xref: /linux/arch/powerpc/kernel/fadump.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26 
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29 
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38 
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 
44 static struct fw_dump fw_dump;
45 static struct fadump_mem_struct fdm;
46 static const struct fadump_mem_struct *fdm_active;
47 
48 static DEFINE_MUTEX(fadump_mutex);
49 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
50 int crash_mem_ranges;
51 
52 /* Scan the Firmware Assisted dump configuration details. */
53 int __init early_init_dt_scan_fw_dump(unsigned long node,
54 			const char *uname, int depth, void *data)
55 {
56 	__be32 *sections;
57 	int i, num_sections;
58 	unsigned long size;
59 	const int *token;
60 
61 	if (depth != 1 || strcmp(uname, "rtas") != 0)
62 		return 0;
63 
64 	/*
65 	 * Check if Firmware Assisted dump is supported. if yes, check
66 	 * if dump has been initiated on last reboot.
67 	 */
68 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
69 	if (!token)
70 		return 0;
71 
72 	fw_dump.fadump_supported = 1;
73 	fw_dump.ibm_configure_kernel_dump = *token;
74 
75 	/*
76 	 * The 'ibm,kernel-dump' rtas node is present only if there is
77 	 * dump data waiting for us.
78 	 */
79 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
80 	if (fdm_active)
81 		fw_dump.dump_active = 1;
82 
83 	/* Get the sizes required to store dump data for the firmware provided
84 	 * dump sections.
85 	 * For each dump section type supported, a 32bit cell which defines
86 	 * the ID of a supported section followed by two 32 bit cells which
87 	 * gives teh size of the section in bytes.
88 	 */
89 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
90 					&size);
91 
92 	if (!sections)
93 		return 0;
94 
95 	num_sections = size / (3 * sizeof(u32));
96 
97 	for (i = 0; i < num_sections; i++, sections += 3) {
98 		u32 type = (u32)of_read_number(sections, 1);
99 
100 		switch (type) {
101 		case FADUMP_CPU_STATE_DATA:
102 			fw_dump.cpu_state_data_size =
103 					of_read_ulong(&sections[1], 2);
104 			break;
105 		case FADUMP_HPTE_REGION:
106 			fw_dump.hpte_region_size =
107 					of_read_ulong(&sections[1], 2);
108 			break;
109 		}
110 	}
111 	return 1;
112 }
113 
114 int is_fadump_active(void)
115 {
116 	return fw_dump.dump_active;
117 }
118 
119 /* Print firmware assisted dump configurations for debugging purpose. */
120 static void fadump_show_config(void)
121 {
122 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
123 			(fw_dump.fadump_supported ? "present" : "no support"));
124 
125 	if (!fw_dump.fadump_supported)
126 		return;
127 
128 	pr_debug("Fadump enabled    : %s\n",
129 				(fw_dump.fadump_enabled ? "yes" : "no"));
130 	pr_debug("Dump Active       : %s\n",
131 				(fw_dump.dump_active ? "yes" : "no"));
132 	pr_debug("Dump section sizes:\n");
133 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
134 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
135 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
136 }
137 
138 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
139 				unsigned long addr)
140 {
141 	if (!fdm)
142 		return 0;
143 
144 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
145 	addr = addr & PAGE_MASK;
146 
147 	fdm->header.dump_format_version = 0x00000001;
148 	fdm->header.dump_num_sections = 3;
149 	fdm->header.dump_status_flag = 0;
150 	fdm->header.offset_first_dump_section =
151 		(u32)offsetof(struct fadump_mem_struct, cpu_state_data);
152 
153 	/*
154 	 * Fields for disk dump option.
155 	 * We are not using disk dump option, hence set these fields to 0.
156 	 */
157 	fdm->header.dd_block_size = 0;
158 	fdm->header.dd_block_offset = 0;
159 	fdm->header.dd_num_blocks = 0;
160 	fdm->header.dd_offset_disk_path = 0;
161 
162 	/* set 0 to disable an automatic dump-reboot. */
163 	fdm->header.max_time_auto = 0;
164 
165 	/* Kernel dump sections */
166 	/* cpu state data section. */
167 	fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
168 	fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
169 	fdm->cpu_state_data.source_address = 0;
170 	fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
171 	fdm->cpu_state_data.destination_address = addr;
172 	addr += fw_dump.cpu_state_data_size;
173 
174 	/* hpte region section */
175 	fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
176 	fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
177 	fdm->hpte_region.source_address = 0;
178 	fdm->hpte_region.source_len = fw_dump.hpte_region_size;
179 	fdm->hpte_region.destination_address = addr;
180 	addr += fw_dump.hpte_region_size;
181 
182 	/* RMA region section */
183 	fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
184 	fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
185 	fdm->rmr_region.source_address = RMA_START;
186 	fdm->rmr_region.source_len = fw_dump.boot_memory_size;
187 	fdm->rmr_region.destination_address = addr;
188 	addr += fw_dump.boot_memory_size;
189 
190 	return addr;
191 }
192 
193 /**
194  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
195  *
196  * Function to find the largest memory size we need to reserve during early
197  * boot process. This will be the size of the memory that is required for a
198  * kernel to boot successfully.
199  *
200  * This function has been taken from phyp-assisted dump feature implementation.
201  *
202  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
203  *
204  * TODO: Come up with better approach to find out more accurate memory size
205  * that is required for a kernel to boot successfully.
206  *
207  */
208 static inline unsigned long fadump_calculate_reserve_size(void)
209 {
210 	unsigned long size;
211 
212 	/*
213 	 * Check if the size is specified through fadump_reserve_mem= cmdline
214 	 * option. If yes, then use that.
215 	 */
216 	if (fw_dump.reserve_bootvar)
217 		return fw_dump.reserve_bootvar;
218 
219 	/* divide by 20 to get 5% of value */
220 	size = memblock_end_of_DRAM() / 20;
221 
222 	/* round it down in multiples of 256 */
223 	size = size & ~0x0FFFFFFFUL;
224 
225 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
226 	if (memory_limit && size > memory_limit)
227 		size = memory_limit;
228 
229 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
230 }
231 
232 /*
233  * Calculate the total memory size required to be reserved for
234  * firmware-assisted dump registration.
235  */
236 static unsigned long get_fadump_area_size(void)
237 {
238 	unsigned long size = 0;
239 
240 	size += fw_dump.cpu_state_data_size;
241 	size += fw_dump.hpte_region_size;
242 	size += fw_dump.boot_memory_size;
243 	size += sizeof(struct fadump_crash_info_header);
244 	size += sizeof(struct elfhdr); /* ELF core header.*/
245 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
246 	/* Program headers for crash memory regions. */
247 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
248 
249 	size = PAGE_ALIGN(size);
250 	return size;
251 }
252 
253 int __init fadump_reserve_mem(void)
254 {
255 	unsigned long base, size, memory_boundary;
256 
257 	if (!fw_dump.fadump_enabled)
258 		return 0;
259 
260 	if (!fw_dump.fadump_supported) {
261 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
262 				" this hardware\n");
263 		fw_dump.fadump_enabled = 0;
264 		return 0;
265 	}
266 	/*
267 	 * Initialize boot memory size
268 	 * If dump is active then we have already calculated the size during
269 	 * first kernel.
270 	 */
271 	if (fdm_active)
272 		fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
273 	else
274 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
275 
276 	/*
277 	 * Calculate the memory boundary.
278 	 * If memory_limit is less than actual memory boundary then reserve
279 	 * the memory for fadump beyond the memory_limit and adjust the
280 	 * memory_limit accordingly, so that the running kernel can run with
281 	 * specified memory_limit.
282 	 */
283 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
284 		size = get_fadump_area_size();
285 		if ((memory_limit + size) < memblock_end_of_DRAM())
286 			memory_limit += size;
287 		else
288 			memory_limit = memblock_end_of_DRAM();
289 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
290 				" dump, now %#016llx\n",
291 				(unsigned long long)memory_limit);
292 	}
293 	if (memory_limit)
294 		memory_boundary = memory_limit;
295 	else
296 		memory_boundary = memblock_end_of_DRAM();
297 
298 	if (fw_dump.dump_active) {
299 		printk(KERN_INFO "Firmware-assisted dump is active.\n");
300 		/*
301 		 * If last boot has crashed then reserve all the memory
302 		 * above boot_memory_size so that we don't touch it until
303 		 * dump is written to disk by userspace tool. This memory
304 		 * will be released for general use once the dump is saved.
305 		 */
306 		base = fw_dump.boot_memory_size;
307 		size = memory_boundary - base;
308 		memblock_reserve(base, size);
309 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
310 				"for saving crash dump\n",
311 				(unsigned long)(size >> 20),
312 				(unsigned long)(base >> 20));
313 
314 		fw_dump.fadumphdr_addr =
315 				fdm_active->rmr_region.destination_address +
316 				fdm_active->rmr_region.source_len;
317 		pr_debug("fadumphdr_addr = %p\n",
318 				(void *) fw_dump.fadumphdr_addr);
319 	} else {
320 		/* Reserve the memory at the top of memory. */
321 		size = get_fadump_area_size();
322 		base = memory_boundary - size;
323 		memblock_reserve(base, size);
324 		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
325 				"for firmware-assisted dump\n",
326 				(unsigned long)(size >> 20),
327 				(unsigned long)(base >> 20));
328 	}
329 	fw_dump.reserve_dump_area_start = base;
330 	fw_dump.reserve_dump_area_size = size;
331 	return 1;
332 }
333 
334 /* Look for fadump= cmdline option. */
335 static int __init early_fadump_param(char *p)
336 {
337 	if (!p)
338 		return 1;
339 
340 	if (strncmp(p, "on", 2) == 0)
341 		fw_dump.fadump_enabled = 1;
342 	else if (strncmp(p, "off", 3) == 0)
343 		fw_dump.fadump_enabled = 0;
344 
345 	return 0;
346 }
347 early_param("fadump", early_fadump_param);
348 
349 /* Look for fadump_reserve_mem= cmdline option */
350 static int __init early_fadump_reserve_mem(char *p)
351 {
352 	if (p)
353 		fw_dump.reserve_bootvar = memparse(p, &p);
354 	return 0;
355 }
356 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
357 
358 static void register_fw_dump(struct fadump_mem_struct *fdm)
359 {
360 	int rc;
361 	unsigned int wait_time;
362 
363 	pr_debug("Registering for firmware-assisted kernel dump...\n");
364 
365 	/* TODO: Add upper time limit for the delay */
366 	do {
367 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
368 			FADUMP_REGISTER, fdm,
369 			sizeof(struct fadump_mem_struct));
370 
371 		wait_time = rtas_busy_delay_time(rc);
372 		if (wait_time)
373 			mdelay(wait_time);
374 
375 	} while (wait_time);
376 
377 	switch (rc) {
378 	case -1:
379 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
380 			" dump. Hardware Error(%d).\n", rc);
381 		break;
382 	case -3:
383 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
384 			" dump. Parameter Error(%d).\n", rc);
385 		break;
386 	case -9:
387 		printk(KERN_ERR "firmware-assisted kernel dump is already "
388 			" registered.");
389 		fw_dump.dump_registered = 1;
390 		break;
391 	case 0:
392 		printk(KERN_INFO "firmware-assisted kernel dump registration"
393 			" is successful\n");
394 		fw_dump.dump_registered = 1;
395 		break;
396 	}
397 }
398 
399 void crash_fadump(struct pt_regs *regs, const char *str)
400 {
401 	struct fadump_crash_info_header *fdh = NULL;
402 
403 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
404 		return;
405 
406 	fdh = __va(fw_dump.fadumphdr_addr);
407 	crashing_cpu = smp_processor_id();
408 	fdh->crashing_cpu = crashing_cpu;
409 	crash_save_vmcoreinfo();
410 
411 	if (regs)
412 		fdh->regs = *regs;
413 	else
414 		ppc_save_regs(&fdh->regs);
415 
416 	fdh->cpu_online_mask = *cpu_online_mask;
417 
418 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
419 	rtas_os_term((char *)str);
420 }
421 
422 #define GPR_MASK	0xffffff0000000000
423 static inline int fadump_gpr_index(u64 id)
424 {
425 	int i = -1;
426 	char str[3];
427 
428 	if ((id & GPR_MASK) == REG_ID("GPR")) {
429 		/* get the digits at the end */
430 		id &= ~GPR_MASK;
431 		id >>= 24;
432 		str[2] = '\0';
433 		str[1] = id & 0xff;
434 		str[0] = (id >> 8) & 0xff;
435 		sscanf(str, "%d", &i);
436 		if (i > 31)
437 			i = -1;
438 	}
439 	return i;
440 }
441 
442 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
443 								u64 reg_val)
444 {
445 	int i;
446 
447 	i = fadump_gpr_index(reg_id);
448 	if (i >= 0)
449 		regs->gpr[i] = (unsigned long)reg_val;
450 	else if (reg_id == REG_ID("NIA"))
451 		regs->nip = (unsigned long)reg_val;
452 	else if (reg_id == REG_ID("MSR"))
453 		regs->msr = (unsigned long)reg_val;
454 	else if (reg_id == REG_ID("CTR"))
455 		regs->ctr = (unsigned long)reg_val;
456 	else if (reg_id == REG_ID("LR"))
457 		regs->link = (unsigned long)reg_val;
458 	else if (reg_id == REG_ID("XER"))
459 		regs->xer = (unsigned long)reg_val;
460 	else if (reg_id == REG_ID("CR"))
461 		regs->ccr = (unsigned long)reg_val;
462 	else if (reg_id == REG_ID("DAR"))
463 		regs->dar = (unsigned long)reg_val;
464 	else if (reg_id == REG_ID("DSISR"))
465 		regs->dsisr = (unsigned long)reg_val;
466 }
467 
468 static struct fadump_reg_entry*
469 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
470 {
471 	memset(regs, 0, sizeof(struct pt_regs));
472 
473 	while (reg_entry->reg_id != REG_ID("CPUEND")) {
474 		fadump_set_regval(regs, reg_entry->reg_id,
475 					reg_entry->reg_value);
476 		reg_entry++;
477 	}
478 	reg_entry++;
479 	return reg_entry;
480 }
481 
482 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
483 						void *data, size_t data_len)
484 {
485 	struct elf_note note;
486 
487 	note.n_namesz = strlen(name) + 1;
488 	note.n_descsz = data_len;
489 	note.n_type   = type;
490 	memcpy(buf, &note, sizeof(note));
491 	buf += (sizeof(note) + 3)/4;
492 	memcpy(buf, name, note.n_namesz);
493 	buf += (note.n_namesz + 3)/4;
494 	memcpy(buf, data, note.n_descsz);
495 	buf += (note.n_descsz + 3)/4;
496 
497 	return buf;
498 }
499 
500 static void fadump_final_note(u32 *buf)
501 {
502 	struct elf_note note;
503 
504 	note.n_namesz = 0;
505 	note.n_descsz = 0;
506 	note.n_type   = 0;
507 	memcpy(buf, &note, sizeof(note));
508 }
509 
510 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
511 {
512 	struct elf_prstatus prstatus;
513 
514 	memset(&prstatus, 0, sizeof(prstatus));
515 	/*
516 	 * FIXME: How do i get PID? Do I really need it?
517 	 * prstatus.pr_pid = ????
518 	 */
519 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
520 	buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
521 				&prstatus, sizeof(prstatus));
522 	return buf;
523 }
524 
525 static void fadump_update_elfcore_header(char *bufp)
526 {
527 	struct elfhdr *elf;
528 	struct elf_phdr *phdr;
529 
530 	elf = (struct elfhdr *)bufp;
531 	bufp += sizeof(struct elfhdr);
532 
533 	/* First note is a place holder for cpu notes info. */
534 	phdr = (struct elf_phdr *)bufp;
535 
536 	if (phdr->p_type == PT_NOTE) {
537 		phdr->p_paddr = fw_dump.cpu_notes_buf;
538 		phdr->p_offset	= phdr->p_paddr;
539 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
540 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
541 	}
542 	return;
543 }
544 
545 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
546 {
547 	void *vaddr;
548 	struct page *page;
549 	unsigned long order, count, i;
550 
551 	order = get_order(size);
552 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
553 	if (!vaddr)
554 		return NULL;
555 
556 	count = 1 << order;
557 	page = virt_to_page(vaddr);
558 	for (i = 0; i < count; i++)
559 		SetPageReserved(page + i);
560 	return vaddr;
561 }
562 
563 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
564 {
565 	struct page *page;
566 	unsigned long order, count, i;
567 
568 	order = get_order(size);
569 	count = 1 << order;
570 	page = virt_to_page(vaddr);
571 	for (i = 0; i < count; i++)
572 		ClearPageReserved(page + i);
573 	__free_pages(page, order);
574 }
575 
576 /*
577  * Read CPU state dump data and convert it into ELF notes.
578  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
579  * used to access the data to allow for additional fields to be added without
580  * affecting compatibility. Each list of registers for a CPU starts with
581  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
582  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
583  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
584  * of register value. For more details refer to PAPR document.
585  *
586  * Only for the crashing cpu we ignore the CPU dump data and get exact
587  * state from fadump crash info structure populated by first kernel at the
588  * time of crash.
589  */
590 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
591 {
592 	struct fadump_reg_save_area_header *reg_header;
593 	struct fadump_reg_entry *reg_entry;
594 	struct fadump_crash_info_header *fdh = NULL;
595 	void *vaddr;
596 	unsigned long addr;
597 	u32 num_cpus, *note_buf;
598 	struct pt_regs regs;
599 	int i, rc = 0, cpu = 0;
600 
601 	if (!fdm->cpu_state_data.bytes_dumped)
602 		return -EINVAL;
603 
604 	addr = fdm->cpu_state_data.destination_address;
605 	vaddr = __va(addr);
606 
607 	reg_header = vaddr;
608 	if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
609 		printk(KERN_ERR "Unable to read register save area.\n");
610 		return -ENOENT;
611 	}
612 	pr_debug("--------CPU State Data------------\n");
613 	pr_debug("Magic Number: %llx\n", reg_header->magic_number);
614 	pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
615 
616 	vaddr += reg_header->num_cpu_offset;
617 	num_cpus = *((u32 *)(vaddr));
618 	pr_debug("NumCpus     : %u\n", num_cpus);
619 	vaddr += sizeof(u32);
620 	reg_entry = (struct fadump_reg_entry *)vaddr;
621 
622 	/* Allocate buffer to hold cpu crash notes. */
623 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
624 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
625 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
626 	if (!note_buf) {
627 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
628 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
629 		return -ENOMEM;
630 	}
631 	fw_dump.cpu_notes_buf = __pa(note_buf);
632 
633 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
634 			(num_cpus * sizeof(note_buf_t)), note_buf);
635 
636 	if (fw_dump.fadumphdr_addr)
637 		fdh = __va(fw_dump.fadumphdr_addr);
638 
639 	for (i = 0; i < num_cpus; i++) {
640 		if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
641 			printk(KERN_ERR "Unable to read CPU state data\n");
642 			rc = -ENOENT;
643 			goto error_out;
644 		}
645 		/* Lower 4 bytes of reg_value contains logical cpu id */
646 		cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
647 		if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
648 			SKIP_TO_NEXT_CPU(reg_entry);
649 			continue;
650 		}
651 		pr_debug("Reading register data for cpu %d...\n", cpu);
652 		if (fdh && fdh->crashing_cpu == cpu) {
653 			regs = fdh->regs;
654 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
655 			SKIP_TO_NEXT_CPU(reg_entry);
656 		} else {
657 			reg_entry++;
658 			reg_entry = fadump_read_registers(reg_entry, &regs);
659 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
660 		}
661 	}
662 	fadump_final_note(note_buf);
663 
664 	pr_debug("Updating elfcore header (%llx) with cpu notes\n",
665 							fdh->elfcorehdr_addr);
666 	fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
667 	return 0;
668 
669 error_out:
670 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
671 					fw_dump.cpu_notes_buf_size);
672 	fw_dump.cpu_notes_buf = 0;
673 	fw_dump.cpu_notes_buf_size = 0;
674 	return rc;
675 
676 }
677 
678 /*
679  * Validate and process the dump data stored by firmware before exporting
680  * it through '/proc/vmcore'.
681  */
682 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
683 {
684 	struct fadump_crash_info_header *fdh;
685 	int rc = 0;
686 
687 	if (!fdm_active || !fw_dump.fadumphdr_addr)
688 		return -EINVAL;
689 
690 	/* Check if the dump data is valid. */
691 	if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
692 			(fdm_active->cpu_state_data.error_flags != 0) ||
693 			(fdm_active->rmr_region.error_flags != 0)) {
694 		printk(KERN_ERR "Dump taken by platform is not valid\n");
695 		return -EINVAL;
696 	}
697 	if ((fdm_active->rmr_region.bytes_dumped !=
698 			fdm_active->rmr_region.source_len) ||
699 			!fdm_active->cpu_state_data.bytes_dumped) {
700 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
701 		return -EINVAL;
702 	}
703 
704 	/* Validate the fadump crash info header */
705 	fdh = __va(fw_dump.fadumphdr_addr);
706 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
707 		printk(KERN_ERR "Crash info header is not valid.\n");
708 		return -EINVAL;
709 	}
710 
711 	rc = fadump_build_cpu_notes(fdm_active);
712 	if (rc)
713 		return rc;
714 
715 	/*
716 	 * We are done validating dump info and elfcore header is now ready
717 	 * to be exported. set elfcorehdr_addr so that vmcore module will
718 	 * export the elfcore header through '/proc/vmcore'.
719 	 */
720 	elfcorehdr_addr = fdh->elfcorehdr_addr;
721 
722 	return 0;
723 }
724 
725 static inline void fadump_add_crash_memory(unsigned long long base,
726 					unsigned long long end)
727 {
728 	if (base == end)
729 		return;
730 
731 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
732 		crash_mem_ranges, base, end - 1, (end - base));
733 	crash_memory_ranges[crash_mem_ranges].base = base;
734 	crash_memory_ranges[crash_mem_ranges].size = end - base;
735 	crash_mem_ranges++;
736 }
737 
738 static void fadump_exclude_reserved_area(unsigned long long start,
739 					unsigned long long end)
740 {
741 	unsigned long long ra_start, ra_end;
742 
743 	ra_start = fw_dump.reserve_dump_area_start;
744 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
745 
746 	if ((ra_start < end) && (ra_end > start)) {
747 		if ((start < ra_start) && (end > ra_end)) {
748 			fadump_add_crash_memory(start, ra_start);
749 			fadump_add_crash_memory(ra_end, end);
750 		} else if (start < ra_start) {
751 			fadump_add_crash_memory(start, ra_start);
752 		} else if (ra_end < end) {
753 			fadump_add_crash_memory(ra_end, end);
754 		}
755 	} else
756 		fadump_add_crash_memory(start, end);
757 }
758 
759 static int fadump_init_elfcore_header(char *bufp)
760 {
761 	struct elfhdr *elf;
762 
763 	elf = (struct elfhdr *) bufp;
764 	bufp += sizeof(struct elfhdr);
765 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
766 	elf->e_ident[EI_CLASS] = ELF_CLASS;
767 	elf->e_ident[EI_DATA] = ELF_DATA;
768 	elf->e_ident[EI_VERSION] = EV_CURRENT;
769 	elf->e_ident[EI_OSABI] = ELF_OSABI;
770 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
771 	elf->e_type = ET_CORE;
772 	elf->e_machine = ELF_ARCH;
773 	elf->e_version = EV_CURRENT;
774 	elf->e_entry = 0;
775 	elf->e_phoff = sizeof(struct elfhdr);
776 	elf->e_shoff = 0;
777 	elf->e_flags = ELF_CORE_EFLAGS;
778 	elf->e_ehsize = sizeof(struct elfhdr);
779 	elf->e_phentsize = sizeof(struct elf_phdr);
780 	elf->e_phnum = 0;
781 	elf->e_shentsize = 0;
782 	elf->e_shnum = 0;
783 	elf->e_shstrndx = 0;
784 
785 	return 0;
786 }
787 
788 /*
789  * Traverse through memblock structure and setup crash memory ranges. These
790  * ranges will be used create PT_LOAD program headers in elfcore header.
791  */
792 static void fadump_setup_crash_memory_ranges(void)
793 {
794 	struct memblock_region *reg;
795 	unsigned long long start, end;
796 
797 	pr_debug("Setup crash memory ranges.\n");
798 	crash_mem_ranges = 0;
799 	/*
800 	 * add the first memory chunk (RMA_START through boot_memory_size) as
801 	 * a separate memory chunk. The reason is, at the time crash firmware
802 	 * will move the content of this memory chunk to different location
803 	 * specified during fadump registration. We need to create a separate
804 	 * program header for this chunk with the correct offset.
805 	 */
806 	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
807 
808 	for_each_memblock(memory, reg) {
809 		start = (unsigned long long)reg->base;
810 		end = start + (unsigned long long)reg->size;
811 		if (start == RMA_START && end >= fw_dump.boot_memory_size)
812 			start = fw_dump.boot_memory_size;
813 
814 		/* add this range excluding the reserved dump area. */
815 		fadump_exclude_reserved_area(start, end);
816 	}
817 }
818 
819 /*
820  * If the given physical address falls within the boot memory region then
821  * return the relocated address that points to the dump region reserved
822  * for saving initial boot memory contents.
823  */
824 static inline unsigned long fadump_relocate(unsigned long paddr)
825 {
826 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
827 		return fdm.rmr_region.destination_address + paddr;
828 	else
829 		return paddr;
830 }
831 
832 static int fadump_create_elfcore_headers(char *bufp)
833 {
834 	struct elfhdr *elf;
835 	struct elf_phdr *phdr;
836 	int i;
837 
838 	fadump_init_elfcore_header(bufp);
839 	elf = (struct elfhdr *)bufp;
840 	bufp += sizeof(struct elfhdr);
841 
842 	/*
843 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
844 	 * will be populated during second kernel boot after crash. Hence
845 	 * this PT_NOTE will always be the first elf note.
846 	 *
847 	 * NOTE: Any new ELF note addition should be placed after this note.
848 	 */
849 	phdr = (struct elf_phdr *)bufp;
850 	bufp += sizeof(struct elf_phdr);
851 	phdr->p_type = PT_NOTE;
852 	phdr->p_flags = 0;
853 	phdr->p_vaddr = 0;
854 	phdr->p_align = 0;
855 
856 	phdr->p_offset = 0;
857 	phdr->p_paddr = 0;
858 	phdr->p_filesz = 0;
859 	phdr->p_memsz = 0;
860 
861 	(elf->e_phnum)++;
862 
863 	/* setup ELF PT_NOTE for vmcoreinfo */
864 	phdr = (struct elf_phdr *)bufp;
865 	bufp += sizeof(struct elf_phdr);
866 	phdr->p_type	= PT_NOTE;
867 	phdr->p_flags	= 0;
868 	phdr->p_vaddr	= 0;
869 	phdr->p_align	= 0;
870 
871 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
872 	phdr->p_offset	= phdr->p_paddr;
873 	phdr->p_memsz	= vmcoreinfo_max_size;
874 	phdr->p_filesz	= vmcoreinfo_max_size;
875 
876 	/* Increment number of program headers. */
877 	(elf->e_phnum)++;
878 
879 	/* setup PT_LOAD sections. */
880 
881 	for (i = 0; i < crash_mem_ranges; i++) {
882 		unsigned long long mbase, msize;
883 		mbase = crash_memory_ranges[i].base;
884 		msize = crash_memory_ranges[i].size;
885 
886 		if (!msize)
887 			continue;
888 
889 		phdr = (struct elf_phdr *)bufp;
890 		bufp += sizeof(struct elf_phdr);
891 		phdr->p_type	= PT_LOAD;
892 		phdr->p_flags	= PF_R|PF_W|PF_X;
893 		phdr->p_offset	= mbase;
894 
895 		if (mbase == RMA_START) {
896 			/*
897 			 * The entire RMA region will be moved by firmware
898 			 * to the specified destination_address. Hence set
899 			 * the correct offset.
900 			 */
901 			phdr->p_offset = fdm.rmr_region.destination_address;
902 		}
903 
904 		phdr->p_paddr = mbase;
905 		phdr->p_vaddr = (unsigned long)__va(mbase);
906 		phdr->p_filesz = msize;
907 		phdr->p_memsz = msize;
908 		phdr->p_align = 0;
909 
910 		/* Increment number of program headers. */
911 		(elf->e_phnum)++;
912 	}
913 	return 0;
914 }
915 
916 static unsigned long init_fadump_header(unsigned long addr)
917 {
918 	struct fadump_crash_info_header *fdh;
919 
920 	if (!addr)
921 		return 0;
922 
923 	fw_dump.fadumphdr_addr = addr;
924 	fdh = __va(addr);
925 	addr += sizeof(struct fadump_crash_info_header);
926 
927 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
928 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
929 	fdh->elfcorehdr_addr = addr;
930 	/* We will set the crashing cpu id in crash_fadump() during crash. */
931 	fdh->crashing_cpu = CPU_UNKNOWN;
932 
933 	return addr;
934 }
935 
936 static void register_fadump(void)
937 {
938 	unsigned long addr;
939 	void *vaddr;
940 
941 	/*
942 	 * If no memory is reserved then we can not register for firmware-
943 	 * assisted dump.
944 	 */
945 	if (!fw_dump.reserve_dump_area_size)
946 		return;
947 
948 	fadump_setup_crash_memory_ranges();
949 
950 	addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
951 	/* Initialize fadump crash info header. */
952 	addr = init_fadump_header(addr);
953 	vaddr = __va(addr);
954 
955 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
956 	fadump_create_elfcore_headers(vaddr);
957 
958 	/* register the future kernel dump with firmware. */
959 	register_fw_dump(&fdm);
960 }
961 
962 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
963 {
964 	int rc = 0;
965 	unsigned int wait_time;
966 
967 	pr_debug("Un-register firmware-assisted dump\n");
968 
969 	/* TODO: Add upper time limit for the delay */
970 	do {
971 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
972 			FADUMP_UNREGISTER, fdm,
973 			sizeof(struct fadump_mem_struct));
974 
975 		wait_time = rtas_busy_delay_time(rc);
976 		if (wait_time)
977 			mdelay(wait_time);
978 	} while (wait_time);
979 
980 	if (rc) {
981 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
982 			" unexpected error(%d).\n", rc);
983 		return rc;
984 	}
985 	fw_dump.dump_registered = 0;
986 	return 0;
987 }
988 
989 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
990 {
991 	int rc = 0;
992 	unsigned int wait_time;
993 
994 	pr_debug("Invalidating firmware-assisted dump registration\n");
995 
996 	/* TODO: Add upper time limit for the delay */
997 	do {
998 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
999 			FADUMP_INVALIDATE, fdm,
1000 			sizeof(struct fadump_mem_struct));
1001 
1002 		wait_time = rtas_busy_delay_time(rc);
1003 		if (wait_time)
1004 			mdelay(wait_time);
1005 	} while (wait_time);
1006 
1007 	if (rc) {
1008 		printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1009 			"rgistration. unexpected error(%d).\n", rc);
1010 		return rc;
1011 	}
1012 	fw_dump.dump_active = 0;
1013 	fdm_active = NULL;
1014 	return 0;
1015 }
1016 
1017 void fadump_cleanup(void)
1018 {
1019 	/* Invalidate the registration only if dump is active. */
1020 	if (fw_dump.dump_active) {
1021 		init_fadump_mem_struct(&fdm,
1022 			fdm_active->cpu_state_data.destination_address);
1023 		fadump_invalidate_dump(&fdm);
1024 	}
1025 }
1026 
1027 /*
1028  * Release the memory that was reserved in early boot to preserve the memory
1029  * contents. The released memory will be available for general use.
1030  */
1031 static void fadump_release_memory(unsigned long begin, unsigned long end)
1032 {
1033 	unsigned long addr;
1034 	unsigned long ra_start, ra_end;
1035 
1036 	ra_start = fw_dump.reserve_dump_area_start;
1037 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1038 
1039 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1040 		/*
1041 		 * exclude the dump reserve area. Will reuse it for next
1042 		 * fadump registration.
1043 		 */
1044 		if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1045 			continue;
1046 
1047 		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1048 		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1049 		free_page((unsigned long)__va(addr));
1050 		totalram_pages++;
1051 	}
1052 }
1053 
1054 static void fadump_invalidate_release_mem(void)
1055 {
1056 	unsigned long reserved_area_start, reserved_area_end;
1057 	unsigned long destination_address;
1058 
1059 	mutex_lock(&fadump_mutex);
1060 	if (!fw_dump.dump_active) {
1061 		mutex_unlock(&fadump_mutex);
1062 		return;
1063 	}
1064 
1065 	destination_address = fdm_active->cpu_state_data.destination_address;
1066 	fadump_cleanup();
1067 	mutex_unlock(&fadump_mutex);
1068 
1069 	/*
1070 	 * Save the current reserved memory bounds we will require them
1071 	 * later for releasing the memory for general use.
1072 	 */
1073 	reserved_area_start = fw_dump.reserve_dump_area_start;
1074 	reserved_area_end = reserved_area_start +
1075 			fw_dump.reserve_dump_area_size;
1076 	/*
1077 	 * Setup reserve_dump_area_start and its size so that we can
1078 	 * reuse this reserved memory for Re-registration.
1079 	 */
1080 	fw_dump.reserve_dump_area_start = destination_address;
1081 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1082 
1083 	fadump_release_memory(reserved_area_start, reserved_area_end);
1084 	if (fw_dump.cpu_notes_buf) {
1085 		fadump_cpu_notes_buf_free(
1086 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1087 				fw_dump.cpu_notes_buf_size);
1088 		fw_dump.cpu_notes_buf = 0;
1089 		fw_dump.cpu_notes_buf_size = 0;
1090 	}
1091 	/* Initialize the kernel dump memory structure for FAD registration. */
1092 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1093 }
1094 
1095 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1096 					struct kobj_attribute *attr,
1097 					const char *buf, size_t count)
1098 {
1099 	if (!fw_dump.dump_active)
1100 		return -EPERM;
1101 
1102 	if (buf[0] == '1') {
1103 		/*
1104 		 * Take away the '/proc/vmcore'. We are releasing the dump
1105 		 * memory, hence it will not be valid anymore.
1106 		 */
1107 		vmcore_cleanup();
1108 		fadump_invalidate_release_mem();
1109 
1110 	} else
1111 		return -EINVAL;
1112 	return count;
1113 }
1114 
1115 static ssize_t fadump_enabled_show(struct kobject *kobj,
1116 					struct kobj_attribute *attr,
1117 					char *buf)
1118 {
1119 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1120 }
1121 
1122 static ssize_t fadump_register_show(struct kobject *kobj,
1123 					struct kobj_attribute *attr,
1124 					char *buf)
1125 {
1126 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1127 }
1128 
1129 static ssize_t fadump_register_store(struct kobject *kobj,
1130 					struct kobj_attribute *attr,
1131 					const char *buf, size_t count)
1132 {
1133 	int ret = 0;
1134 
1135 	if (!fw_dump.fadump_enabled || fdm_active)
1136 		return -EPERM;
1137 
1138 	mutex_lock(&fadump_mutex);
1139 
1140 	switch (buf[0]) {
1141 	case '0':
1142 		if (fw_dump.dump_registered == 0) {
1143 			ret = -EINVAL;
1144 			goto unlock_out;
1145 		}
1146 		/* Un-register Firmware-assisted dump */
1147 		fadump_unregister_dump(&fdm);
1148 		break;
1149 	case '1':
1150 		if (fw_dump.dump_registered == 1) {
1151 			ret = -EINVAL;
1152 			goto unlock_out;
1153 		}
1154 		/* Register Firmware-assisted dump */
1155 		register_fadump();
1156 		break;
1157 	default:
1158 		ret = -EINVAL;
1159 		break;
1160 	}
1161 
1162 unlock_out:
1163 	mutex_unlock(&fadump_mutex);
1164 	return ret < 0 ? ret : count;
1165 }
1166 
1167 static int fadump_region_show(struct seq_file *m, void *private)
1168 {
1169 	const struct fadump_mem_struct *fdm_ptr;
1170 
1171 	if (!fw_dump.fadump_enabled)
1172 		return 0;
1173 
1174 	mutex_lock(&fadump_mutex);
1175 	if (fdm_active)
1176 		fdm_ptr = fdm_active;
1177 	else {
1178 		mutex_unlock(&fadump_mutex);
1179 		fdm_ptr = &fdm;
1180 	}
1181 
1182 	seq_printf(m,
1183 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1184 			"Dumped: %#llx\n",
1185 			fdm_ptr->cpu_state_data.destination_address,
1186 			fdm_ptr->cpu_state_data.destination_address +
1187 			fdm_ptr->cpu_state_data.source_len - 1,
1188 			fdm_ptr->cpu_state_data.source_len,
1189 			fdm_ptr->cpu_state_data.bytes_dumped);
1190 	seq_printf(m,
1191 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1192 			"Dumped: %#llx\n",
1193 			fdm_ptr->hpte_region.destination_address,
1194 			fdm_ptr->hpte_region.destination_address +
1195 			fdm_ptr->hpte_region.source_len - 1,
1196 			fdm_ptr->hpte_region.source_len,
1197 			fdm_ptr->hpte_region.bytes_dumped);
1198 	seq_printf(m,
1199 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1200 			"Dumped: %#llx\n",
1201 			fdm_ptr->rmr_region.destination_address,
1202 			fdm_ptr->rmr_region.destination_address +
1203 			fdm_ptr->rmr_region.source_len - 1,
1204 			fdm_ptr->rmr_region.source_len,
1205 			fdm_ptr->rmr_region.bytes_dumped);
1206 
1207 	if (!fdm_active ||
1208 		(fw_dump.reserve_dump_area_start ==
1209 		fdm_ptr->cpu_state_data.destination_address))
1210 		goto out;
1211 
1212 	/* Dump is active. Show reserved memory region. */
1213 	seq_printf(m,
1214 			"    : [%#016llx-%#016llx] %#llx bytes, "
1215 			"Dumped: %#llx\n",
1216 			(unsigned long long)fw_dump.reserve_dump_area_start,
1217 			fdm_ptr->cpu_state_data.destination_address - 1,
1218 			fdm_ptr->cpu_state_data.destination_address -
1219 			fw_dump.reserve_dump_area_start,
1220 			fdm_ptr->cpu_state_data.destination_address -
1221 			fw_dump.reserve_dump_area_start);
1222 out:
1223 	if (fdm_active)
1224 		mutex_unlock(&fadump_mutex);
1225 	return 0;
1226 }
1227 
1228 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1229 						0200, NULL,
1230 						fadump_release_memory_store);
1231 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1232 						0444, fadump_enabled_show,
1233 						NULL);
1234 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1235 						0644, fadump_register_show,
1236 						fadump_register_store);
1237 
1238 static int fadump_region_open(struct inode *inode, struct file *file)
1239 {
1240 	return single_open(file, fadump_region_show, inode->i_private);
1241 }
1242 
1243 static const struct file_operations fadump_region_fops = {
1244 	.open    = fadump_region_open,
1245 	.read    = seq_read,
1246 	.llseek  = seq_lseek,
1247 	.release = single_release,
1248 };
1249 
1250 static void fadump_init_files(void)
1251 {
1252 	struct dentry *debugfs_file;
1253 	int rc = 0;
1254 
1255 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1256 	if (rc)
1257 		printk(KERN_ERR "fadump: unable to create sysfs file"
1258 			" fadump_enabled (%d)\n", rc);
1259 
1260 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1261 	if (rc)
1262 		printk(KERN_ERR "fadump: unable to create sysfs file"
1263 			" fadump_registered (%d)\n", rc);
1264 
1265 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1266 					powerpc_debugfs_root, NULL,
1267 					&fadump_region_fops);
1268 	if (!debugfs_file)
1269 		printk(KERN_ERR "fadump: unable to create debugfs file"
1270 				" fadump_region\n");
1271 
1272 	if (fw_dump.dump_active) {
1273 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1274 		if (rc)
1275 			printk(KERN_ERR "fadump: unable to create sysfs file"
1276 				" fadump_release_mem (%d)\n", rc);
1277 	}
1278 	return;
1279 }
1280 
1281 /*
1282  * Prepare for firmware-assisted dump.
1283  */
1284 int __init setup_fadump(void)
1285 {
1286 	if (!fw_dump.fadump_enabled)
1287 		return 0;
1288 
1289 	if (!fw_dump.fadump_supported) {
1290 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1291 			" this hardware\n");
1292 		return 0;
1293 	}
1294 
1295 	fadump_show_config();
1296 	/*
1297 	 * If dump data is available then see if it is valid and prepare for
1298 	 * saving it to the disk.
1299 	 */
1300 	if (fw_dump.dump_active) {
1301 		/*
1302 		 * if dump process fails then invalidate the registration
1303 		 * and release memory before proceeding for re-registration.
1304 		 */
1305 		if (process_fadump(fdm_active) < 0)
1306 			fadump_invalidate_release_mem();
1307 	}
1308 	/* Initialize the kernel dump memory structure for FAD registration. */
1309 	else if (fw_dump.reserve_dump_area_size)
1310 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1311 	fadump_init_files();
1312 
1313 	return 1;
1314 }
1315 subsys_initcall(setup_fadump);
1316