xref: /linux/arch/powerpc/kernel/fadump.c (revision f56607e85ee38f2a5bb7096e24e2d40f35d714f9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34 #include <asm/interrupt.h>
35 
36 /*
37  * The CPU who acquired the lock to trigger the fadump crash should
38  * wait for other CPUs to enter.
39  *
40  * The timeout is in milliseconds.
41  */
42 #define CRASH_TIMEOUT		500
43 
44 static struct fw_dump fw_dump;
45 
46 static void __init fadump_reserve_crash_area(u64 base);
47 
48 struct kobject *fadump_kobj;
49 
50 #ifndef CONFIG_PRESERVE_FA_DUMP
51 
52 static atomic_t cpus_in_fadump;
53 static DEFINE_MUTEX(fadump_mutex);
54 
55 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
56 
57 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
58 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
59 				 sizeof(struct fadump_memory_range))
60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61 struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs,
62 						   RESERVED_RNGS_SZ, 0,
63 						   RESERVED_RNGS_CNT, true };
64 
65 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
66 
67 #ifdef CONFIG_CMA
68 static struct cma *fadump_cma;
69 
70 /*
71  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
72  *
73  * This function initializes CMA area from fadump reserved memory.
74  * The total size of fadump reserved memory covers for boot memory size
75  * + cpu data size + hpte size and metadata.
76  * Initialize only the area equivalent to boot memory size for CMA use.
77  * The reamining portion of fadump reserved memory will be not given
78  * to CMA and pages for thoes will stay reserved. boot memory size is
79  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
80  * But for some reason even if it fails we still have the memory reservation
81  * with us and we can still continue doing fadump.
82  */
83 int __init fadump_cma_init(void)
84 {
85 	unsigned long long base, size;
86 	int rc;
87 
88 	if (!fw_dump.fadump_enabled)
89 		return 0;
90 
91 	/*
92 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
93 	 * Return 1 to continue with fadump old behaviour.
94 	 */
95 	if (fw_dump.nocma)
96 		return 1;
97 
98 	base = fw_dump.reserve_dump_area_start;
99 	size = fw_dump.boot_memory_size;
100 
101 	if (!size)
102 		return 0;
103 
104 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
105 	if (rc) {
106 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
107 		/*
108 		 * Though the CMA init has failed we still have memory
109 		 * reservation with us. The reserved memory will be
110 		 * blocked from production system usage.  Hence return 1,
111 		 * so that we can continue with fadump.
112 		 */
113 		return 1;
114 	}
115 
116 	/*
117 	 * So we now have successfully initialized cma area for fadump.
118 	 */
119 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
120 		"bytes of memory reserved for firmware-assisted dump\n",
121 		cma_get_size(fadump_cma),
122 		(unsigned long)cma_get_base(fadump_cma) >> 20,
123 		fw_dump.reserve_dump_area_size);
124 	return 1;
125 }
126 #else
127 static int __init fadump_cma_init(void) { return 1; }
128 #endif /* CONFIG_CMA */
129 
130 /* Scan the Firmware Assisted dump configuration details. */
131 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
132 				      int depth, void *data)
133 {
134 	if (depth == 0) {
135 		early_init_dt_scan_reserved_ranges(node);
136 		return 0;
137 	}
138 
139 	if (depth != 1)
140 		return 0;
141 
142 	if (strcmp(uname, "rtas") == 0) {
143 		rtas_fadump_dt_scan(&fw_dump, node);
144 		return 1;
145 	}
146 
147 	if (strcmp(uname, "ibm,opal") == 0) {
148 		opal_fadump_dt_scan(&fw_dump, node);
149 		return 1;
150 	}
151 
152 	return 0;
153 }
154 
155 /*
156  * If fadump is registered, check if the memory provided
157  * falls within boot memory area and reserved memory area.
158  */
159 int is_fadump_memory_area(u64 addr, unsigned long size)
160 {
161 	u64 d_start, d_end;
162 
163 	if (!fw_dump.dump_registered)
164 		return 0;
165 
166 	if (!size)
167 		return 0;
168 
169 	d_start = fw_dump.reserve_dump_area_start;
170 	d_end = d_start + fw_dump.reserve_dump_area_size;
171 	if (((addr + size) > d_start) && (addr <= d_end))
172 		return 1;
173 
174 	return (addr <= fw_dump.boot_mem_top);
175 }
176 
177 int should_fadump_crash(void)
178 {
179 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
180 		return 0;
181 	return 1;
182 }
183 
184 int is_fadump_active(void)
185 {
186 	return fw_dump.dump_active;
187 }
188 
189 /*
190  * Returns true, if there are no holes in memory area between d_start to d_end,
191  * false otherwise.
192  */
193 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
194 {
195 	phys_addr_t reg_start, reg_end;
196 	bool ret = false;
197 	u64 i, start, end;
198 
199 	for_each_mem_range(i, &reg_start, &reg_end) {
200 		start = max_t(u64, d_start, reg_start);
201 		end = min_t(u64, d_end, reg_end);
202 		if (d_start < end) {
203 			/* Memory hole from d_start to start */
204 			if (start > d_start)
205 				break;
206 
207 			if (end == d_end) {
208 				ret = true;
209 				break;
210 			}
211 
212 			d_start = end + 1;
213 		}
214 	}
215 
216 	return ret;
217 }
218 
219 /*
220  * Returns true, if there are no holes in boot memory area,
221  * false otherwise.
222  */
223 bool is_fadump_boot_mem_contiguous(void)
224 {
225 	unsigned long d_start, d_end;
226 	bool ret = false;
227 	int i;
228 
229 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
230 		d_start = fw_dump.boot_mem_addr[i];
231 		d_end   = d_start + fw_dump.boot_mem_sz[i];
232 
233 		ret = is_fadump_mem_area_contiguous(d_start, d_end);
234 		if (!ret)
235 			break;
236 	}
237 
238 	return ret;
239 }
240 
241 /*
242  * Returns true, if there are no holes in reserved memory area,
243  * false otherwise.
244  */
245 bool is_fadump_reserved_mem_contiguous(void)
246 {
247 	u64 d_start, d_end;
248 
249 	d_start	= fw_dump.reserve_dump_area_start;
250 	d_end	= d_start + fw_dump.reserve_dump_area_size;
251 	return is_fadump_mem_area_contiguous(d_start, d_end);
252 }
253 
254 /* Print firmware assisted dump configurations for debugging purpose. */
255 static void fadump_show_config(void)
256 {
257 	int i;
258 
259 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
260 			(fw_dump.fadump_supported ? "present" : "no support"));
261 
262 	if (!fw_dump.fadump_supported)
263 		return;
264 
265 	pr_debug("Fadump enabled    : %s\n",
266 				(fw_dump.fadump_enabled ? "yes" : "no"));
267 	pr_debug("Dump Active       : %s\n",
268 				(fw_dump.dump_active ? "yes" : "no"));
269 	pr_debug("Dump section sizes:\n");
270 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
271 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
272 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
273 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
274 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
275 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
276 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
277 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
278 	}
279 }
280 
281 /**
282  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
283  *
284  * Function to find the largest memory size we need to reserve during early
285  * boot process. This will be the size of the memory that is required for a
286  * kernel to boot successfully.
287  *
288  * This function has been taken from phyp-assisted dump feature implementation.
289  *
290  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
291  *
292  * TODO: Come up with better approach to find out more accurate memory size
293  * that is required for a kernel to boot successfully.
294  *
295  */
296 static __init u64 fadump_calculate_reserve_size(void)
297 {
298 	u64 base, size, bootmem_min;
299 	int ret;
300 
301 	if (fw_dump.reserve_bootvar)
302 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
303 
304 	/*
305 	 * Check if the size is specified through crashkernel= cmdline
306 	 * option. If yes, then use that but ignore base as fadump reserves
307 	 * memory at a predefined offset.
308 	 */
309 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
310 				&size, &base);
311 	if (ret == 0 && size > 0) {
312 		unsigned long max_size;
313 
314 		if (fw_dump.reserve_bootvar)
315 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
316 
317 		fw_dump.reserve_bootvar = (unsigned long)size;
318 
319 		/*
320 		 * Adjust if the boot memory size specified is above
321 		 * the upper limit.
322 		 */
323 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
324 		if (fw_dump.reserve_bootvar > max_size) {
325 			fw_dump.reserve_bootvar = max_size;
326 			pr_info("Adjusted boot memory size to %luMB\n",
327 				(fw_dump.reserve_bootvar >> 20));
328 		}
329 
330 		return fw_dump.reserve_bootvar;
331 	} else if (fw_dump.reserve_bootvar) {
332 		/*
333 		 * 'fadump_reserve_mem=' is being used to reserve memory
334 		 * for firmware-assisted dump.
335 		 */
336 		return fw_dump.reserve_bootvar;
337 	}
338 
339 	/* divide by 20 to get 5% of value */
340 	size = memblock_phys_mem_size() / 20;
341 
342 	/* round it down in multiples of 256 */
343 	size = size & ~0x0FFFFFFFUL;
344 
345 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
346 	if (memory_limit && size > memory_limit)
347 		size = memory_limit;
348 
349 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
350 	return (size > bootmem_min ? size : bootmem_min);
351 }
352 
353 /*
354  * Calculate the total memory size required to be reserved for
355  * firmware-assisted dump registration.
356  */
357 static unsigned long get_fadump_area_size(void)
358 {
359 	unsigned long size = 0;
360 
361 	size += fw_dump.cpu_state_data_size;
362 	size += fw_dump.hpte_region_size;
363 	size += fw_dump.boot_memory_size;
364 	size += sizeof(struct fadump_crash_info_header);
365 	size += sizeof(struct elfhdr); /* ELF core header.*/
366 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
367 	/* Program headers for crash memory regions. */
368 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
369 
370 	size = PAGE_ALIGN(size);
371 
372 	/* This is to hold kernel metadata on platforms that support it */
373 	size += (fw_dump.ops->fadump_get_metadata_size ?
374 		 fw_dump.ops->fadump_get_metadata_size() : 0);
375 	return size;
376 }
377 
378 static int __init add_boot_mem_region(unsigned long rstart,
379 				      unsigned long rsize)
380 {
381 	int i = fw_dump.boot_mem_regs_cnt++;
382 
383 	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
384 		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
385 		return 0;
386 	}
387 
388 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
389 		 i, rstart, (rstart + rsize));
390 	fw_dump.boot_mem_addr[i] = rstart;
391 	fw_dump.boot_mem_sz[i] = rsize;
392 	return 1;
393 }
394 
395 /*
396  * Firmware usually has a hard limit on the data it can copy per region.
397  * Honour that by splitting a memory range into multiple regions.
398  */
399 static int __init add_boot_mem_regions(unsigned long mstart,
400 				       unsigned long msize)
401 {
402 	unsigned long rstart, rsize, max_size;
403 	int ret = 1;
404 
405 	rstart = mstart;
406 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
407 	while (msize) {
408 		if (msize > max_size)
409 			rsize = max_size;
410 		else
411 			rsize = msize;
412 
413 		ret = add_boot_mem_region(rstart, rsize);
414 		if (!ret)
415 			break;
416 
417 		msize -= rsize;
418 		rstart += rsize;
419 	}
420 
421 	return ret;
422 }
423 
424 static int __init fadump_get_boot_mem_regions(void)
425 {
426 	unsigned long size, cur_size, hole_size, last_end;
427 	unsigned long mem_size = fw_dump.boot_memory_size;
428 	phys_addr_t reg_start, reg_end;
429 	int ret = 1;
430 	u64 i;
431 
432 	fw_dump.boot_mem_regs_cnt = 0;
433 
434 	last_end = 0;
435 	hole_size = 0;
436 	cur_size = 0;
437 	for_each_mem_range(i, &reg_start, &reg_end) {
438 		size = reg_end - reg_start;
439 		hole_size += (reg_start - last_end);
440 
441 		if ((cur_size + size) >= mem_size) {
442 			size = (mem_size - cur_size);
443 			ret = add_boot_mem_regions(reg_start, size);
444 			break;
445 		}
446 
447 		mem_size -= size;
448 		cur_size += size;
449 		ret = add_boot_mem_regions(reg_start, size);
450 		if (!ret)
451 			break;
452 
453 		last_end = reg_end;
454 	}
455 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
456 
457 	return ret;
458 }
459 
460 /*
461  * Returns true, if the given range overlaps with reserved memory ranges
462  * starting at idx. Also, updates idx to index of overlapping memory range
463  * with the given memory range.
464  * False, otherwise.
465  */
466 static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx)
467 {
468 	bool ret = false;
469 	int i;
470 
471 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
472 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
473 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
474 
475 		if (end <= rbase)
476 			break;
477 
478 		if ((end > rbase) &&  (base < rend)) {
479 			*idx = i;
480 			ret = true;
481 			break;
482 		}
483 	}
484 
485 	return ret;
486 }
487 
488 /*
489  * Locate a suitable memory area to reserve memory for FADump. While at it,
490  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
491  */
492 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
493 {
494 	struct fadump_memory_range *mrngs;
495 	phys_addr_t mstart, mend;
496 	int idx = 0;
497 	u64 i, ret = 0;
498 
499 	mrngs = reserved_mrange_info.mem_ranges;
500 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
501 				&mstart, &mend, NULL) {
502 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
503 			 i, mstart, mend, base);
504 
505 		if (mstart > base)
506 			base = PAGE_ALIGN(mstart);
507 
508 		while ((mend > base) && ((mend - base) >= size)) {
509 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
510 				ret = base;
511 				goto out;
512 			}
513 
514 			base = mrngs[idx].base + mrngs[idx].size;
515 			base = PAGE_ALIGN(base);
516 		}
517 	}
518 
519 out:
520 	return ret;
521 }
522 
523 int __init fadump_reserve_mem(void)
524 {
525 	u64 base, size, mem_boundary, bootmem_min;
526 	int ret = 1;
527 
528 	if (!fw_dump.fadump_enabled)
529 		return 0;
530 
531 	if (!fw_dump.fadump_supported) {
532 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
533 		goto error_out;
534 	}
535 
536 	/*
537 	 * Initialize boot memory size
538 	 * If dump is active then we have already calculated the size during
539 	 * first kernel.
540 	 */
541 	if (!fw_dump.dump_active) {
542 		fw_dump.boot_memory_size =
543 			PAGE_ALIGN(fadump_calculate_reserve_size());
544 #ifdef CONFIG_CMA
545 		if (!fw_dump.nocma) {
546 			fw_dump.boot_memory_size =
547 				ALIGN(fw_dump.boot_memory_size,
548 				      FADUMP_CMA_ALIGNMENT);
549 		}
550 #endif
551 
552 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
553 		if (fw_dump.boot_memory_size < bootmem_min) {
554 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
555 			       fw_dump.boot_memory_size, bootmem_min);
556 			goto error_out;
557 		}
558 
559 		if (!fadump_get_boot_mem_regions()) {
560 			pr_err("Too many holes in boot memory area to enable fadump\n");
561 			goto error_out;
562 		}
563 	}
564 
565 	/*
566 	 * Calculate the memory boundary.
567 	 * If memory_limit is less than actual memory boundary then reserve
568 	 * the memory for fadump beyond the memory_limit and adjust the
569 	 * memory_limit accordingly, so that the running kernel can run with
570 	 * specified memory_limit.
571 	 */
572 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
573 		size = get_fadump_area_size();
574 		if ((memory_limit + size) < memblock_end_of_DRAM())
575 			memory_limit += size;
576 		else
577 			memory_limit = memblock_end_of_DRAM();
578 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
579 				" dump, now %#016llx\n", memory_limit);
580 	}
581 	if (memory_limit)
582 		mem_boundary = memory_limit;
583 	else
584 		mem_boundary = memblock_end_of_DRAM();
585 
586 	base = fw_dump.boot_mem_top;
587 	size = get_fadump_area_size();
588 	fw_dump.reserve_dump_area_size = size;
589 	if (fw_dump.dump_active) {
590 		pr_info("Firmware-assisted dump is active.\n");
591 
592 #ifdef CONFIG_HUGETLB_PAGE
593 		/*
594 		 * FADump capture kernel doesn't care much about hugepages.
595 		 * In fact, handling hugepages in capture kernel is asking for
596 		 * trouble. So, disable HugeTLB support when fadump is active.
597 		 */
598 		hugetlb_disabled = true;
599 #endif
600 		/*
601 		 * If last boot has crashed then reserve all the memory
602 		 * above boot memory size so that we don't touch it until
603 		 * dump is written to disk by userspace tool. This memory
604 		 * can be released for general use by invalidating fadump.
605 		 */
606 		fadump_reserve_crash_area(base);
607 
608 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
609 		pr_debug("Reserve dump area start address: 0x%lx\n",
610 			 fw_dump.reserve_dump_area_start);
611 	} else {
612 		/*
613 		 * Reserve memory at an offset closer to bottom of the RAM to
614 		 * minimize the impact of memory hot-remove operation.
615 		 */
616 		base = fadump_locate_reserve_mem(base, size);
617 
618 		if (!base || (base + size > mem_boundary)) {
619 			pr_err("Failed to find memory chunk for reservation!\n");
620 			goto error_out;
621 		}
622 		fw_dump.reserve_dump_area_start = base;
623 
624 		/*
625 		 * Calculate the kernel metadata address and register it with
626 		 * f/w if the platform supports.
627 		 */
628 		if (fw_dump.ops->fadump_setup_metadata &&
629 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
630 			goto error_out;
631 
632 		if (memblock_reserve(base, size)) {
633 			pr_err("Failed to reserve memory!\n");
634 			goto error_out;
635 		}
636 
637 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
638 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
639 
640 		ret = fadump_cma_init();
641 	}
642 
643 	return ret;
644 error_out:
645 	fw_dump.fadump_enabled = 0;
646 	return 0;
647 }
648 
649 /* Look for fadump= cmdline option. */
650 static int __init early_fadump_param(char *p)
651 {
652 	if (!p)
653 		return 1;
654 
655 	if (strncmp(p, "on", 2) == 0)
656 		fw_dump.fadump_enabled = 1;
657 	else if (strncmp(p, "off", 3) == 0)
658 		fw_dump.fadump_enabled = 0;
659 	else if (strncmp(p, "nocma", 5) == 0) {
660 		fw_dump.fadump_enabled = 1;
661 		fw_dump.nocma = 1;
662 	}
663 
664 	return 0;
665 }
666 early_param("fadump", early_fadump_param);
667 
668 /*
669  * Look for fadump_reserve_mem= cmdline option
670  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
671  *       the sooner 'crashkernel=' parameter is accustomed to.
672  */
673 static int __init early_fadump_reserve_mem(char *p)
674 {
675 	if (p)
676 		fw_dump.reserve_bootvar = memparse(p, &p);
677 	return 0;
678 }
679 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
680 
681 void crash_fadump(struct pt_regs *regs, const char *str)
682 {
683 	unsigned int msecs;
684 	struct fadump_crash_info_header *fdh = NULL;
685 	int old_cpu, this_cpu;
686 	/* Do not include first CPU */
687 	unsigned int ncpus = num_online_cpus() - 1;
688 
689 	if (!should_fadump_crash())
690 		return;
691 
692 	/*
693 	 * old_cpu == -1 means this is the first CPU which has come here,
694 	 * go ahead and trigger fadump.
695 	 *
696 	 * old_cpu != -1 means some other CPU has already on it's way
697 	 * to trigger fadump, just keep looping here.
698 	 */
699 	this_cpu = smp_processor_id();
700 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
701 
702 	if (old_cpu != -1) {
703 		atomic_inc(&cpus_in_fadump);
704 
705 		/*
706 		 * We can't loop here indefinitely. Wait as long as fadump
707 		 * is in force. If we race with fadump un-registration this
708 		 * loop will break and then we go down to normal panic path
709 		 * and reboot. If fadump is in force the first crashing
710 		 * cpu will definitely trigger fadump.
711 		 */
712 		while (fw_dump.dump_registered)
713 			cpu_relax();
714 		return;
715 	}
716 
717 	fdh = __va(fw_dump.fadumphdr_addr);
718 	fdh->crashing_cpu = crashing_cpu;
719 	crash_save_vmcoreinfo();
720 
721 	if (regs)
722 		fdh->regs = *regs;
723 	else
724 		ppc_save_regs(&fdh->regs);
725 
726 	fdh->online_mask = *cpu_online_mask;
727 
728 	/*
729 	 * If we came in via system reset, wait a while for the secondary
730 	 * CPUs to enter.
731 	 */
732 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
733 		msecs = CRASH_TIMEOUT;
734 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
735 			mdelay(1);
736 	}
737 
738 	fw_dump.ops->fadump_trigger(fdh, str);
739 }
740 
741 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
742 {
743 	struct elf_prstatus prstatus;
744 
745 	memset(&prstatus, 0, sizeof(prstatus));
746 	/*
747 	 * FIXME: How do i get PID? Do I really need it?
748 	 * prstatus.pr_pid = ????
749 	 */
750 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
751 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
752 			      &prstatus, sizeof(prstatus));
753 	return buf;
754 }
755 
756 void fadump_update_elfcore_header(char *bufp)
757 {
758 	struct elf_phdr *phdr;
759 
760 	bufp += sizeof(struct elfhdr);
761 
762 	/* First note is a place holder for cpu notes info. */
763 	phdr = (struct elf_phdr *)bufp;
764 
765 	if (phdr->p_type == PT_NOTE) {
766 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
767 		phdr->p_offset	= phdr->p_paddr;
768 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
769 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
770 	}
771 	return;
772 }
773 
774 static void *fadump_alloc_buffer(unsigned long size)
775 {
776 	unsigned long count, i;
777 	struct page *page;
778 	void *vaddr;
779 
780 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
781 	if (!vaddr)
782 		return NULL;
783 
784 	count = PAGE_ALIGN(size) / PAGE_SIZE;
785 	page = virt_to_page(vaddr);
786 	for (i = 0; i < count; i++)
787 		mark_page_reserved(page + i);
788 	return vaddr;
789 }
790 
791 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
792 {
793 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
794 }
795 
796 s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
797 {
798 	/* Allocate buffer to hold cpu crash notes. */
799 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
800 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
801 	fw_dump.cpu_notes_buf_vaddr =
802 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
803 	if (!fw_dump.cpu_notes_buf_vaddr) {
804 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
805 		       fw_dump.cpu_notes_buf_size);
806 		return -ENOMEM;
807 	}
808 
809 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
810 		 fw_dump.cpu_notes_buf_size,
811 		 fw_dump.cpu_notes_buf_vaddr);
812 	return 0;
813 }
814 
815 void fadump_free_cpu_notes_buf(void)
816 {
817 	if (!fw_dump.cpu_notes_buf_vaddr)
818 		return;
819 
820 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
821 			   fw_dump.cpu_notes_buf_size);
822 	fw_dump.cpu_notes_buf_vaddr = 0;
823 	fw_dump.cpu_notes_buf_size = 0;
824 }
825 
826 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
827 {
828 	if (mrange_info->is_static) {
829 		mrange_info->mem_range_cnt = 0;
830 		return;
831 	}
832 
833 	kfree(mrange_info->mem_ranges);
834 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
835 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
836 }
837 
838 /*
839  * Allocate or reallocate mem_ranges array in incremental units
840  * of PAGE_SIZE.
841  */
842 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
843 {
844 	struct fadump_memory_range *new_array;
845 	u64 new_size;
846 
847 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
848 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
849 		 new_size, mrange_info->name);
850 
851 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
852 	if (new_array == NULL) {
853 		pr_err("Insufficient memory for setting up %s memory ranges\n",
854 		       mrange_info->name);
855 		fadump_free_mem_ranges(mrange_info);
856 		return -ENOMEM;
857 	}
858 
859 	mrange_info->mem_ranges = new_array;
860 	mrange_info->mem_ranges_sz = new_size;
861 	mrange_info->max_mem_ranges = (new_size /
862 				       sizeof(struct fadump_memory_range));
863 	return 0;
864 }
865 
866 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
867 				       u64 base, u64 end)
868 {
869 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
870 	bool is_adjacent = false;
871 	u64 start, size;
872 
873 	if (base == end)
874 		return 0;
875 
876 	/*
877 	 * Fold adjacent memory ranges to bring down the memory ranges/
878 	 * PT_LOAD segments count.
879 	 */
880 	if (mrange_info->mem_range_cnt) {
881 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
882 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
883 
884 		if ((start + size) == base)
885 			is_adjacent = true;
886 	}
887 	if (!is_adjacent) {
888 		/* resize the array on reaching the limit */
889 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
890 			int ret;
891 
892 			if (mrange_info->is_static) {
893 				pr_err("Reached array size limit for %s memory ranges\n",
894 				       mrange_info->name);
895 				return -ENOSPC;
896 			}
897 
898 			ret = fadump_alloc_mem_ranges(mrange_info);
899 			if (ret)
900 				return ret;
901 
902 			/* Update to the new resized array */
903 			mem_ranges = mrange_info->mem_ranges;
904 		}
905 
906 		start = base;
907 		mem_ranges[mrange_info->mem_range_cnt].base = start;
908 		mrange_info->mem_range_cnt++;
909 	}
910 
911 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
912 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
913 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
914 		 start, end - 1, (end - start));
915 	return 0;
916 }
917 
918 static int fadump_exclude_reserved_area(u64 start, u64 end)
919 {
920 	u64 ra_start, ra_end;
921 	int ret = 0;
922 
923 	ra_start = fw_dump.reserve_dump_area_start;
924 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
925 
926 	if ((ra_start < end) && (ra_end > start)) {
927 		if ((start < ra_start) && (end > ra_end)) {
928 			ret = fadump_add_mem_range(&crash_mrange_info,
929 						   start, ra_start);
930 			if (ret)
931 				return ret;
932 
933 			ret = fadump_add_mem_range(&crash_mrange_info,
934 						   ra_end, end);
935 		} else if (start < ra_start) {
936 			ret = fadump_add_mem_range(&crash_mrange_info,
937 						   start, ra_start);
938 		} else if (ra_end < end) {
939 			ret = fadump_add_mem_range(&crash_mrange_info,
940 						   ra_end, end);
941 		}
942 	} else
943 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
944 
945 	return ret;
946 }
947 
948 static int fadump_init_elfcore_header(char *bufp)
949 {
950 	struct elfhdr *elf;
951 
952 	elf = (struct elfhdr *) bufp;
953 	bufp += sizeof(struct elfhdr);
954 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
955 	elf->e_ident[EI_CLASS] = ELF_CLASS;
956 	elf->e_ident[EI_DATA] = ELF_DATA;
957 	elf->e_ident[EI_VERSION] = EV_CURRENT;
958 	elf->e_ident[EI_OSABI] = ELF_OSABI;
959 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
960 	elf->e_type = ET_CORE;
961 	elf->e_machine = ELF_ARCH;
962 	elf->e_version = EV_CURRENT;
963 	elf->e_entry = 0;
964 	elf->e_phoff = sizeof(struct elfhdr);
965 	elf->e_shoff = 0;
966 #if defined(_CALL_ELF)
967 	elf->e_flags = _CALL_ELF;
968 #else
969 	elf->e_flags = 0;
970 #endif
971 	elf->e_ehsize = sizeof(struct elfhdr);
972 	elf->e_phentsize = sizeof(struct elf_phdr);
973 	elf->e_phnum = 0;
974 	elf->e_shentsize = 0;
975 	elf->e_shnum = 0;
976 	elf->e_shstrndx = 0;
977 
978 	return 0;
979 }
980 
981 /*
982  * Traverse through memblock structure and setup crash memory ranges. These
983  * ranges will be used create PT_LOAD program headers in elfcore header.
984  */
985 static int fadump_setup_crash_memory_ranges(void)
986 {
987 	u64 i, start, end;
988 	int ret;
989 
990 	pr_debug("Setup crash memory ranges.\n");
991 	crash_mrange_info.mem_range_cnt = 0;
992 
993 	/*
994 	 * Boot memory region(s) registered with firmware are moved to
995 	 * different location at the time of crash. Create separate program
996 	 * header(s) for this memory chunk(s) with the correct offset.
997 	 */
998 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
999 		start = fw_dump.boot_mem_addr[i];
1000 		end = start + fw_dump.boot_mem_sz[i];
1001 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1002 		if (ret)
1003 			return ret;
1004 	}
1005 
1006 	for_each_mem_range(i, &start, &end) {
1007 		/*
1008 		 * skip the memory chunk that is already added
1009 		 * (0 through boot_memory_top).
1010 		 */
1011 		if (start < fw_dump.boot_mem_top) {
1012 			if (end > fw_dump.boot_mem_top)
1013 				start = fw_dump.boot_mem_top;
1014 			else
1015 				continue;
1016 		}
1017 
1018 		/* add this range excluding the reserved dump area. */
1019 		ret = fadump_exclude_reserved_area(start, end);
1020 		if (ret)
1021 			return ret;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 /*
1028  * If the given physical address falls within the boot memory region then
1029  * return the relocated address that points to the dump region reserved
1030  * for saving initial boot memory contents.
1031  */
1032 static inline unsigned long fadump_relocate(unsigned long paddr)
1033 {
1034 	unsigned long raddr, rstart, rend, rlast, hole_size;
1035 	int i;
1036 
1037 	hole_size = 0;
1038 	rlast = 0;
1039 	raddr = paddr;
1040 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1041 		rstart = fw_dump.boot_mem_addr[i];
1042 		rend = rstart + fw_dump.boot_mem_sz[i];
1043 		hole_size += (rstart - rlast);
1044 
1045 		if (paddr >= rstart && paddr < rend) {
1046 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1047 			break;
1048 		}
1049 
1050 		rlast = rend;
1051 	}
1052 
1053 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1054 	return raddr;
1055 }
1056 
1057 static int fadump_create_elfcore_headers(char *bufp)
1058 {
1059 	unsigned long long raddr, offset;
1060 	struct elf_phdr *phdr;
1061 	struct elfhdr *elf;
1062 	int i, j;
1063 
1064 	fadump_init_elfcore_header(bufp);
1065 	elf = (struct elfhdr *)bufp;
1066 	bufp += sizeof(struct elfhdr);
1067 
1068 	/*
1069 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1070 	 * will be populated during second kernel boot after crash. Hence
1071 	 * this PT_NOTE will always be the first elf note.
1072 	 *
1073 	 * NOTE: Any new ELF note addition should be placed after this note.
1074 	 */
1075 	phdr = (struct elf_phdr *)bufp;
1076 	bufp += sizeof(struct elf_phdr);
1077 	phdr->p_type = PT_NOTE;
1078 	phdr->p_flags = 0;
1079 	phdr->p_vaddr = 0;
1080 	phdr->p_align = 0;
1081 
1082 	phdr->p_offset = 0;
1083 	phdr->p_paddr = 0;
1084 	phdr->p_filesz = 0;
1085 	phdr->p_memsz = 0;
1086 
1087 	(elf->e_phnum)++;
1088 
1089 	/* setup ELF PT_NOTE for vmcoreinfo */
1090 	phdr = (struct elf_phdr *)bufp;
1091 	bufp += sizeof(struct elf_phdr);
1092 	phdr->p_type	= PT_NOTE;
1093 	phdr->p_flags	= 0;
1094 	phdr->p_vaddr	= 0;
1095 	phdr->p_align	= 0;
1096 
1097 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1098 	phdr->p_offset	= phdr->p_paddr;
1099 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1100 
1101 	/* Increment number of program headers. */
1102 	(elf->e_phnum)++;
1103 
1104 	/* setup PT_LOAD sections. */
1105 	j = 0;
1106 	offset = 0;
1107 	raddr = fw_dump.boot_mem_addr[0];
1108 	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1109 		u64 mbase, msize;
1110 
1111 		mbase = crash_mrange_info.mem_ranges[i].base;
1112 		msize = crash_mrange_info.mem_ranges[i].size;
1113 		if (!msize)
1114 			continue;
1115 
1116 		phdr = (struct elf_phdr *)bufp;
1117 		bufp += sizeof(struct elf_phdr);
1118 		phdr->p_type	= PT_LOAD;
1119 		phdr->p_flags	= PF_R|PF_W|PF_X;
1120 		phdr->p_offset	= mbase;
1121 
1122 		if (mbase == raddr) {
1123 			/*
1124 			 * The entire real memory region will be moved by
1125 			 * firmware to the specified destination_address.
1126 			 * Hence set the correct offset.
1127 			 */
1128 			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1129 			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1130 				offset += fw_dump.boot_mem_sz[j];
1131 				raddr = fw_dump.boot_mem_addr[++j];
1132 			}
1133 		}
1134 
1135 		phdr->p_paddr = mbase;
1136 		phdr->p_vaddr = (unsigned long)__va(mbase);
1137 		phdr->p_filesz = msize;
1138 		phdr->p_memsz = msize;
1139 		phdr->p_align = 0;
1140 
1141 		/* Increment number of program headers. */
1142 		(elf->e_phnum)++;
1143 	}
1144 	return 0;
1145 }
1146 
1147 static unsigned long init_fadump_header(unsigned long addr)
1148 {
1149 	struct fadump_crash_info_header *fdh;
1150 
1151 	if (!addr)
1152 		return 0;
1153 
1154 	fdh = __va(addr);
1155 	addr += sizeof(struct fadump_crash_info_header);
1156 
1157 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1158 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1159 	fdh->elfcorehdr_addr = addr;
1160 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1161 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1162 
1163 	return addr;
1164 }
1165 
1166 static int register_fadump(void)
1167 {
1168 	unsigned long addr;
1169 	void *vaddr;
1170 	int ret;
1171 
1172 	/*
1173 	 * If no memory is reserved then we can not register for firmware-
1174 	 * assisted dump.
1175 	 */
1176 	if (!fw_dump.reserve_dump_area_size)
1177 		return -ENODEV;
1178 
1179 	ret = fadump_setup_crash_memory_ranges();
1180 	if (ret)
1181 		return ret;
1182 
1183 	addr = fw_dump.fadumphdr_addr;
1184 
1185 	/* Initialize fadump crash info header. */
1186 	addr = init_fadump_header(addr);
1187 	vaddr = __va(addr);
1188 
1189 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1190 	fadump_create_elfcore_headers(vaddr);
1191 
1192 	/* register the future kernel dump with firmware. */
1193 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1194 	return fw_dump.ops->fadump_register(&fw_dump);
1195 }
1196 
1197 void fadump_cleanup(void)
1198 {
1199 	if (!fw_dump.fadump_supported)
1200 		return;
1201 
1202 	/* Invalidate the registration only if dump is active. */
1203 	if (fw_dump.dump_active) {
1204 		pr_debug("Invalidating firmware-assisted dump registration\n");
1205 		fw_dump.ops->fadump_invalidate(&fw_dump);
1206 	} else if (fw_dump.dump_registered) {
1207 		/* Un-register Firmware-assisted dump if it was registered. */
1208 		fw_dump.ops->fadump_unregister(&fw_dump);
1209 		fadump_free_mem_ranges(&crash_mrange_info);
1210 	}
1211 
1212 	if (fw_dump.ops->fadump_cleanup)
1213 		fw_dump.ops->fadump_cleanup(&fw_dump);
1214 }
1215 
1216 static void fadump_free_reserved_memory(unsigned long start_pfn,
1217 					unsigned long end_pfn)
1218 {
1219 	unsigned long pfn;
1220 	unsigned long time_limit = jiffies + HZ;
1221 
1222 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1223 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1224 
1225 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1226 		free_reserved_page(pfn_to_page(pfn));
1227 
1228 		if (time_after(jiffies, time_limit)) {
1229 			cond_resched();
1230 			time_limit = jiffies + HZ;
1231 		}
1232 	}
1233 }
1234 
1235 /*
1236  * Skip memory holes and free memory that was actually reserved.
1237  */
1238 static void fadump_release_reserved_area(u64 start, u64 end)
1239 {
1240 	unsigned long reg_spfn, reg_epfn;
1241 	u64 tstart, tend, spfn, epfn;
1242 	int i;
1243 
1244 	spfn = PHYS_PFN(start);
1245 	epfn = PHYS_PFN(end);
1246 
1247 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1248 		tstart = max_t(u64, spfn, reg_spfn);
1249 		tend   = min_t(u64, epfn, reg_epfn);
1250 
1251 		if (tstart < tend) {
1252 			fadump_free_reserved_memory(tstart, tend);
1253 
1254 			if (tend == epfn)
1255 				break;
1256 
1257 			spfn = tend;
1258 		}
1259 	}
1260 }
1261 
1262 /*
1263  * Sort the mem ranges in-place and merge adjacent ranges
1264  * to minimize the memory ranges count.
1265  */
1266 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1267 {
1268 	struct fadump_memory_range *mem_ranges;
1269 	struct fadump_memory_range tmp_range;
1270 	u64 base, size;
1271 	int i, j, idx;
1272 
1273 	if (!reserved_mrange_info.mem_range_cnt)
1274 		return;
1275 
1276 	/* Sort the memory ranges */
1277 	mem_ranges = mrange_info->mem_ranges;
1278 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1279 		idx = i;
1280 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1281 			if (mem_ranges[idx].base > mem_ranges[j].base)
1282 				idx = j;
1283 		}
1284 		if (idx != i) {
1285 			tmp_range = mem_ranges[idx];
1286 			mem_ranges[idx] = mem_ranges[i];
1287 			mem_ranges[i] = tmp_range;
1288 		}
1289 	}
1290 
1291 	/* Merge adjacent reserved ranges */
1292 	idx = 0;
1293 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1294 		base = mem_ranges[i-1].base;
1295 		size = mem_ranges[i-1].size;
1296 		if (mem_ranges[i].base == (base + size))
1297 			mem_ranges[idx].size += mem_ranges[i].size;
1298 		else {
1299 			idx++;
1300 			if (i == idx)
1301 				continue;
1302 
1303 			mem_ranges[idx] = mem_ranges[i];
1304 		}
1305 	}
1306 	mrange_info->mem_range_cnt = idx + 1;
1307 }
1308 
1309 /*
1310  * Scan reserved-ranges to consider them while reserving/releasing
1311  * memory for FADump.
1312  */
1313 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1314 {
1315 	const __be32 *prop;
1316 	int len, ret = -1;
1317 	unsigned long i;
1318 
1319 	/* reserved-ranges already scanned */
1320 	if (reserved_mrange_info.mem_range_cnt != 0)
1321 		return;
1322 
1323 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1324 	if (!prop)
1325 		return;
1326 
1327 	/*
1328 	 * Each reserved range is an (address,size) pair, 2 cells each,
1329 	 * totalling 4 cells per range.
1330 	 */
1331 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1332 		u64 base, size;
1333 
1334 		base = of_read_number(prop + (i * 4) + 0, 2);
1335 		size = of_read_number(prop + (i * 4) + 2, 2);
1336 
1337 		if (size) {
1338 			ret = fadump_add_mem_range(&reserved_mrange_info,
1339 						   base, base + size);
1340 			if (ret < 0) {
1341 				pr_warn("some reserved ranges are ignored!\n");
1342 				break;
1343 			}
1344 		}
1345 	}
1346 
1347 	/* Compact reserved ranges */
1348 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1349 }
1350 
1351 /*
1352  * Release the memory that was reserved during early boot to preserve the
1353  * crash'ed kernel's memory contents except reserved dump area (permanent
1354  * reservation) and reserved ranges used by F/W. The released memory will
1355  * be available for general use.
1356  */
1357 static void fadump_release_memory(u64 begin, u64 end)
1358 {
1359 	u64 ra_start, ra_end, tstart;
1360 	int i, ret;
1361 
1362 	ra_start = fw_dump.reserve_dump_area_start;
1363 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1364 
1365 	/*
1366 	 * If reserved ranges array limit is hit, overwrite the last reserved
1367 	 * memory range with reserved dump area to ensure it is excluded from
1368 	 * the memory being released (reused for next FADump registration).
1369 	 */
1370 	if (reserved_mrange_info.mem_range_cnt ==
1371 	    reserved_mrange_info.max_mem_ranges)
1372 		reserved_mrange_info.mem_range_cnt--;
1373 
1374 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1375 	if (ret != 0)
1376 		return;
1377 
1378 	/* Get the reserved ranges list in order first. */
1379 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1380 
1381 	/* Exclude reserved ranges and release remaining memory */
1382 	tstart = begin;
1383 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1384 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1385 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1386 
1387 		if (tstart >= ra_end)
1388 			continue;
1389 
1390 		if (tstart < ra_start)
1391 			fadump_release_reserved_area(tstart, ra_start);
1392 		tstart = ra_end;
1393 	}
1394 
1395 	if (tstart < end)
1396 		fadump_release_reserved_area(tstart, end);
1397 }
1398 
1399 static void fadump_invalidate_release_mem(void)
1400 {
1401 	mutex_lock(&fadump_mutex);
1402 	if (!fw_dump.dump_active) {
1403 		mutex_unlock(&fadump_mutex);
1404 		return;
1405 	}
1406 
1407 	fadump_cleanup();
1408 	mutex_unlock(&fadump_mutex);
1409 
1410 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1411 	fadump_free_cpu_notes_buf();
1412 
1413 	/*
1414 	 * Setup kernel metadata and initialize the kernel dump
1415 	 * memory structure for FADump re-registration.
1416 	 */
1417 	if (fw_dump.ops->fadump_setup_metadata &&
1418 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1419 		pr_warn("Failed to setup kernel metadata!\n");
1420 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1421 }
1422 
1423 static ssize_t release_mem_store(struct kobject *kobj,
1424 				 struct kobj_attribute *attr,
1425 				 const char *buf, size_t count)
1426 {
1427 	int input = -1;
1428 
1429 	if (!fw_dump.dump_active)
1430 		return -EPERM;
1431 
1432 	if (kstrtoint(buf, 0, &input))
1433 		return -EINVAL;
1434 
1435 	if (input == 1) {
1436 		/*
1437 		 * Take away the '/proc/vmcore'. We are releasing the dump
1438 		 * memory, hence it will not be valid anymore.
1439 		 */
1440 #ifdef CONFIG_PROC_VMCORE
1441 		vmcore_cleanup();
1442 #endif
1443 		fadump_invalidate_release_mem();
1444 
1445 	} else
1446 		return -EINVAL;
1447 	return count;
1448 }
1449 
1450 /* Release the reserved memory and disable the FADump */
1451 static void unregister_fadump(void)
1452 {
1453 	fadump_cleanup();
1454 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1455 			      fw_dump.reserve_dump_area_size);
1456 	fw_dump.fadump_enabled = 0;
1457 	kobject_put(fadump_kobj);
1458 }
1459 
1460 static ssize_t enabled_show(struct kobject *kobj,
1461 			    struct kobj_attribute *attr,
1462 			    char *buf)
1463 {
1464 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1465 }
1466 
1467 static ssize_t mem_reserved_show(struct kobject *kobj,
1468 				 struct kobj_attribute *attr,
1469 				 char *buf)
1470 {
1471 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1472 }
1473 
1474 static ssize_t registered_show(struct kobject *kobj,
1475 			       struct kobj_attribute *attr,
1476 			       char *buf)
1477 {
1478 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1479 }
1480 
1481 static ssize_t registered_store(struct kobject *kobj,
1482 				struct kobj_attribute *attr,
1483 				const char *buf, size_t count)
1484 {
1485 	int ret = 0;
1486 	int input = -1;
1487 
1488 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1489 		return -EPERM;
1490 
1491 	if (kstrtoint(buf, 0, &input))
1492 		return -EINVAL;
1493 
1494 	mutex_lock(&fadump_mutex);
1495 
1496 	switch (input) {
1497 	case 0:
1498 		if (fw_dump.dump_registered == 0) {
1499 			goto unlock_out;
1500 		}
1501 
1502 		/* Un-register Firmware-assisted dump */
1503 		pr_debug("Un-register firmware-assisted dump\n");
1504 		fw_dump.ops->fadump_unregister(&fw_dump);
1505 		break;
1506 	case 1:
1507 		if (fw_dump.dump_registered == 1) {
1508 			/* Un-register Firmware-assisted dump */
1509 			fw_dump.ops->fadump_unregister(&fw_dump);
1510 		}
1511 		/* Register Firmware-assisted dump */
1512 		ret = register_fadump();
1513 		break;
1514 	default:
1515 		ret = -EINVAL;
1516 		break;
1517 	}
1518 
1519 unlock_out:
1520 	mutex_unlock(&fadump_mutex);
1521 	return ret < 0 ? ret : count;
1522 }
1523 
1524 static int fadump_region_show(struct seq_file *m, void *private)
1525 {
1526 	if (!fw_dump.fadump_enabled)
1527 		return 0;
1528 
1529 	mutex_lock(&fadump_mutex);
1530 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1531 	mutex_unlock(&fadump_mutex);
1532 	return 0;
1533 }
1534 
1535 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1536 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1537 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1538 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1539 
1540 static struct attribute *fadump_attrs[] = {
1541 	&enable_attr.attr,
1542 	&register_attr.attr,
1543 	&mem_reserved_attr.attr,
1544 	NULL,
1545 };
1546 
1547 ATTRIBUTE_GROUPS(fadump);
1548 
1549 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1550 
1551 static void fadump_init_files(void)
1552 {
1553 	int rc = 0;
1554 
1555 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1556 	if (!fadump_kobj) {
1557 		pr_err("failed to create fadump kobject\n");
1558 		return;
1559 	}
1560 
1561 	debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
1562 			    &fadump_region_fops);
1563 
1564 	if (fw_dump.dump_active) {
1565 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1566 		if (rc)
1567 			pr_err("unable to create release_mem sysfs file (%d)\n",
1568 			       rc);
1569 	}
1570 
1571 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1572 	if (rc) {
1573 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1574 		       rc);
1575 		unregister_fadump();
1576 		return;
1577 	}
1578 
1579 	/*
1580 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1581 	 * create symlink at old location to maintain backward compatibility.
1582 	 *
1583 	 *      - fadump_enabled -> fadump/enabled
1584 	 *      - fadump_registered -> fadump/registered
1585 	 *      - fadump_release_mem -> fadump/release_mem
1586 	 */
1587 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1588 						  "enabled", "fadump_enabled");
1589 	if (rc) {
1590 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1591 		return;
1592 	}
1593 
1594 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1595 						  "registered",
1596 						  "fadump_registered");
1597 	if (rc) {
1598 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1599 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1600 		return;
1601 	}
1602 
1603 	if (fw_dump.dump_active) {
1604 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1605 							  fadump_kobj,
1606 							  "release_mem",
1607 							  "fadump_release_mem");
1608 		if (rc)
1609 			pr_err("unable to create fadump_release_mem symlink (%d)",
1610 			       rc);
1611 	}
1612 	return;
1613 }
1614 
1615 /*
1616  * Prepare for firmware-assisted dump.
1617  */
1618 int __init setup_fadump(void)
1619 {
1620 	if (!fw_dump.fadump_supported)
1621 		return 0;
1622 
1623 	fadump_init_files();
1624 	fadump_show_config();
1625 
1626 	if (!fw_dump.fadump_enabled)
1627 		return 1;
1628 
1629 	/*
1630 	 * If dump data is available then see if it is valid and prepare for
1631 	 * saving it to the disk.
1632 	 */
1633 	if (fw_dump.dump_active) {
1634 		/*
1635 		 * if dump process fails then invalidate the registration
1636 		 * and release memory before proceeding for re-registration.
1637 		 */
1638 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1639 			fadump_invalidate_release_mem();
1640 	}
1641 	/* Initialize the kernel dump memory structure for FAD registration. */
1642 	else if (fw_dump.reserve_dump_area_size)
1643 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1644 
1645 	return 1;
1646 }
1647 subsys_initcall(setup_fadump);
1648 #else /* !CONFIG_PRESERVE_FA_DUMP */
1649 
1650 /* Scan the Firmware Assisted dump configuration details. */
1651 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1652 				      int depth, void *data)
1653 {
1654 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1655 		return 0;
1656 
1657 	opal_fadump_dt_scan(&fw_dump, node);
1658 	return 1;
1659 }
1660 
1661 /*
1662  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1663  * preserve crash data. The subsequent memory preserving kernel boot
1664  * is likely to process this crash data.
1665  */
1666 int __init fadump_reserve_mem(void)
1667 {
1668 	if (fw_dump.dump_active) {
1669 		/*
1670 		 * If last boot has crashed then reserve all the memory
1671 		 * above boot memory to preserve crash data.
1672 		 */
1673 		pr_info("Preserving crash data for processing in next boot.\n");
1674 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1675 	} else
1676 		pr_debug("FADump-aware kernel..\n");
1677 
1678 	return 1;
1679 }
1680 #endif /* CONFIG_PRESERVE_FA_DUMP */
1681 
1682 /* Preserve everything above the base address */
1683 static void __init fadump_reserve_crash_area(u64 base)
1684 {
1685 	u64 i, mstart, mend, msize;
1686 
1687 	for_each_mem_range(i, &mstart, &mend) {
1688 		msize  = mend - mstart;
1689 
1690 		if ((mstart + msize) < base)
1691 			continue;
1692 
1693 		if (mstart < base) {
1694 			msize -= (base - mstart);
1695 			mstart = base;
1696 		}
1697 
1698 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1699 			(msize >> 20), mstart);
1700 		memblock_reserve(mstart, msize);
1701 	}
1702 }
1703 
1704 unsigned long __init arch_reserved_kernel_pages(void)
1705 {
1706 	return memblock_reserved_size() / PAGE_SIZE;
1707 }
1708