1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 28 #include <asm/debugfs.h> 29 #include <asm/page.h> 30 #include <asm/prom.h> 31 #include <asm/fadump.h> 32 #include <asm/fadump-internal.h> 33 #include <asm/setup.h> 34 35 static struct fw_dump fw_dump; 36 37 static void __init fadump_reserve_crash_area(u64 base); 38 39 struct kobject *fadump_kobj; 40 41 #ifndef CONFIG_PRESERVE_FA_DUMP 42 static DEFINE_MUTEX(fadump_mutex); 43 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 }; 44 struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 }; 45 46 #ifdef CONFIG_CMA 47 static struct cma *fadump_cma; 48 49 /* 50 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 51 * 52 * This function initializes CMA area from fadump reserved memory. 53 * The total size of fadump reserved memory covers for boot memory size 54 * + cpu data size + hpte size and metadata. 55 * Initialize only the area equivalent to boot memory size for CMA use. 56 * The reamining portion of fadump reserved memory will be not given 57 * to CMA and pages for thoes will stay reserved. boot memory size is 58 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 59 * But for some reason even if it fails we still have the memory reservation 60 * with us and we can still continue doing fadump. 61 */ 62 int __init fadump_cma_init(void) 63 { 64 unsigned long long base, size; 65 int rc; 66 67 if (!fw_dump.fadump_enabled) 68 return 0; 69 70 /* 71 * Do not use CMA if user has provided fadump=nocma kernel parameter. 72 * Return 1 to continue with fadump old behaviour. 73 */ 74 if (fw_dump.nocma) 75 return 1; 76 77 base = fw_dump.reserve_dump_area_start; 78 size = fw_dump.boot_memory_size; 79 80 if (!size) 81 return 0; 82 83 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 84 if (rc) { 85 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 86 /* 87 * Though the CMA init has failed we still have memory 88 * reservation with us. The reserved memory will be 89 * blocked from production system usage. Hence return 1, 90 * so that we can continue with fadump. 91 */ 92 return 1; 93 } 94 95 /* 96 * So we now have successfully initialized cma area for fadump. 97 */ 98 pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx " 99 "bytes of memory reserved for firmware-assisted dump\n", 100 cma_get_size(fadump_cma), 101 (unsigned long)cma_get_base(fadump_cma) >> 20, 102 fw_dump.reserve_dump_area_size); 103 return 1; 104 } 105 #else 106 static int __init fadump_cma_init(void) { return 1; } 107 #endif /* CONFIG_CMA */ 108 109 /* Scan the Firmware Assisted dump configuration details. */ 110 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 111 int depth, void *data) 112 { 113 if (depth != 1) 114 return 0; 115 116 if (strcmp(uname, "rtas") == 0) { 117 rtas_fadump_dt_scan(&fw_dump, node); 118 return 1; 119 } 120 121 if (strcmp(uname, "ibm,opal") == 0) { 122 opal_fadump_dt_scan(&fw_dump, node); 123 return 1; 124 } 125 126 return 0; 127 } 128 129 /* 130 * If fadump is registered, check if the memory provided 131 * falls within boot memory area and reserved memory area. 132 */ 133 int is_fadump_memory_area(u64 addr, unsigned long size) 134 { 135 u64 d_start, d_end; 136 137 if (!fw_dump.dump_registered) 138 return 0; 139 140 if (!size) 141 return 0; 142 143 d_start = fw_dump.reserve_dump_area_start; 144 d_end = d_start + fw_dump.reserve_dump_area_size; 145 if (((addr + size) > d_start) && (addr <= d_end)) 146 return 1; 147 148 return (addr <= fw_dump.boot_mem_top); 149 } 150 151 int should_fadump_crash(void) 152 { 153 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 154 return 0; 155 return 1; 156 } 157 158 int is_fadump_active(void) 159 { 160 return fw_dump.dump_active; 161 } 162 163 /* 164 * Returns true, if there are no holes in memory area between d_start to d_end, 165 * false otherwise. 166 */ 167 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 168 { 169 struct memblock_region *reg; 170 bool ret = false; 171 u64 start, end; 172 173 for_each_memblock(memory, reg) { 174 start = max_t(u64, d_start, reg->base); 175 end = min_t(u64, d_end, (reg->base + reg->size)); 176 if (d_start < end) { 177 /* Memory hole from d_start to start */ 178 if (start > d_start) 179 break; 180 181 if (end == d_end) { 182 ret = true; 183 break; 184 } 185 186 d_start = end + 1; 187 } 188 } 189 190 return ret; 191 } 192 193 /* 194 * Returns true, if there are no holes in boot memory area, 195 * false otherwise. 196 */ 197 bool is_fadump_boot_mem_contiguous(void) 198 { 199 unsigned long d_start, d_end; 200 bool ret = false; 201 int i; 202 203 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 204 d_start = fw_dump.boot_mem_addr[i]; 205 d_end = d_start + fw_dump.boot_mem_sz[i]; 206 207 ret = is_fadump_mem_area_contiguous(d_start, d_end); 208 if (!ret) 209 break; 210 } 211 212 return ret; 213 } 214 215 /* 216 * Returns true, if there are no holes in reserved memory area, 217 * false otherwise. 218 */ 219 bool is_fadump_reserved_mem_contiguous(void) 220 { 221 u64 d_start, d_end; 222 223 d_start = fw_dump.reserve_dump_area_start; 224 d_end = d_start + fw_dump.reserve_dump_area_size; 225 return is_fadump_mem_area_contiguous(d_start, d_end); 226 } 227 228 /* Print firmware assisted dump configurations for debugging purpose. */ 229 static void fadump_show_config(void) 230 { 231 int i; 232 233 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 234 (fw_dump.fadump_supported ? "present" : "no support")); 235 236 if (!fw_dump.fadump_supported) 237 return; 238 239 pr_debug("Fadump enabled : %s\n", 240 (fw_dump.fadump_enabled ? "yes" : "no")); 241 pr_debug("Dump Active : %s\n", 242 (fw_dump.dump_active ? "yes" : "no")); 243 pr_debug("Dump section sizes:\n"); 244 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 245 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 246 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); 247 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); 248 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); 249 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 250 pr_debug("[%03d] base = %llx, size = %llx\n", i, 251 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); 252 } 253 } 254 255 /** 256 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 257 * 258 * Function to find the largest memory size we need to reserve during early 259 * boot process. This will be the size of the memory that is required for a 260 * kernel to boot successfully. 261 * 262 * This function has been taken from phyp-assisted dump feature implementation. 263 * 264 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 265 * 266 * TODO: Come up with better approach to find out more accurate memory size 267 * that is required for a kernel to boot successfully. 268 * 269 */ 270 static inline u64 fadump_calculate_reserve_size(void) 271 { 272 u64 base, size, bootmem_min; 273 int ret; 274 275 if (fw_dump.reserve_bootvar) 276 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 277 278 /* 279 * Check if the size is specified through crashkernel= cmdline 280 * option. If yes, then use that but ignore base as fadump reserves 281 * memory at a predefined offset. 282 */ 283 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 284 &size, &base); 285 if (ret == 0 && size > 0) { 286 unsigned long max_size; 287 288 if (fw_dump.reserve_bootvar) 289 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 290 291 fw_dump.reserve_bootvar = (unsigned long)size; 292 293 /* 294 * Adjust if the boot memory size specified is above 295 * the upper limit. 296 */ 297 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 298 if (fw_dump.reserve_bootvar > max_size) { 299 fw_dump.reserve_bootvar = max_size; 300 pr_info("Adjusted boot memory size to %luMB\n", 301 (fw_dump.reserve_bootvar >> 20)); 302 } 303 304 return fw_dump.reserve_bootvar; 305 } else if (fw_dump.reserve_bootvar) { 306 /* 307 * 'fadump_reserve_mem=' is being used to reserve memory 308 * for firmware-assisted dump. 309 */ 310 return fw_dump.reserve_bootvar; 311 } 312 313 /* divide by 20 to get 5% of value */ 314 size = memblock_phys_mem_size() / 20; 315 316 /* round it down in multiples of 256 */ 317 size = size & ~0x0FFFFFFFUL; 318 319 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 320 if (memory_limit && size > memory_limit) 321 size = memory_limit; 322 323 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 324 return (size > bootmem_min ? size : bootmem_min); 325 } 326 327 /* 328 * Calculate the total memory size required to be reserved for 329 * firmware-assisted dump registration. 330 */ 331 static unsigned long get_fadump_area_size(void) 332 { 333 unsigned long size = 0; 334 335 size += fw_dump.cpu_state_data_size; 336 size += fw_dump.hpte_region_size; 337 size += fw_dump.boot_memory_size; 338 size += sizeof(struct fadump_crash_info_header); 339 size += sizeof(struct elfhdr); /* ELF core header.*/ 340 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 341 /* Program headers for crash memory regions. */ 342 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 343 344 size = PAGE_ALIGN(size); 345 346 /* This is to hold kernel metadata on platforms that support it */ 347 size += (fw_dump.ops->fadump_get_metadata_size ? 348 fw_dump.ops->fadump_get_metadata_size() : 0); 349 return size; 350 } 351 352 static int __init add_boot_mem_region(unsigned long rstart, 353 unsigned long rsize) 354 { 355 int i = fw_dump.boot_mem_regs_cnt++; 356 357 if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) { 358 fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS; 359 return 0; 360 } 361 362 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", 363 i, rstart, (rstart + rsize)); 364 fw_dump.boot_mem_addr[i] = rstart; 365 fw_dump.boot_mem_sz[i] = rsize; 366 return 1; 367 } 368 369 /* 370 * Firmware usually has a hard limit on the data it can copy per region. 371 * Honour that by splitting a memory range into multiple regions. 372 */ 373 static int __init add_boot_mem_regions(unsigned long mstart, 374 unsigned long msize) 375 { 376 unsigned long rstart, rsize, max_size; 377 int ret = 1; 378 379 rstart = mstart; 380 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; 381 while (msize) { 382 if (msize > max_size) 383 rsize = max_size; 384 else 385 rsize = msize; 386 387 ret = add_boot_mem_region(rstart, rsize); 388 if (!ret) 389 break; 390 391 msize -= rsize; 392 rstart += rsize; 393 } 394 395 return ret; 396 } 397 398 static int __init fadump_get_boot_mem_regions(void) 399 { 400 unsigned long base, size, cur_size, hole_size, last_end; 401 unsigned long mem_size = fw_dump.boot_memory_size; 402 struct memblock_region *reg; 403 int ret = 1; 404 405 fw_dump.boot_mem_regs_cnt = 0; 406 407 last_end = 0; 408 hole_size = 0; 409 cur_size = 0; 410 for_each_memblock(memory, reg) { 411 base = reg->base; 412 size = reg->size; 413 hole_size += (base - last_end); 414 415 if ((cur_size + size) >= mem_size) { 416 size = (mem_size - cur_size); 417 ret = add_boot_mem_regions(base, size); 418 break; 419 } 420 421 mem_size -= size; 422 cur_size += size; 423 ret = add_boot_mem_regions(base, size); 424 if (!ret) 425 break; 426 427 last_end = base + size; 428 } 429 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); 430 431 return ret; 432 } 433 434 int __init fadump_reserve_mem(void) 435 { 436 u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE; 437 bool is_memblock_bottom_up = memblock_bottom_up(); 438 int ret = 1; 439 440 if (!fw_dump.fadump_enabled) 441 return 0; 442 443 if (!fw_dump.fadump_supported) { 444 pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); 445 goto error_out; 446 } 447 448 /* 449 * Initialize boot memory size 450 * If dump is active then we have already calculated the size during 451 * first kernel. 452 */ 453 if (!fw_dump.dump_active) { 454 fw_dump.boot_memory_size = 455 PAGE_ALIGN(fadump_calculate_reserve_size()); 456 #ifdef CONFIG_CMA 457 if (!fw_dump.nocma) { 458 align = FADUMP_CMA_ALIGNMENT; 459 fw_dump.boot_memory_size = 460 ALIGN(fw_dump.boot_memory_size, align); 461 } 462 #endif 463 464 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 465 if (fw_dump.boot_memory_size < bootmem_min) { 466 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", 467 fw_dump.boot_memory_size, bootmem_min); 468 goto error_out; 469 } 470 471 if (!fadump_get_boot_mem_regions()) { 472 pr_err("Too many holes in boot memory area to enable fadump\n"); 473 goto error_out; 474 } 475 } 476 477 /* 478 * Calculate the memory boundary. 479 * If memory_limit is less than actual memory boundary then reserve 480 * the memory for fadump beyond the memory_limit and adjust the 481 * memory_limit accordingly, so that the running kernel can run with 482 * specified memory_limit. 483 */ 484 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 485 size = get_fadump_area_size(); 486 if ((memory_limit + size) < memblock_end_of_DRAM()) 487 memory_limit += size; 488 else 489 memory_limit = memblock_end_of_DRAM(); 490 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 491 " dump, now %#016llx\n", memory_limit); 492 } 493 if (memory_limit) 494 mem_boundary = memory_limit; 495 else 496 mem_boundary = memblock_end_of_DRAM(); 497 498 base = fw_dump.boot_mem_top; 499 size = get_fadump_area_size(); 500 fw_dump.reserve_dump_area_size = size; 501 if (fw_dump.dump_active) { 502 pr_info("Firmware-assisted dump is active.\n"); 503 504 #ifdef CONFIG_HUGETLB_PAGE 505 /* 506 * FADump capture kernel doesn't care much about hugepages. 507 * In fact, handling hugepages in capture kernel is asking for 508 * trouble. So, disable HugeTLB support when fadump is active. 509 */ 510 hugetlb_disabled = true; 511 #endif 512 /* 513 * If last boot has crashed then reserve all the memory 514 * above boot memory size so that we don't touch it until 515 * dump is written to disk by userspace tool. This memory 516 * can be released for general use by invalidating fadump. 517 */ 518 fadump_reserve_crash_area(base); 519 520 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 521 pr_debug("Reserve dump area start address: 0x%lx\n", 522 fw_dump.reserve_dump_area_start); 523 } else { 524 /* 525 * Reserve memory at an offset closer to bottom of the RAM to 526 * minimize the impact of memory hot-remove operation. 527 */ 528 memblock_set_bottom_up(true); 529 base = memblock_find_in_range(base, mem_boundary, size, align); 530 531 /* Restore the previous allocation mode */ 532 memblock_set_bottom_up(is_memblock_bottom_up); 533 534 if (!base) { 535 pr_err("Failed to find memory chunk for reservation!\n"); 536 goto error_out; 537 } 538 fw_dump.reserve_dump_area_start = base; 539 540 /* 541 * Calculate the kernel metadata address and register it with 542 * f/w if the platform supports. 543 */ 544 if (fw_dump.ops->fadump_setup_metadata && 545 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 546 goto error_out; 547 548 if (memblock_reserve(base, size)) { 549 pr_err("Failed to reserve memory!\n"); 550 goto error_out; 551 } 552 553 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", 554 (size >> 20), base, (memblock_phys_mem_size() >> 20)); 555 556 ret = fadump_cma_init(); 557 } 558 559 return ret; 560 error_out: 561 fw_dump.fadump_enabled = 0; 562 return 0; 563 } 564 565 /* Look for fadump= cmdline option. */ 566 static int __init early_fadump_param(char *p) 567 { 568 if (!p) 569 return 1; 570 571 if (strncmp(p, "on", 2) == 0) 572 fw_dump.fadump_enabled = 1; 573 else if (strncmp(p, "off", 3) == 0) 574 fw_dump.fadump_enabled = 0; 575 else if (strncmp(p, "nocma", 5) == 0) { 576 fw_dump.fadump_enabled = 1; 577 fw_dump.nocma = 1; 578 } 579 580 return 0; 581 } 582 early_param("fadump", early_fadump_param); 583 584 /* 585 * Look for fadump_reserve_mem= cmdline option 586 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 587 * the sooner 'crashkernel=' parameter is accustomed to. 588 */ 589 static int __init early_fadump_reserve_mem(char *p) 590 { 591 if (p) 592 fw_dump.reserve_bootvar = memparse(p, &p); 593 return 0; 594 } 595 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 596 597 void crash_fadump(struct pt_regs *regs, const char *str) 598 { 599 struct fadump_crash_info_header *fdh = NULL; 600 int old_cpu, this_cpu; 601 602 if (!should_fadump_crash()) 603 return; 604 605 /* 606 * old_cpu == -1 means this is the first CPU which has come here, 607 * go ahead and trigger fadump. 608 * 609 * old_cpu != -1 means some other CPU has already on it's way 610 * to trigger fadump, just keep looping here. 611 */ 612 this_cpu = smp_processor_id(); 613 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 614 615 if (old_cpu != -1) { 616 /* 617 * We can't loop here indefinitely. Wait as long as fadump 618 * is in force. If we race with fadump un-registration this 619 * loop will break and then we go down to normal panic path 620 * and reboot. If fadump is in force the first crashing 621 * cpu will definitely trigger fadump. 622 */ 623 while (fw_dump.dump_registered) 624 cpu_relax(); 625 return; 626 } 627 628 fdh = __va(fw_dump.fadumphdr_addr); 629 fdh->crashing_cpu = crashing_cpu; 630 crash_save_vmcoreinfo(); 631 632 if (regs) 633 fdh->regs = *regs; 634 else 635 ppc_save_regs(&fdh->regs); 636 637 fdh->online_mask = *cpu_online_mask; 638 639 fw_dump.ops->fadump_trigger(fdh, str); 640 } 641 642 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 643 { 644 struct elf_prstatus prstatus; 645 646 memset(&prstatus, 0, sizeof(prstatus)); 647 /* 648 * FIXME: How do i get PID? Do I really need it? 649 * prstatus.pr_pid = ???? 650 */ 651 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 652 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 653 &prstatus, sizeof(prstatus)); 654 return buf; 655 } 656 657 void fadump_update_elfcore_header(char *bufp) 658 { 659 struct elfhdr *elf; 660 struct elf_phdr *phdr; 661 662 elf = (struct elfhdr *)bufp; 663 bufp += sizeof(struct elfhdr); 664 665 /* First note is a place holder for cpu notes info. */ 666 phdr = (struct elf_phdr *)bufp; 667 668 if (phdr->p_type == PT_NOTE) { 669 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 670 phdr->p_offset = phdr->p_paddr; 671 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 672 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 673 } 674 return; 675 } 676 677 static void *fadump_alloc_buffer(unsigned long size) 678 { 679 unsigned long count, i; 680 struct page *page; 681 void *vaddr; 682 683 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 684 if (!vaddr) 685 return NULL; 686 687 count = PAGE_ALIGN(size) / PAGE_SIZE; 688 page = virt_to_page(vaddr); 689 for (i = 0; i < count; i++) 690 mark_page_reserved(page + i); 691 return vaddr; 692 } 693 694 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 695 { 696 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 697 } 698 699 s32 fadump_setup_cpu_notes_buf(u32 num_cpus) 700 { 701 /* Allocate buffer to hold cpu crash notes. */ 702 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 703 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 704 fw_dump.cpu_notes_buf_vaddr = 705 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 706 if (!fw_dump.cpu_notes_buf_vaddr) { 707 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 708 fw_dump.cpu_notes_buf_size); 709 return -ENOMEM; 710 } 711 712 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 713 fw_dump.cpu_notes_buf_size, 714 fw_dump.cpu_notes_buf_vaddr); 715 return 0; 716 } 717 718 void fadump_free_cpu_notes_buf(void) 719 { 720 if (!fw_dump.cpu_notes_buf_vaddr) 721 return; 722 723 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 724 fw_dump.cpu_notes_buf_size); 725 fw_dump.cpu_notes_buf_vaddr = 0; 726 fw_dump.cpu_notes_buf_size = 0; 727 } 728 729 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) 730 { 731 kfree(mrange_info->mem_ranges); 732 mrange_info->mem_ranges = NULL; 733 mrange_info->mem_ranges_sz = 0; 734 mrange_info->max_mem_ranges = 0; 735 } 736 737 /* 738 * Allocate or reallocate mem_ranges array in incremental units 739 * of PAGE_SIZE. 740 */ 741 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) 742 { 743 struct fadump_memory_range *new_array; 744 u64 new_size; 745 746 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; 747 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", 748 new_size, mrange_info->name); 749 750 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); 751 if (new_array == NULL) { 752 pr_err("Insufficient memory for setting up %s memory ranges\n", 753 mrange_info->name); 754 fadump_free_mem_ranges(mrange_info); 755 return -ENOMEM; 756 } 757 758 mrange_info->mem_ranges = new_array; 759 mrange_info->mem_ranges_sz = new_size; 760 mrange_info->max_mem_ranges = (new_size / 761 sizeof(struct fadump_memory_range)); 762 return 0; 763 } 764 765 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, 766 u64 base, u64 end) 767 { 768 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; 769 bool is_adjacent = false; 770 u64 start, size; 771 772 if (base == end) 773 return 0; 774 775 /* 776 * Fold adjacent memory ranges to bring down the memory ranges/ 777 * PT_LOAD segments count. 778 */ 779 if (mrange_info->mem_range_cnt) { 780 start = mem_ranges[mrange_info->mem_range_cnt - 1].base; 781 size = mem_ranges[mrange_info->mem_range_cnt - 1].size; 782 783 if ((start + size) == base) 784 is_adjacent = true; 785 } 786 if (!is_adjacent) { 787 /* resize the array on reaching the limit */ 788 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { 789 int ret; 790 791 ret = fadump_alloc_mem_ranges(mrange_info); 792 if (ret) 793 return ret; 794 795 /* Update to the new resized array */ 796 mem_ranges = mrange_info->mem_ranges; 797 } 798 799 start = base; 800 mem_ranges[mrange_info->mem_range_cnt].base = start; 801 mrange_info->mem_range_cnt++; 802 } 803 804 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); 805 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 806 mrange_info->name, (mrange_info->mem_range_cnt - 1), 807 start, end - 1, (end - start)); 808 return 0; 809 } 810 811 static int fadump_exclude_reserved_area(u64 start, u64 end) 812 { 813 u64 ra_start, ra_end; 814 int ret = 0; 815 816 ra_start = fw_dump.reserve_dump_area_start; 817 ra_end = ra_start + fw_dump.reserve_dump_area_size; 818 819 if ((ra_start < end) && (ra_end > start)) { 820 if ((start < ra_start) && (end > ra_end)) { 821 ret = fadump_add_mem_range(&crash_mrange_info, 822 start, ra_start); 823 if (ret) 824 return ret; 825 826 ret = fadump_add_mem_range(&crash_mrange_info, 827 ra_end, end); 828 } else if (start < ra_start) { 829 ret = fadump_add_mem_range(&crash_mrange_info, 830 start, ra_start); 831 } else if (ra_end < end) { 832 ret = fadump_add_mem_range(&crash_mrange_info, 833 ra_end, end); 834 } 835 } else 836 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 837 838 return ret; 839 } 840 841 static int fadump_init_elfcore_header(char *bufp) 842 { 843 struct elfhdr *elf; 844 845 elf = (struct elfhdr *) bufp; 846 bufp += sizeof(struct elfhdr); 847 memcpy(elf->e_ident, ELFMAG, SELFMAG); 848 elf->e_ident[EI_CLASS] = ELF_CLASS; 849 elf->e_ident[EI_DATA] = ELF_DATA; 850 elf->e_ident[EI_VERSION] = EV_CURRENT; 851 elf->e_ident[EI_OSABI] = ELF_OSABI; 852 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 853 elf->e_type = ET_CORE; 854 elf->e_machine = ELF_ARCH; 855 elf->e_version = EV_CURRENT; 856 elf->e_entry = 0; 857 elf->e_phoff = sizeof(struct elfhdr); 858 elf->e_shoff = 0; 859 #if defined(_CALL_ELF) 860 elf->e_flags = _CALL_ELF; 861 #else 862 elf->e_flags = 0; 863 #endif 864 elf->e_ehsize = sizeof(struct elfhdr); 865 elf->e_phentsize = sizeof(struct elf_phdr); 866 elf->e_phnum = 0; 867 elf->e_shentsize = 0; 868 elf->e_shnum = 0; 869 elf->e_shstrndx = 0; 870 871 return 0; 872 } 873 874 /* 875 * Traverse through memblock structure and setup crash memory ranges. These 876 * ranges will be used create PT_LOAD program headers in elfcore header. 877 */ 878 static int fadump_setup_crash_memory_ranges(void) 879 { 880 struct memblock_region *reg; 881 u64 start, end; 882 int i, ret; 883 884 pr_debug("Setup crash memory ranges.\n"); 885 crash_mrange_info.mem_range_cnt = 0; 886 887 /* 888 * Boot memory region(s) registered with firmware are moved to 889 * different location at the time of crash. Create separate program 890 * header(s) for this memory chunk(s) with the correct offset. 891 */ 892 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 893 start = fw_dump.boot_mem_addr[i]; 894 end = start + fw_dump.boot_mem_sz[i]; 895 ret = fadump_add_mem_range(&crash_mrange_info, start, end); 896 if (ret) 897 return ret; 898 } 899 900 for_each_memblock(memory, reg) { 901 start = (u64)reg->base; 902 end = start + (u64)reg->size; 903 904 /* 905 * skip the memory chunk that is already added 906 * (0 through boot_memory_top). 907 */ 908 if (start < fw_dump.boot_mem_top) { 909 if (end > fw_dump.boot_mem_top) 910 start = fw_dump.boot_mem_top; 911 else 912 continue; 913 } 914 915 /* add this range excluding the reserved dump area. */ 916 ret = fadump_exclude_reserved_area(start, end); 917 if (ret) 918 return ret; 919 } 920 921 return 0; 922 } 923 924 /* 925 * If the given physical address falls within the boot memory region then 926 * return the relocated address that points to the dump region reserved 927 * for saving initial boot memory contents. 928 */ 929 static inline unsigned long fadump_relocate(unsigned long paddr) 930 { 931 unsigned long raddr, rstart, rend, rlast, hole_size; 932 int i; 933 934 hole_size = 0; 935 rlast = 0; 936 raddr = paddr; 937 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 938 rstart = fw_dump.boot_mem_addr[i]; 939 rend = rstart + fw_dump.boot_mem_sz[i]; 940 hole_size += (rstart - rlast); 941 942 if (paddr >= rstart && paddr < rend) { 943 raddr += fw_dump.boot_mem_dest_addr - hole_size; 944 break; 945 } 946 947 rlast = rend; 948 } 949 950 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); 951 return raddr; 952 } 953 954 static int fadump_create_elfcore_headers(char *bufp) 955 { 956 unsigned long long raddr, offset; 957 struct elf_phdr *phdr; 958 struct elfhdr *elf; 959 int i, j; 960 961 fadump_init_elfcore_header(bufp); 962 elf = (struct elfhdr *)bufp; 963 bufp += sizeof(struct elfhdr); 964 965 /* 966 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 967 * will be populated during second kernel boot after crash. Hence 968 * this PT_NOTE will always be the first elf note. 969 * 970 * NOTE: Any new ELF note addition should be placed after this note. 971 */ 972 phdr = (struct elf_phdr *)bufp; 973 bufp += sizeof(struct elf_phdr); 974 phdr->p_type = PT_NOTE; 975 phdr->p_flags = 0; 976 phdr->p_vaddr = 0; 977 phdr->p_align = 0; 978 979 phdr->p_offset = 0; 980 phdr->p_paddr = 0; 981 phdr->p_filesz = 0; 982 phdr->p_memsz = 0; 983 984 (elf->e_phnum)++; 985 986 /* setup ELF PT_NOTE for vmcoreinfo */ 987 phdr = (struct elf_phdr *)bufp; 988 bufp += sizeof(struct elf_phdr); 989 phdr->p_type = PT_NOTE; 990 phdr->p_flags = 0; 991 phdr->p_vaddr = 0; 992 phdr->p_align = 0; 993 994 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 995 phdr->p_offset = phdr->p_paddr; 996 phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE; 997 998 /* Increment number of program headers. */ 999 (elf->e_phnum)++; 1000 1001 /* setup PT_LOAD sections. */ 1002 j = 0; 1003 offset = 0; 1004 raddr = fw_dump.boot_mem_addr[0]; 1005 for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) { 1006 u64 mbase, msize; 1007 1008 mbase = crash_mrange_info.mem_ranges[i].base; 1009 msize = crash_mrange_info.mem_ranges[i].size; 1010 if (!msize) 1011 continue; 1012 1013 phdr = (struct elf_phdr *)bufp; 1014 bufp += sizeof(struct elf_phdr); 1015 phdr->p_type = PT_LOAD; 1016 phdr->p_flags = PF_R|PF_W|PF_X; 1017 phdr->p_offset = mbase; 1018 1019 if (mbase == raddr) { 1020 /* 1021 * The entire real memory region will be moved by 1022 * firmware to the specified destination_address. 1023 * Hence set the correct offset. 1024 */ 1025 phdr->p_offset = fw_dump.boot_mem_dest_addr + offset; 1026 if (j < (fw_dump.boot_mem_regs_cnt - 1)) { 1027 offset += fw_dump.boot_mem_sz[j]; 1028 raddr = fw_dump.boot_mem_addr[++j]; 1029 } 1030 } 1031 1032 phdr->p_paddr = mbase; 1033 phdr->p_vaddr = (unsigned long)__va(mbase); 1034 phdr->p_filesz = msize; 1035 phdr->p_memsz = msize; 1036 phdr->p_align = 0; 1037 1038 /* Increment number of program headers. */ 1039 (elf->e_phnum)++; 1040 } 1041 return 0; 1042 } 1043 1044 static unsigned long init_fadump_header(unsigned long addr) 1045 { 1046 struct fadump_crash_info_header *fdh; 1047 1048 if (!addr) 1049 return 0; 1050 1051 fdh = __va(addr); 1052 addr += sizeof(struct fadump_crash_info_header); 1053 1054 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 1055 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 1056 fdh->elfcorehdr_addr = addr; 1057 /* We will set the crashing cpu id in crash_fadump() during crash. */ 1058 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 1059 1060 return addr; 1061 } 1062 1063 static int register_fadump(void) 1064 { 1065 unsigned long addr; 1066 void *vaddr; 1067 int ret; 1068 1069 /* 1070 * If no memory is reserved then we can not register for firmware- 1071 * assisted dump. 1072 */ 1073 if (!fw_dump.reserve_dump_area_size) 1074 return -ENODEV; 1075 1076 ret = fadump_setup_crash_memory_ranges(); 1077 if (ret) 1078 return ret; 1079 1080 addr = fw_dump.fadumphdr_addr; 1081 1082 /* Initialize fadump crash info header. */ 1083 addr = init_fadump_header(addr); 1084 vaddr = __va(addr); 1085 1086 pr_debug("Creating ELF core headers at %#016lx\n", addr); 1087 fadump_create_elfcore_headers(vaddr); 1088 1089 /* register the future kernel dump with firmware. */ 1090 pr_debug("Registering for firmware-assisted kernel dump...\n"); 1091 return fw_dump.ops->fadump_register(&fw_dump); 1092 } 1093 1094 void fadump_cleanup(void) 1095 { 1096 if (!fw_dump.fadump_supported) 1097 return; 1098 1099 /* Invalidate the registration only if dump is active. */ 1100 if (fw_dump.dump_active) { 1101 pr_debug("Invalidating firmware-assisted dump registration\n"); 1102 fw_dump.ops->fadump_invalidate(&fw_dump); 1103 } else if (fw_dump.dump_registered) { 1104 /* Un-register Firmware-assisted dump if it was registered. */ 1105 fw_dump.ops->fadump_unregister(&fw_dump); 1106 fadump_free_mem_ranges(&crash_mrange_info); 1107 } 1108 1109 if (fw_dump.ops->fadump_cleanup) 1110 fw_dump.ops->fadump_cleanup(&fw_dump); 1111 } 1112 1113 static void fadump_free_reserved_memory(unsigned long start_pfn, 1114 unsigned long end_pfn) 1115 { 1116 unsigned long pfn; 1117 unsigned long time_limit = jiffies + HZ; 1118 1119 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 1120 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 1121 1122 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1123 free_reserved_page(pfn_to_page(pfn)); 1124 1125 if (time_after(jiffies, time_limit)) { 1126 cond_resched(); 1127 time_limit = jiffies + HZ; 1128 } 1129 } 1130 } 1131 1132 /* 1133 * Skip memory holes and free memory that was actually reserved. 1134 */ 1135 static void fadump_release_reserved_area(u64 start, u64 end) 1136 { 1137 u64 tstart, tend, spfn, epfn; 1138 struct memblock_region *reg; 1139 1140 spfn = PHYS_PFN(start); 1141 epfn = PHYS_PFN(end); 1142 for_each_memblock(memory, reg) { 1143 tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg)); 1144 tend = min_t(u64, epfn, memblock_region_memory_end_pfn(reg)); 1145 if (tstart < tend) { 1146 fadump_free_reserved_memory(tstart, tend); 1147 1148 if (tend == epfn) 1149 break; 1150 1151 spfn = tend; 1152 } 1153 } 1154 } 1155 1156 /* 1157 * Sort the mem ranges in-place and merge adjacent ranges 1158 * to minimize the memory ranges count. 1159 */ 1160 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) 1161 { 1162 struct fadump_memory_range *mem_ranges; 1163 struct fadump_memory_range tmp_range; 1164 u64 base, size; 1165 int i, j, idx; 1166 1167 if (!reserved_mrange_info.mem_range_cnt) 1168 return; 1169 1170 /* Sort the memory ranges */ 1171 mem_ranges = mrange_info->mem_ranges; 1172 for (i = 0; i < mrange_info->mem_range_cnt; i++) { 1173 idx = i; 1174 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { 1175 if (mem_ranges[idx].base > mem_ranges[j].base) 1176 idx = j; 1177 } 1178 if (idx != i) { 1179 tmp_range = mem_ranges[idx]; 1180 mem_ranges[idx] = mem_ranges[i]; 1181 mem_ranges[i] = tmp_range; 1182 } 1183 } 1184 1185 /* Merge adjacent reserved ranges */ 1186 idx = 0; 1187 for (i = 1; i < mrange_info->mem_range_cnt; i++) { 1188 base = mem_ranges[i-1].base; 1189 size = mem_ranges[i-1].size; 1190 if (mem_ranges[i].base == (base + size)) 1191 mem_ranges[idx].size += mem_ranges[i].size; 1192 else { 1193 idx++; 1194 if (i == idx) 1195 continue; 1196 1197 mem_ranges[idx] = mem_ranges[i]; 1198 } 1199 } 1200 mrange_info->mem_range_cnt = idx + 1; 1201 } 1202 1203 /* 1204 * Scan reserved-ranges to consider them while reserving/releasing 1205 * memory for FADump. 1206 */ 1207 static inline int fadump_scan_reserved_mem_ranges(void) 1208 { 1209 struct device_node *root; 1210 const __be32 *prop; 1211 int len, ret = -1; 1212 unsigned long i; 1213 1214 root = of_find_node_by_path("/"); 1215 if (!root) 1216 return ret; 1217 1218 prop = of_get_property(root, "reserved-ranges", &len); 1219 if (!prop) 1220 return ret; 1221 1222 /* 1223 * Each reserved range is an (address,size) pair, 2 cells each, 1224 * totalling 4 cells per range. 1225 */ 1226 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 1227 u64 base, size; 1228 1229 base = of_read_number(prop + (i * 4) + 0, 2); 1230 size = of_read_number(prop + (i * 4) + 2, 2); 1231 1232 if (size) { 1233 ret = fadump_add_mem_range(&reserved_mrange_info, 1234 base, base + size); 1235 if (ret < 0) { 1236 pr_warn("some reserved ranges are ignored!\n"); 1237 break; 1238 } 1239 } 1240 } 1241 1242 return ret; 1243 } 1244 1245 /* 1246 * Release the memory that was reserved during early boot to preserve the 1247 * crash'ed kernel's memory contents except reserved dump area (permanent 1248 * reservation) and reserved ranges used by F/W. The released memory will 1249 * be available for general use. 1250 */ 1251 static void fadump_release_memory(u64 begin, u64 end) 1252 { 1253 u64 ra_start, ra_end, tstart; 1254 int i, ret; 1255 1256 fadump_scan_reserved_mem_ranges(); 1257 1258 ra_start = fw_dump.reserve_dump_area_start; 1259 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1260 1261 /* 1262 * Add reserved dump area to reserved ranges list 1263 * and exclude all these ranges while releasing memory. 1264 */ 1265 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); 1266 if (ret != 0) { 1267 /* 1268 * Not enough memory to setup reserved ranges but the system is 1269 * running shortage of memory. So, release all the memory except 1270 * Reserved dump area (reused for next fadump registration). 1271 */ 1272 if (begin < ra_end && end > ra_start) { 1273 if (begin < ra_start) 1274 fadump_release_reserved_area(begin, ra_start); 1275 if (end > ra_end) 1276 fadump_release_reserved_area(ra_end, end); 1277 } else 1278 fadump_release_reserved_area(begin, end); 1279 1280 return; 1281 } 1282 1283 /* Get the reserved ranges list in order first. */ 1284 sort_and_merge_mem_ranges(&reserved_mrange_info); 1285 1286 /* Exclude reserved ranges and release remaining memory */ 1287 tstart = begin; 1288 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { 1289 ra_start = reserved_mrange_info.mem_ranges[i].base; 1290 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; 1291 1292 if (tstart >= ra_end) 1293 continue; 1294 1295 if (tstart < ra_start) 1296 fadump_release_reserved_area(tstart, ra_start); 1297 tstart = ra_end; 1298 } 1299 1300 if (tstart < end) 1301 fadump_release_reserved_area(tstart, end); 1302 } 1303 1304 static void fadump_invalidate_release_mem(void) 1305 { 1306 mutex_lock(&fadump_mutex); 1307 if (!fw_dump.dump_active) { 1308 mutex_unlock(&fadump_mutex); 1309 return; 1310 } 1311 1312 fadump_cleanup(); 1313 mutex_unlock(&fadump_mutex); 1314 1315 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); 1316 fadump_free_cpu_notes_buf(); 1317 1318 /* 1319 * Setup kernel metadata and initialize the kernel dump 1320 * memory structure for FADump re-registration. 1321 */ 1322 if (fw_dump.ops->fadump_setup_metadata && 1323 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 1324 pr_warn("Failed to setup kernel metadata!\n"); 1325 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1326 } 1327 1328 static ssize_t release_mem_store(struct kobject *kobj, 1329 struct kobj_attribute *attr, 1330 const char *buf, size_t count) 1331 { 1332 int input = -1; 1333 1334 if (!fw_dump.dump_active) 1335 return -EPERM; 1336 1337 if (kstrtoint(buf, 0, &input)) 1338 return -EINVAL; 1339 1340 if (input == 1) { 1341 /* 1342 * Take away the '/proc/vmcore'. We are releasing the dump 1343 * memory, hence it will not be valid anymore. 1344 */ 1345 #ifdef CONFIG_PROC_VMCORE 1346 vmcore_cleanup(); 1347 #endif 1348 fadump_invalidate_release_mem(); 1349 1350 } else 1351 return -EINVAL; 1352 return count; 1353 } 1354 1355 /* Release the reserved memory and disable the FADump */ 1356 static void unregister_fadump(void) 1357 { 1358 fadump_cleanup(); 1359 fadump_release_memory(fw_dump.reserve_dump_area_start, 1360 fw_dump.reserve_dump_area_size); 1361 fw_dump.fadump_enabled = 0; 1362 kobject_put(fadump_kobj); 1363 } 1364 1365 static ssize_t enabled_show(struct kobject *kobj, 1366 struct kobj_attribute *attr, 1367 char *buf) 1368 { 1369 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1370 } 1371 1372 static ssize_t mem_reserved_show(struct kobject *kobj, 1373 struct kobj_attribute *attr, 1374 char *buf) 1375 { 1376 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size); 1377 } 1378 1379 static ssize_t registered_show(struct kobject *kobj, 1380 struct kobj_attribute *attr, 1381 char *buf) 1382 { 1383 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1384 } 1385 1386 static ssize_t registered_store(struct kobject *kobj, 1387 struct kobj_attribute *attr, 1388 const char *buf, size_t count) 1389 { 1390 int ret = 0; 1391 int input = -1; 1392 1393 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1394 return -EPERM; 1395 1396 if (kstrtoint(buf, 0, &input)) 1397 return -EINVAL; 1398 1399 mutex_lock(&fadump_mutex); 1400 1401 switch (input) { 1402 case 0: 1403 if (fw_dump.dump_registered == 0) { 1404 goto unlock_out; 1405 } 1406 1407 /* Un-register Firmware-assisted dump */ 1408 pr_debug("Un-register firmware-assisted dump\n"); 1409 fw_dump.ops->fadump_unregister(&fw_dump); 1410 break; 1411 case 1: 1412 if (fw_dump.dump_registered == 1) { 1413 /* Un-register Firmware-assisted dump */ 1414 fw_dump.ops->fadump_unregister(&fw_dump); 1415 } 1416 /* Register Firmware-assisted dump */ 1417 ret = register_fadump(); 1418 break; 1419 default: 1420 ret = -EINVAL; 1421 break; 1422 } 1423 1424 unlock_out: 1425 mutex_unlock(&fadump_mutex); 1426 return ret < 0 ? ret : count; 1427 } 1428 1429 static int fadump_region_show(struct seq_file *m, void *private) 1430 { 1431 if (!fw_dump.fadump_enabled) 1432 return 0; 1433 1434 mutex_lock(&fadump_mutex); 1435 fw_dump.ops->fadump_region_show(&fw_dump, m); 1436 mutex_unlock(&fadump_mutex); 1437 return 0; 1438 } 1439 1440 static struct kobj_attribute release_attr = __ATTR_WO(release_mem); 1441 static struct kobj_attribute enable_attr = __ATTR_RO(enabled); 1442 static struct kobj_attribute register_attr = __ATTR_RW(registered); 1443 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved); 1444 1445 static struct attribute *fadump_attrs[] = { 1446 &enable_attr.attr, 1447 ®ister_attr.attr, 1448 &mem_reserved_attr.attr, 1449 NULL, 1450 }; 1451 1452 ATTRIBUTE_GROUPS(fadump); 1453 1454 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1455 1456 static void fadump_init_files(void) 1457 { 1458 int rc = 0; 1459 1460 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj); 1461 if (!fadump_kobj) { 1462 pr_err("failed to create fadump kobject\n"); 1463 return; 1464 } 1465 1466 debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL, 1467 &fadump_region_fops); 1468 1469 if (fw_dump.dump_active) { 1470 rc = sysfs_create_file(fadump_kobj, &release_attr.attr); 1471 if (rc) 1472 pr_err("unable to create release_mem sysfs file (%d)\n", 1473 rc); 1474 } 1475 1476 rc = sysfs_create_groups(fadump_kobj, fadump_groups); 1477 if (rc) { 1478 pr_err("sysfs group creation failed (%d), unregistering FADump", 1479 rc); 1480 unregister_fadump(); 1481 return; 1482 } 1483 1484 /* 1485 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to 1486 * create symlink at old location to maintain backward compatibility. 1487 * 1488 * - fadump_enabled -> fadump/enabled 1489 * - fadump_registered -> fadump/registered 1490 * - fadump_release_mem -> fadump/release_mem 1491 */ 1492 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1493 "enabled", "fadump_enabled"); 1494 if (rc) { 1495 pr_err("unable to create fadump_enabled symlink (%d)", rc); 1496 return; 1497 } 1498 1499 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1500 "registered", 1501 "fadump_registered"); 1502 if (rc) { 1503 pr_err("unable to create fadump_registered symlink (%d)", rc); 1504 sysfs_remove_link(kernel_kobj, "fadump_enabled"); 1505 return; 1506 } 1507 1508 if (fw_dump.dump_active) { 1509 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, 1510 fadump_kobj, 1511 "release_mem", 1512 "fadump_release_mem"); 1513 if (rc) 1514 pr_err("unable to create fadump_release_mem symlink (%d)", 1515 rc); 1516 } 1517 return; 1518 } 1519 1520 /* 1521 * Prepare for firmware-assisted dump. 1522 */ 1523 int __init setup_fadump(void) 1524 { 1525 if (!fw_dump.fadump_supported) 1526 return 0; 1527 1528 fadump_init_files(); 1529 fadump_show_config(); 1530 1531 if (!fw_dump.fadump_enabled) 1532 return 1; 1533 1534 /* 1535 * If dump data is available then see if it is valid and prepare for 1536 * saving it to the disk. 1537 */ 1538 if (fw_dump.dump_active) { 1539 /* 1540 * if dump process fails then invalidate the registration 1541 * and release memory before proceeding for re-registration. 1542 */ 1543 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1544 fadump_invalidate_release_mem(); 1545 } 1546 /* Initialize the kernel dump memory structure for FAD registration. */ 1547 else if (fw_dump.reserve_dump_area_size) 1548 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1549 1550 return 1; 1551 } 1552 subsys_initcall(setup_fadump); 1553 #else /* !CONFIG_PRESERVE_FA_DUMP */ 1554 1555 /* Scan the Firmware Assisted dump configuration details. */ 1556 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 1557 int depth, void *data) 1558 { 1559 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) 1560 return 0; 1561 1562 opal_fadump_dt_scan(&fw_dump, node); 1563 return 1; 1564 } 1565 1566 /* 1567 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, 1568 * preserve crash data. The subsequent memory preserving kernel boot 1569 * is likely to process this crash data. 1570 */ 1571 int __init fadump_reserve_mem(void) 1572 { 1573 if (fw_dump.dump_active) { 1574 /* 1575 * If last boot has crashed then reserve all the memory 1576 * above boot memory to preserve crash data. 1577 */ 1578 pr_info("Preserving crash data for processing in next boot.\n"); 1579 fadump_reserve_crash_area(fw_dump.boot_mem_top); 1580 } else 1581 pr_debug("FADump-aware kernel..\n"); 1582 1583 return 1; 1584 } 1585 #endif /* CONFIG_PRESERVE_FA_DUMP */ 1586 1587 /* Preserve everything above the base address */ 1588 static void __init fadump_reserve_crash_area(u64 base) 1589 { 1590 struct memblock_region *reg; 1591 u64 mstart, msize; 1592 1593 for_each_memblock(memory, reg) { 1594 mstart = reg->base; 1595 msize = reg->size; 1596 1597 if ((mstart + msize) < base) 1598 continue; 1599 1600 if (mstart < base) { 1601 msize -= (base - mstart); 1602 mstart = base; 1603 } 1604 1605 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", 1606 (msize >> 20), mstart); 1607 memblock_reserve(mstart, msize); 1608 } 1609 } 1610 1611 unsigned long __init arch_reserved_kernel_pages(void) 1612 { 1613 return memblock_reserved_size() / PAGE_SIZE; 1614 } 1615