots(); i++) {
255 		if (!cpu_bp[i])
256 			continue;
257 
258 		if (cpu_bp[i]->bp == bp) {
259 			kfree(cpu_bp[i]);
260 			cpu_bp[i] = NULL;
261 			break;
262 		}
263 	}
264 }
265 
266 static bool cpu_bps_check(int cpu, struct perf_event *bp)
267 {
268 	struct breakpoint **cpu_bp;
269 	int i;
270 
271 	cpu_bp = per_cpu_ptr(cpu_bps, cpu);
272 	for (i = 0; i < nr_wp_slots(); i++) {
273 		if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp))
274 			return true;
275 	}
276 	return false;
277 }
278 
279 static bool all_cpu_bps_check(struct perf_event *bp)
280 {
281 	int cpu;
282 
283 	for_each_online_cpu(cpu) {
284 		if (cpu_bps_check(cpu, bp))
285 			return true;
286 	}
287 	return false;
288 }
289 
290 /*
291  * We don't use any locks to serialize accesses to cpu_bps or task_bps
292  * because are already inside nr_bp_mutex.
293  */
294 int arch_reserve_bp_slot(struct perf_event *bp)
295 {
296 	int ret;
297 
298 	/* ptrace breakpoint */
299 	if (is_ptrace_bp(bp)) {
300 		if (all_cpu_bps_check(bp))
301 			return -ENOSPC;
302 
303 		if (same_task_bps_check(bp))
304 			return -ENOSPC;
305 
306 		return task_bps_add(bp);
307 	}
308 
309 	/* perf breakpoint */
310 	if (is_kernel_addr(bp->attr.bp_addr))
311 		return 0;
312 
313 	if (bp->hw.target && bp->cpu == -1) {
314 		if (same_task_bps_check(bp))
315 			return -ENOSPC;
316 
317 		return task_bps_add(bp);
318 	} else if (!bp->hw.target && bp->cpu != -1) {
319 		if (all_task_bps_check(bp))
320 			return -ENOSPC;
321 
322 		return cpu_bps_add(bp);
323 	}
324 
325 	if (same_task_bps_check(bp))
326 		return -ENOSPC;
327 
328 	ret = cpu_bps_add(bp);
329 	if (ret)
330 		return ret;
331 	ret = task_bps_add(bp);
332 	if (ret)
333 		cpu_bps_remove(bp);
334 
335 	return ret;
336 }
337 
338 void arch_release_bp_slot(struct perf_event *bp)
339 {
340 	if (!is_kernel_addr(bp->attr.bp_addr)) {
341 		if (bp->hw.target)
342 			task_bps_remove(bp);
343 		if (bp->cpu != -1)
344 			cpu_bps_remove(bp);
345 	}
346 }
347 
348 /*
349  * Perform cleanup of arch-specific counters during unregistration
350  * of the perf-event
351  */
352 void arch_unregister_hw_breakpoint(struct perf_event *bp)
353 {
354 	/*
355 	 * If the breakpoint is unregistered between a hw_breakpoint_handler()
356 	 * and the single_step_dabr_instruction(), then cleanup the breakpoint
357 	 * restoration variables to prevent dangling pointers.
358 	 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
359 	 */
360 	if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
361 		int i;
362 
363 		for (i = 0; i < nr_wp_slots(); i++) {
364 			if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
365 				bp->ctx->task->thread.last_hit_ubp[i] = NULL;
366 		}
367 	}
368 }
369 
370 /*
371  * Check for virtual address in kernel space.
372  */
373 int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
374 {
375 	return is_kernel_addr(hw->address);
376 }
377 
378 int arch_bp_generic_fields(int type, int *gen_bp_type)
379 {
380 	*gen_bp_type = 0;
381 	if (type & HW_BRK_TYPE_READ)
382 		*gen_bp_type |= HW_BREAKPOINT_R;
383 	if (type & HW_BRK_TYPE_WRITE)
384 		*gen_bp_type |= HW_BREAKPOINT_W;
385 	if (*gen_bp_type == 0)
386 		return -EINVAL;
387 	return 0;
388 }
389 
390 /*
391  * Watchpoint match range is always doubleword(8 bytes) aligned on
392  * powerpc. If the given range is crossing doubleword boundary, we
393  * need to increase the length such that next doubleword also get
394  * covered. Ex,
395  *
396  *          address   len = 6 bytes
397  *                |=========.
398  *   |------------v--|------v--------|
399  *   | | | | | | | | | | | | | | | | |
400  *   |---------------|---------------|
401  *    <---8 bytes--->
402  *
403  * In this case, we should configure hw as:
404  *   start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
405  *   len = 16 bytes
406  *
407  * @start_addr is inclusive but @end_addr is exclusive.
408  */
409 static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
410 {
411 	u16 max_len = DABR_MAX_LEN;
412 	u16 hw_len;
413 	unsigned long start_addr, end_addr;
414 
415 	start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
416 	end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
417 	hw_len = end_addr - start_addr;
418 
419 	if (dawr_enabled()) {
420 		max_len = DAWR_MAX_LEN;
421 		/* DAWR region can't cross 512 bytes boundary */
422 		if (ALIGN(start_addr, SZ_512M) != ALIGN(end_addr - 1, SZ_512M))
423 			return -EINVAL;
424 	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
425 		/* 8xx can setup a range without limitation */
426 		max_len = U16_MAX;
427 	}
428 
429 	if (hw_len > max_len)
430 		return -EINVAL;
431 
432 	hw->hw_len = hw_len;
433 	return 0;
434 }
435 
436 /*
437  * Validate the arch-specific HW Breakpoint register settings
438  */
439 int hw_breakpoint_arch_parse(struct perf_event *bp,
440 			     const struct perf_event_attr *attr,
441 			     struct arch_hw_breakpoint *hw)
442 {
443 	int ret = -EINVAL;
444 
445 	if (!bp || !attr->bp_len)
446 		return ret;
447 
448 	hw->type = HW_BRK_TYPE_TRANSLATE;
449 	if (attr->bp_type & HW_BREAKPOINT_R)
450 		hw->type |= HW_BRK_TYPE_READ;
451 	if (attr->bp_type & HW_BREAKPOINT_W)
452 		hw->type |= HW_BRK_TYPE_WRITE;
453 	if (hw->type == HW_BRK_TYPE_TRANSLATE)
454 		/* must set alteast read or write */
455 		return ret;
456 	if (!attr->exclude_user)
457 		hw->type |= HW_BRK_TYPE_USER;
458 	if (!attr->exclude_kernel)
459 		hw->type |= HW_BRK_TYPE_KERNEL;
460 	if (!attr->exclude_hv)
461 		hw->type |= HW_BRK_TYPE_HYP;
462 	hw->address = attr->bp_addr;
463 	hw->len = attr->bp_len;
464 
465 	if (!ppc_breakpoint_available())
466 		return -ENODEV;
467 
468 	return hw_breakpoint_validate_len(hw);
469 }
470 
471 /*
472  * Restores the breakpoint on the debug registers.
473  * Invoke this function if it is known that the execution context is
474  * about to change to cause loss of MSR_SE settings.
475  */
476 void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
477 {
478 	struct arch_hw_breakpoint *info;
479 	int i;
480 
481 	for (i = 0; i < nr_wp_slots(); i++) {
482 		if (unlikely(tsk->thread.last_hit_ubp[i]))
483 			goto reset;
484 	}
485 	return;
486 
487 reset:
488 	regs->msr &= ~MSR_SE;
489 	for (i = 0; i < nr_wp_slots(); i++) {
490 		info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
491 		__set_breakpoint(i, info);
492 		tsk->thread.last_hit_ubp[i] = NULL;
493 	}
494 }
495 
496 static bool dar_in_user_range(unsigned long dar, struct arch_hw_breakpoint *info)
497 {
498 	return ((info->address <= dar) && (dar - info->address < info->len));
499 }
500 
501 static bool dar_user_range_overlaps(unsigned long dar, int size,
502 				    struct arch_hw_breakpoint *info)
503 {
504 	return ((dar < info->address + info->len) &&
505 		(dar + size > info->address));
506 }
507 
508 static bool dar_in_hw_range(unsigned long dar, struct arch_hw_breakpoint *info)
509 {
510 	unsigned long hw_start_addr, hw_end_addr;
511 
512 	hw_start_addr = ALIGN_DOWN(info->address, HW_BREAKPOINT_SIZE);
513 	hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE);
514 
515 	return ((hw_start_addr <= dar) && (hw_end_addr > dar));
516 }
517 
518 static bool dar_hw_range_overlaps(unsigned long dar, int size,
519 				  struct arch_hw_breakpoint *info)
520 {
521 	unsigned long hw_start_addr, hw_end_addr;
522 
523 	hw_start_addr = ALIGN_DOWN(info->address, HW_BREAKPOINT_SIZE);
524 	hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE);
525 
526 	return ((dar < hw_end_addr) && (dar + size > hw_start_addr));
527 }
528 
529 /*
530  * If hw has multiple DAWR registers, we also need to check all
531  * dawrx constraint bits to confirm this is _really_ a valid event.
532  */
533 static bool check_dawrx_constraints(struct pt_regs *regs, int type,
534 				    struct arch_hw_breakpoint *info)
535 {
536 	if (OP_IS_LOAD(type) && !(info->type & HW_BRK_TYPE_READ))
537 		return false;
538 
539 	if (OP_IS_STORE(type) && !(info->type & HW_BRK_TYPE_WRITE))
540 		return false;
541 
542 	if (is_kernel_addr(regs->nip) && !(info->type & HW_BRK_TYPE_KERNEL))
543 		return false;
544 
545 	if (user_mode(regs) && !(info->type & HW_BRK_TYPE_USER))
546 		return false;
547 
548 	return true;
549 }
550 
551 /*
552  * Return true if the event is valid wrt dawr configuration,
553  * including extraneous exception. Otherwise return false.
554  */
555 static bool check_constraints(struct pt_regs *regs, struct ppc_inst instr,
556 			      int type, int size, struct arch_hw_breakpoint *info)
557 {
558 	bool in_user_range = dar_in_user_range(regs->dar, info);
559 	bool dawrx_constraints;
560 
561 	/*
562 	 * 8xx supports only one breakpoint and thus we can
563 	 * unconditionally return true.
564 	 */
565 	if (IS_ENABLED(CONFIG_PPC_8xx)) {
566 		if (!in_user_range)
567 			info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
568 		return true;
569 	}
570 
571 	if (unlikely(ppc_inst_equal(instr, ppc_inst(0)))) {
572 		if (in_user_range)
573 			return true;
574 
575 		if (dar_in_hw_range(regs->dar, info)) {
576 			info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
577 			return true;
578 		}
579 		return false;
580 	}
581 
582 	dawrx_constraints = check_dawrx_constraints(regs, type, info);
583 
584 	if (dar_user_range_overlaps(regs->dar, size, info))
585 		return dawrx_constraints;
586 
587 	if (dar_hw_range_overlaps(regs->dar, size, info)) {
588 		if (dawrx_constraints) {
589 			info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
590 			return true;
591 		}
592 	}
593 	return false;
594 }
595 
596 static void get_instr_detail(struct pt_regs *regs, struct ppc_inst *instr,
597 			     int *type, int *size, bool *larx_stcx)
598 {
599 	struct instruction_op op;
600 
601 	if (__get_user_instr_inatomic(*instr, (void __user *)regs->nip))
602 		return;
603 
604 	analyse_instr(&op, regs, *instr);
605 
606 	/*
607 	 * Set size = 8 if analyse_instr() fails. If it's a userspace
608 	 * watchpoint(valid or extraneous), we can notify user about it.
609 	 * If it's a kernel watchpoint, instruction  emulation will fail
610 	 * in stepping_handler() and watchpoint will be disabled.
611 	 */
612 	*type = GETTYPE(op.type);
613 	*size = !(*type == UNKNOWN) ? GETSIZE(op.type) : 8;
614 	*larx_stcx = (*type == LARX || *type == STCX);
615 }
616 
617 /*
618  * We've failed in reliably handling the hw-breakpoint. Unregister
619  * it and throw a warning message to let the user know about it.
620  */
621 static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
622 {
623 	WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
624 	     info->address);
625 	perf_event_disable_inatomic(bp);
626 }
627 
628 static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
629 {
630 	printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
631 			   info->address);
632 	perf_event_disable_inatomic(bp);
633 }
634 
635 static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
636 			     struct arch_hw_breakpoint **info, int *hit,
637 			     struct ppc_inst instr)
638 {
639 	int i;
640 	int stepped;
641 
642 	/* Do not emulate user-space instructions, instead single-step them */
643 	if (user_mode(regs)) {
644 		for (i = 0; i < nr_wp_slots(); i++) {
645 			if (!hit[i])
646 				continue;
647 			current->thread.last_hit_ubp[i] = bp[i];
648 			info[i] = NULL;
649 		}
650 		regs->msr |= MSR_SE;
651 		return false;
652 	}
653 
654 	stepped = emulate_step(regs, instr);
655 	if (!stepped) {
656 		for (i = 0; i < nr_wp_slots(); i++) {
657 			if (!hit[i])
658 				continue;
659 			handler_error(bp[i], info[i]);
660 			info[i] = NULL;
661 		}
662 		return false;
663 	}
664 	return true;
665 }
666 
667 int hw_breakpoint_handler(struct die_args *args)
668 {
669 	bool err = false;
670 	int rc = NOTIFY_STOP;
671 	struct perf_event *bp[HBP_NUM_MAX] = { NULL };
672 	struct pt_regs *regs = args->regs;
673 	struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
674 	int i;
675 	int hit[HBP_NUM_MAX] = {0};
676 	int nr_hit = 0;
677 	bool ptrace_bp = false;
678 	struct ppc_inst instr = ppc_inst(0);
679 	int type = 0;
680 	int size = 0;
681 	bool larx_stcx = false;
682 
683 	/* Disable breakpoints during exception handling */
684 	hw_breakpoint_disable();
685 
686 	/*
687 	 * The counter may be concurrently released but that can only
688 	 * occur from a call_rcu() path. We can then safely fetch
689 	 * the breakpoint, use its callback, touch its counter
690 	 * while we are in an rcu_read_lock() path.
691 	 */
692 	rcu_read_lock();
693 
694 	if (!IS_ENABLED(CONFIG_PPC_8xx))
695 		get_instr_detail(regs, &instr, &type, &size, &larx_stcx);
696 
697 	for (i = 0; i < nr_wp_slots(); i++) {
698 		bp[i] = __this_cpu_read(bp_per_reg[i]);
699 		if (!bp[i])
700 			continue;
701 
702 		info[i] = counter_arch_bp(bp[i]);
703 		info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
704 
705 		if (check_constraints(regs, instr, type, size, info[i])) {
706 			if (!IS_ENABLED(CONFIG_PPC_8xx) &&
707 			    ppc_inst_equal(instr, ppc_inst(0))) {
708 				handler_error(bp[i], info[i]);
709 				info[i] = NULL;
710 				err = 1;
711 				continue;
712 			}
713 
714 			if (is_ptrace_bp(bp[i]))
715 				ptrace_bp = true;
716 			hit[i] = 1;
717 			nr_hit++;
718 		}
719 	}
720 
721 	if (err)
722 		goto reset;
723 
724 	if (!nr_hit) {
725 		rc = NOTIFY_DONE;
726 		goto out;
727 	}
728 
729 	/*
730 	 * Return early after invoking user-callback function without restoring
731 	 * DABR if the breakpoint is from ptrace which always operates in
732 	 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
733 	 * generated in do_dabr().
734 	 */
735 	if (ptrace_bp) {
736 		for (i = 0; i < nr_wp_slots(); i++) {
737 			if (!hit[i])
738 				continue;
739 			perf_bp_event(bp[i], regs);
740 			info[i] = NULL;
741 		}
742 		rc = NOTIFY_DONE;
743 		goto reset;
744 	}
745 
746 	if (!IS_ENABLED(CONFIG_PPC_8xx)) {
747 		if (larx_stcx) {
748 			for (i = 0; i < nr_wp_slots(); i++) {
749 				if (!hit[i])
750 					continue;
751 				larx_stcx_err(bp[i], info[i]);
752 				info[i] = NULL;
753 			}
754 			goto reset;
755 		}
756 
757 		if (!stepping_handler(regs, bp, info, hit, instr))
758 			goto reset;
759 	}
760 
761 	/*
762 	 * As a policy, the callback is invoked in a 'trigger-after-execute'
763 	 * fashion
764 	 */
765 	for (i = 0; i < nr_wp_slots(); i++) {
766 		if (!hit[i])
767 			continue;
768 		if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
769 			perf_bp_event(bp[i], regs);
770 	}
771 
772 reset:
773 	for (i = 0; i < nr_wp_slots(); i++) {
774 		if (!info[i])
775 			continue;
776 		__set_breakpoint(i, info[i]);
777 	}
778 
779 out:
780 	rcu_read_unlock();
781 	return rc;
782 }
783 NOKPROBE_SYMBOL(hw_breakpoint_handler);
784 
785 /*
786  * Handle single-step exceptions following a DABR hit.
787  */
788 static int single_step_dabr_instruction(struct die_args *args)
789 {
790 	struct pt_regs *regs = args->regs;
791 	struct perf_event *bp = NULL;
792 	struct arch_hw_breakpoint *info;
793 	int i;
794 	bool found = false;
795 
796 	/*
797 	 * Check if we are single-stepping as a result of a
798 	 * previous HW Breakpoint exception
799 	 */
800 	for (i = 0; i < nr_wp_slots(); i++) {
801 		bp = current->thread.last_hit_ubp[i];
802 
803 		if (!bp)
804 			continue;
805 
806 		found = true;
807 		info = counter_arch_bp(bp);
808 
809 		/*
810 		 * We shall invoke the user-defined callback function in the
811 		 * single stepping handler to confirm to 'trigger-after-execute'
812 		 * semantics
813 		 */
814 		if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
815 			perf_bp_event(bp, regs);
816 		current->thread.last_hit_ubp[i] = NULL;
817 	}
818 
819 	if (!found)
820 		return NOTIFY_DONE;
821 
822 	for (i = 0; i < nr_wp_slots(); i++) {
823 		bp = __this_cpu_read(bp_per_reg[i]);
824 		if (!bp)
825 			continue;
826 
827 		info = counter_arch_bp(bp);
828 		__set_breakpoint(i, info);
829 	}
830 
831 	/*
832 	 * If the process was being single-stepped by ptrace, let the
833 	 * other single-step actions occur (e.g. generate SIGTRAP).
834 	 */
835 	if (test_thread_flag(TIF_SINGLESTEP))
836 		return NOTIFY_DONE;
837 
838 	return NOTIFY_STOP;
839 }
840 NOKPROBE_SYMBOL(single_step_dabr_instruction);
841 
842 /*
843  * Handle debug exception notifications.
844  */
845 int hw_breakpoint_exceptions_notify(
846 		struct notifier_block *unused, unsigned long val, void *data)
847 {
848 	int ret = NOTIFY_DONE;
849 
850 	switch (val) {
851 	case DIE_DABR_MATCH:
852 		ret = hw_breakpoint_handler(data);
853 		break;
854 	case DIE_SSTEP:
855 		ret = single_step_dabr_instruction(data);
856 		break;
857 	}
858 
859 	return ret;
860 }
861 NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
862 
863 /*
864  * Release the user breakpoints used by ptrace
865  */
866 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
867 {
868 	int i;
869 	struct thread_struct *t = &tsk->thread;
870 
871 	for (i = 0; i < nr_wp_slots(); i++) {
872 		unregister_hw_breakpoint(t->ptrace_bps[i]);
873 		t->ptrace_bps[i] = NULL;
874 	}
875 }
876 
877 void hw_breakpoint_pmu_read(struct perf_event *bp)
878 {
879 	/* TODO */
880 }
881 
882 void ptrace_triggered(struct perf_event *bp,
883 		      struct perf_sample_data *data, struct pt_regs *regs)
884 {
885 	struct perf_event_attr attr;
886 
887 	/*
888 	 * Disable the breakpoint request here since ptrace has defined a
889 	 * one-shot behaviour for breakpoint exceptions in PPC64.
890 	 * The SIGTRAP signal is generated automatically for us in do_dabr().
891 	 * We don't have to do anything about that here
892 	 */
893 	attr = bp->attr;
894 	attr.disabled = true;
895 	modify_user_hw_breakpoint(bp, &attr);
896 }
897