1 /* 2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 3 * dump with assistance from firmware. This approach does not use kexec, 4 * instead firmware assists in booting the kdump kernel while preserving 5 * memory contents. The most of the code implementation has been adapted 6 * from phyp assisted dump implementation written by Linas Vepstas and 7 * Manish Ahuja 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 22 * 23 * Copyright 2011 IBM Corporation 24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 25 */ 26 27 #undef DEBUG 28 #define pr_fmt(fmt) "fadump: " fmt 29 30 #include <linux/string.h> 31 #include <linux/memblock.h> 32 #include <linux/delay.h> 33 #include <linux/debugfs.h> 34 #include <linux/seq_file.h> 35 #include <linux/crash_dump.h> 36 #include <linux/kobject.h> 37 #include <linux/sysfs.h> 38 39 #include <asm/page.h> 40 #include <asm/prom.h> 41 #include <asm/rtas.h> 42 #include <asm/fadump.h> 43 #include <asm/debug.h> 44 #include <asm/setup.h> 45 46 static struct fw_dump fw_dump; 47 static struct fadump_mem_struct fdm; 48 static const struct fadump_mem_struct *fdm_active; 49 50 static DEFINE_MUTEX(fadump_mutex); 51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES]; 52 int crash_mem_ranges; 53 54 /* Scan the Firmware Assisted dump configuration details. */ 55 int __init early_init_dt_scan_fw_dump(unsigned long node, 56 const char *uname, int depth, void *data) 57 { 58 const __be32 *sections; 59 int i, num_sections; 60 int size; 61 const __be32 *token; 62 63 if (depth != 1 || strcmp(uname, "rtas") != 0) 64 return 0; 65 66 /* 67 * Check if Firmware Assisted dump is supported. if yes, check 68 * if dump has been initiated on last reboot. 69 */ 70 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL); 71 if (!token) 72 return 1; 73 74 fw_dump.fadump_supported = 1; 75 fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token); 76 77 /* 78 * The 'ibm,kernel-dump' rtas node is present only if there is 79 * dump data waiting for us. 80 */ 81 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL); 82 if (fdm_active) 83 fw_dump.dump_active = 1; 84 85 /* Get the sizes required to store dump data for the firmware provided 86 * dump sections. 87 * For each dump section type supported, a 32bit cell which defines 88 * the ID of a supported section followed by two 32 bit cells which 89 * gives teh size of the section in bytes. 90 */ 91 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes", 92 &size); 93 94 if (!sections) 95 return 1; 96 97 num_sections = size / (3 * sizeof(u32)); 98 99 for (i = 0; i < num_sections; i++, sections += 3) { 100 u32 type = (u32)of_read_number(sections, 1); 101 102 switch (type) { 103 case FADUMP_CPU_STATE_DATA: 104 fw_dump.cpu_state_data_size = 105 of_read_ulong(§ions[1], 2); 106 break; 107 case FADUMP_HPTE_REGION: 108 fw_dump.hpte_region_size = 109 of_read_ulong(§ions[1], 2); 110 break; 111 } 112 } 113 114 return 1; 115 } 116 117 int is_fadump_active(void) 118 { 119 return fw_dump.dump_active; 120 } 121 122 /* Print firmware assisted dump configurations for debugging purpose. */ 123 static void fadump_show_config(void) 124 { 125 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 126 (fw_dump.fadump_supported ? "present" : "no support")); 127 128 if (!fw_dump.fadump_supported) 129 return; 130 131 pr_debug("Fadump enabled : %s\n", 132 (fw_dump.fadump_enabled ? "yes" : "no")); 133 pr_debug("Dump Active : %s\n", 134 (fw_dump.dump_active ? "yes" : "no")); 135 pr_debug("Dump section sizes:\n"); 136 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 137 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 138 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size); 139 } 140 141 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm, 142 unsigned long addr) 143 { 144 if (!fdm) 145 return 0; 146 147 memset(fdm, 0, sizeof(struct fadump_mem_struct)); 148 addr = addr & PAGE_MASK; 149 150 fdm->header.dump_format_version = cpu_to_be32(0x00000001); 151 fdm->header.dump_num_sections = cpu_to_be16(3); 152 fdm->header.dump_status_flag = 0; 153 fdm->header.offset_first_dump_section = 154 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data)); 155 156 /* 157 * Fields for disk dump option. 158 * We are not using disk dump option, hence set these fields to 0. 159 */ 160 fdm->header.dd_block_size = 0; 161 fdm->header.dd_block_offset = 0; 162 fdm->header.dd_num_blocks = 0; 163 fdm->header.dd_offset_disk_path = 0; 164 165 /* set 0 to disable an automatic dump-reboot. */ 166 fdm->header.max_time_auto = 0; 167 168 /* Kernel dump sections */ 169 /* cpu state data section. */ 170 fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); 171 fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA); 172 fdm->cpu_state_data.source_address = 0; 173 fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size); 174 fdm->cpu_state_data.destination_address = cpu_to_be64(addr); 175 addr += fw_dump.cpu_state_data_size; 176 177 /* hpte region section */ 178 fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); 179 fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION); 180 fdm->hpte_region.source_address = 0; 181 fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size); 182 fdm->hpte_region.destination_address = cpu_to_be64(addr); 183 addr += fw_dump.hpte_region_size; 184 185 /* RMA region section */ 186 fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG); 187 fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION); 188 fdm->rmr_region.source_address = cpu_to_be64(RMA_START); 189 fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size); 190 fdm->rmr_region.destination_address = cpu_to_be64(addr); 191 addr += fw_dump.boot_memory_size; 192 193 return addr; 194 } 195 196 /** 197 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 198 * 199 * Function to find the largest memory size we need to reserve during early 200 * boot process. This will be the size of the memory that is required for a 201 * kernel to boot successfully. 202 * 203 * This function has been taken from phyp-assisted dump feature implementation. 204 * 205 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 206 * 207 * TODO: Come up with better approach to find out more accurate memory size 208 * that is required for a kernel to boot successfully. 209 * 210 */ 211 static inline unsigned long fadump_calculate_reserve_size(void) 212 { 213 unsigned long size; 214 215 /* 216 * Check if the size is specified through fadump_reserve_mem= cmdline 217 * option. If yes, then use that. 218 */ 219 if (fw_dump.reserve_bootvar) 220 return fw_dump.reserve_bootvar; 221 222 /* divide by 20 to get 5% of value */ 223 size = memblock_end_of_DRAM() / 20; 224 225 /* round it down in multiples of 256 */ 226 size = size & ~0x0FFFFFFFUL; 227 228 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 229 if (memory_limit && size > memory_limit) 230 size = memory_limit; 231 232 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM); 233 } 234 235 /* 236 * Calculate the total memory size required to be reserved for 237 * firmware-assisted dump registration. 238 */ 239 static unsigned long get_fadump_area_size(void) 240 { 241 unsigned long size = 0; 242 243 size += fw_dump.cpu_state_data_size; 244 size += fw_dump.hpte_region_size; 245 size += fw_dump.boot_memory_size; 246 size += sizeof(struct fadump_crash_info_header); 247 size += sizeof(struct elfhdr); /* ELF core header.*/ 248 size += sizeof(struct elf_phdr); /* place holder for cpu notes */ 249 /* Program headers for crash memory regions. */ 250 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2); 251 252 size = PAGE_ALIGN(size); 253 return size; 254 } 255 256 int __init fadump_reserve_mem(void) 257 { 258 unsigned long base, size, memory_boundary; 259 260 if (!fw_dump.fadump_enabled) 261 return 0; 262 263 if (!fw_dump.fadump_supported) { 264 printk(KERN_INFO "Firmware-assisted dump is not supported on" 265 " this hardware\n"); 266 fw_dump.fadump_enabled = 0; 267 return 0; 268 } 269 /* 270 * Initialize boot memory size 271 * If dump is active then we have already calculated the size during 272 * first kernel. 273 */ 274 if (fdm_active) 275 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len); 276 else 277 fw_dump.boot_memory_size = fadump_calculate_reserve_size(); 278 279 /* 280 * Calculate the memory boundary. 281 * If memory_limit is less than actual memory boundary then reserve 282 * the memory for fadump beyond the memory_limit and adjust the 283 * memory_limit accordingly, so that the running kernel can run with 284 * specified memory_limit. 285 */ 286 if (memory_limit && memory_limit < memblock_end_of_DRAM()) { 287 size = get_fadump_area_size(); 288 if ((memory_limit + size) < memblock_end_of_DRAM()) 289 memory_limit += size; 290 else 291 memory_limit = memblock_end_of_DRAM(); 292 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted" 293 " dump, now %#016llx\n", memory_limit); 294 } 295 if (memory_limit) 296 memory_boundary = memory_limit; 297 else 298 memory_boundary = memblock_end_of_DRAM(); 299 300 if (fw_dump.dump_active) { 301 printk(KERN_INFO "Firmware-assisted dump is active.\n"); 302 /* 303 * If last boot has crashed then reserve all the memory 304 * above boot_memory_size so that we don't touch it until 305 * dump is written to disk by userspace tool. This memory 306 * will be released for general use once the dump is saved. 307 */ 308 base = fw_dump.boot_memory_size; 309 size = memory_boundary - base; 310 memblock_reserve(base, size); 311 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB " 312 "for saving crash dump\n", 313 (unsigned long)(size >> 20), 314 (unsigned long)(base >> 20)); 315 316 fw_dump.fadumphdr_addr = 317 be64_to_cpu(fdm_active->rmr_region.destination_address) + 318 be64_to_cpu(fdm_active->rmr_region.source_len); 319 pr_debug("fadumphdr_addr = %p\n", 320 (void *) fw_dump.fadumphdr_addr); 321 } else { 322 /* Reserve the memory at the top of memory. */ 323 size = get_fadump_area_size(); 324 base = memory_boundary - size; 325 memblock_reserve(base, size); 326 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB " 327 "for firmware-assisted dump\n", 328 (unsigned long)(size >> 20), 329 (unsigned long)(base >> 20)); 330 } 331 fw_dump.reserve_dump_area_start = base; 332 fw_dump.reserve_dump_area_size = size; 333 return 1; 334 } 335 336 /* Look for fadump= cmdline option. */ 337 static int __init early_fadump_param(char *p) 338 { 339 if (!p) 340 return 1; 341 342 if (strncmp(p, "on", 2) == 0) 343 fw_dump.fadump_enabled = 1; 344 else if (strncmp(p, "off", 3) == 0) 345 fw_dump.fadump_enabled = 0; 346 347 return 0; 348 } 349 early_param("fadump", early_fadump_param); 350 351 /* Look for fadump_reserve_mem= cmdline option */ 352 static int __init early_fadump_reserve_mem(char *p) 353 { 354 if (p) 355 fw_dump.reserve_bootvar = memparse(p, &p); 356 return 0; 357 } 358 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 359 360 static void register_fw_dump(struct fadump_mem_struct *fdm) 361 { 362 int rc; 363 unsigned int wait_time; 364 365 pr_debug("Registering for firmware-assisted kernel dump...\n"); 366 367 /* TODO: Add upper time limit for the delay */ 368 do { 369 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, 370 FADUMP_REGISTER, fdm, 371 sizeof(struct fadump_mem_struct)); 372 373 wait_time = rtas_busy_delay_time(rc); 374 if (wait_time) 375 mdelay(wait_time); 376 377 } while (wait_time); 378 379 switch (rc) { 380 case -1: 381 printk(KERN_ERR "Failed to register firmware-assisted kernel" 382 " dump. Hardware Error(%d).\n", rc); 383 break; 384 case -3: 385 printk(KERN_ERR "Failed to register firmware-assisted kernel" 386 " dump. Parameter Error(%d).\n", rc); 387 break; 388 case -9: 389 printk(KERN_ERR "firmware-assisted kernel dump is already " 390 " registered."); 391 fw_dump.dump_registered = 1; 392 break; 393 case 0: 394 printk(KERN_INFO "firmware-assisted kernel dump registration" 395 " is successful\n"); 396 fw_dump.dump_registered = 1; 397 break; 398 } 399 } 400 401 void crash_fadump(struct pt_regs *regs, const char *str) 402 { 403 struct fadump_crash_info_header *fdh = NULL; 404 405 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 406 return; 407 408 fdh = __va(fw_dump.fadumphdr_addr); 409 crashing_cpu = smp_processor_id(); 410 fdh->crashing_cpu = crashing_cpu; 411 crash_save_vmcoreinfo(); 412 413 if (regs) 414 fdh->regs = *regs; 415 else 416 ppc_save_regs(&fdh->regs); 417 418 fdh->online_mask = *cpu_online_mask; 419 420 /* Call ibm,os-term rtas call to trigger firmware assisted dump */ 421 rtas_os_term((char *)str); 422 } 423 424 #define GPR_MASK 0xffffff0000000000 425 static inline int fadump_gpr_index(u64 id) 426 { 427 int i = -1; 428 char str[3]; 429 430 if ((id & GPR_MASK) == REG_ID("GPR")) { 431 /* get the digits at the end */ 432 id &= ~GPR_MASK; 433 id >>= 24; 434 str[2] = '\0'; 435 str[1] = id & 0xff; 436 str[0] = (id >> 8) & 0xff; 437 sscanf(str, "%d", &i); 438 if (i > 31) 439 i = -1; 440 } 441 return i; 442 } 443 444 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id, 445 u64 reg_val) 446 { 447 int i; 448 449 i = fadump_gpr_index(reg_id); 450 if (i >= 0) 451 regs->gpr[i] = (unsigned long)reg_val; 452 else if (reg_id == REG_ID("NIA")) 453 regs->nip = (unsigned long)reg_val; 454 else if (reg_id == REG_ID("MSR")) 455 regs->msr = (unsigned long)reg_val; 456 else if (reg_id == REG_ID("CTR")) 457 regs->ctr = (unsigned long)reg_val; 458 else if (reg_id == REG_ID("LR")) 459 regs->link = (unsigned long)reg_val; 460 else if (reg_id == REG_ID("XER")) 461 regs->xer = (unsigned long)reg_val; 462 else if (reg_id == REG_ID("CR")) 463 regs->ccr = (unsigned long)reg_val; 464 else if (reg_id == REG_ID("DAR")) 465 regs->dar = (unsigned long)reg_val; 466 else if (reg_id == REG_ID("DSISR")) 467 regs->dsisr = (unsigned long)reg_val; 468 } 469 470 static struct fadump_reg_entry* 471 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs) 472 { 473 memset(regs, 0, sizeof(struct pt_regs)); 474 475 while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) { 476 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id), 477 be64_to_cpu(reg_entry->reg_value)); 478 reg_entry++; 479 } 480 reg_entry++; 481 return reg_entry; 482 } 483 484 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type, 485 void *data, size_t data_len) 486 { 487 struct elf_note note; 488 489 note.n_namesz = strlen(name) + 1; 490 note.n_descsz = data_len; 491 note.n_type = type; 492 memcpy(buf, ¬e, sizeof(note)); 493 buf += (sizeof(note) + 3)/4; 494 memcpy(buf, name, note.n_namesz); 495 buf += (note.n_namesz + 3)/4; 496 memcpy(buf, data, note.n_descsz); 497 buf += (note.n_descsz + 3)/4; 498 499 return buf; 500 } 501 502 static void fadump_final_note(u32 *buf) 503 { 504 struct elf_note note; 505 506 note.n_namesz = 0; 507 note.n_descsz = 0; 508 note.n_type = 0; 509 memcpy(buf, ¬e, sizeof(note)); 510 } 511 512 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 513 { 514 struct elf_prstatus prstatus; 515 516 memset(&prstatus, 0, sizeof(prstatus)); 517 /* 518 * FIXME: How do i get PID? Do I really need it? 519 * prstatus.pr_pid = ???? 520 */ 521 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 522 buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 523 &prstatus, sizeof(prstatus)); 524 return buf; 525 } 526 527 static void fadump_update_elfcore_header(char *bufp) 528 { 529 struct elfhdr *elf; 530 struct elf_phdr *phdr; 531 532 elf = (struct elfhdr *)bufp; 533 bufp += sizeof(struct elfhdr); 534 535 /* First note is a place holder for cpu notes info. */ 536 phdr = (struct elf_phdr *)bufp; 537 538 if (phdr->p_type == PT_NOTE) { 539 phdr->p_paddr = fw_dump.cpu_notes_buf; 540 phdr->p_offset = phdr->p_paddr; 541 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 542 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 543 } 544 return; 545 } 546 547 static void *fadump_cpu_notes_buf_alloc(unsigned long size) 548 { 549 void *vaddr; 550 struct page *page; 551 unsigned long order, count, i; 552 553 order = get_order(size); 554 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order); 555 if (!vaddr) 556 return NULL; 557 558 count = 1 << order; 559 page = virt_to_page(vaddr); 560 for (i = 0; i < count; i++) 561 SetPageReserved(page + i); 562 return vaddr; 563 } 564 565 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size) 566 { 567 struct page *page; 568 unsigned long order, count, i; 569 570 order = get_order(size); 571 count = 1 << order; 572 page = virt_to_page(vaddr); 573 for (i = 0; i < count; i++) 574 ClearPageReserved(page + i); 575 __free_pages(page, order); 576 } 577 578 /* 579 * Read CPU state dump data and convert it into ELF notes. 580 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be 581 * used to access the data to allow for additional fields to be added without 582 * affecting compatibility. Each list of registers for a CPU starts with 583 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes, 584 * 8 Byte ASCII identifier and 8 Byte register value. The register entry 585 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part 586 * of register value. For more details refer to PAPR document. 587 * 588 * Only for the crashing cpu we ignore the CPU dump data and get exact 589 * state from fadump crash info structure populated by first kernel at the 590 * time of crash. 591 */ 592 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm) 593 { 594 struct fadump_reg_save_area_header *reg_header; 595 struct fadump_reg_entry *reg_entry; 596 struct fadump_crash_info_header *fdh = NULL; 597 void *vaddr; 598 unsigned long addr; 599 u32 num_cpus, *note_buf; 600 struct pt_regs regs; 601 int i, rc = 0, cpu = 0; 602 603 if (!fdm->cpu_state_data.bytes_dumped) 604 return -EINVAL; 605 606 addr = be64_to_cpu(fdm->cpu_state_data.destination_address); 607 vaddr = __va(addr); 608 609 reg_header = vaddr; 610 if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) { 611 printk(KERN_ERR "Unable to read register save area.\n"); 612 return -ENOENT; 613 } 614 pr_debug("--------CPU State Data------------\n"); 615 pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number)); 616 pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset)); 617 618 vaddr += be32_to_cpu(reg_header->num_cpu_offset); 619 num_cpus = be32_to_cpu(*((__be32 *)(vaddr))); 620 pr_debug("NumCpus : %u\n", num_cpus); 621 vaddr += sizeof(u32); 622 reg_entry = (struct fadump_reg_entry *)vaddr; 623 624 /* Allocate buffer to hold cpu crash notes. */ 625 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 626 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 627 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size); 628 if (!note_buf) { 629 printk(KERN_ERR "Failed to allocate 0x%lx bytes for " 630 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size); 631 return -ENOMEM; 632 } 633 fw_dump.cpu_notes_buf = __pa(note_buf); 634 635 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n", 636 (num_cpus * sizeof(note_buf_t)), note_buf); 637 638 if (fw_dump.fadumphdr_addr) 639 fdh = __va(fw_dump.fadumphdr_addr); 640 641 for (i = 0; i < num_cpus; i++) { 642 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) { 643 printk(KERN_ERR "Unable to read CPU state data\n"); 644 rc = -ENOENT; 645 goto error_out; 646 } 647 /* Lower 4 bytes of reg_value contains logical cpu id */ 648 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK; 649 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) { 650 SKIP_TO_NEXT_CPU(reg_entry); 651 continue; 652 } 653 pr_debug("Reading register data for cpu %d...\n", cpu); 654 if (fdh && fdh->crashing_cpu == cpu) { 655 regs = fdh->regs; 656 note_buf = fadump_regs_to_elf_notes(note_buf, ®s); 657 SKIP_TO_NEXT_CPU(reg_entry); 658 } else { 659 reg_entry++; 660 reg_entry = fadump_read_registers(reg_entry, ®s); 661 note_buf = fadump_regs_to_elf_notes(note_buf, ®s); 662 } 663 } 664 fadump_final_note(note_buf); 665 666 if (fdh) { 667 pr_debug("Updating elfcore header (%llx) with cpu notes\n", 668 fdh->elfcorehdr_addr); 669 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr)); 670 } 671 return 0; 672 673 error_out: 674 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf), 675 fw_dump.cpu_notes_buf_size); 676 fw_dump.cpu_notes_buf = 0; 677 fw_dump.cpu_notes_buf_size = 0; 678 return rc; 679 680 } 681 682 /* 683 * Validate and process the dump data stored by firmware before exporting 684 * it through '/proc/vmcore'. 685 */ 686 static int __init process_fadump(const struct fadump_mem_struct *fdm_active) 687 { 688 struct fadump_crash_info_header *fdh; 689 int rc = 0; 690 691 if (!fdm_active || !fw_dump.fadumphdr_addr) 692 return -EINVAL; 693 694 /* Check if the dump data is valid. */ 695 if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) || 696 (fdm_active->cpu_state_data.error_flags != 0) || 697 (fdm_active->rmr_region.error_flags != 0)) { 698 printk(KERN_ERR "Dump taken by platform is not valid\n"); 699 return -EINVAL; 700 } 701 if ((fdm_active->rmr_region.bytes_dumped != 702 fdm_active->rmr_region.source_len) || 703 !fdm_active->cpu_state_data.bytes_dumped) { 704 printk(KERN_ERR "Dump taken by platform is incomplete\n"); 705 return -EINVAL; 706 } 707 708 /* Validate the fadump crash info header */ 709 fdh = __va(fw_dump.fadumphdr_addr); 710 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) { 711 printk(KERN_ERR "Crash info header is not valid.\n"); 712 return -EINVAL; 713 } 714 715 rc = fadump_build_cpu_notes(fdm_active); 716 if (rc) 717 return rc; 718 719 /* 720 * We are done validating dump info and elfcore header is now ready 721 * to be exported. set elfcorehdr_addr so that vmcore module will 722 * export the elfcore header through '/proc/vmcore'. 723 */ 724 elfcorehdr_addr = fdh->elfcorehdr_addr; 725 726 return 0; 727 } 728 729 static inline void fadump_add_crash_memory(unsigned long long base, 730 unsigned long long end) 731 { 732 if (base == end) 733 return; 734 735 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 736 crash_mem_ranges, base, end - 1, (end - base)); 737 crash_memory_ranges[crash_mem_ranges].base = base; 738 crash_memory_ranges[crash_mem_ranges].size = end - base; 739 crash_mem_ranges++; 740 } 741 742 static void fadump_exclude_reserved_area(unsigned long long start, 743 unsigned long long end) 744 { 745 unsigned long long ra_start, ra_end; 746 747 ra_start = fw_dump.reserve_dump_area_start; 748 ra_end = ra_start + fw_dump.reserve_dump_area_size; 749 750 if ((ra_start < end) && (ra_end > start)) { 751 if ((start < ra_start) && (end > ra_end)) { 752 fadump_add_crash_memory(start, ra_start); 753 fadump_add_crash_memory(ra_end, end); 754 } else if (start < ra_start) { 755 fadump_add_crash_memory(start, ra_start); 756 } else if (ra_end < end) { 757 fadump_add_crash_memory(ra_end, end); 758 } 759 } else 760 fadump_add_crash_memory(start, end); 761 } 762 763 static int fadump_init_elfcore_header(char *bufp) 764 { 765 struct elfhdr *elf; 766 767 elf = (struct elfhdr *) bufp; 768 bufp += sizeof(struct elfhdr); 769 memcpy(elf->e_ident, ELFMAG, SELFMAG); 770 elf->e_ident[EI_CLASS] = ELF_CLASS; 771 elf->e_ident[EI_DATA] = ELF_DATA; 772 elf->e_ident[EI_VERSION] = EV_CURRENT; 773 elf->e_ident[EI_OSABI] = ELF_OSABI; 774 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 775 elf->e_type = ET_CORE; 776 elf->e_machine = ELF_ARCH; 777 elf->e_version = EV_CURRENT; 778 elf->e_entry = 0; 779 elf->e_phoff = sizeof(struct elfhdr); 780 elf->e_shoff = 0; 781 elf->e_flags = ELF_CORE_EFLAGS; 782 elf->e_ehsize = sizeof(struct elfhdr); 783 elf->e_phentsize = sizeof(struct elf_phdr); 784 elf->e_phnum = 0; 785 elf->e_shentsize = 0; 786 elf->e_shnum = 0; 787 elf->e_shstrndx = 0; 788 789 return 0; 790 } 791 792 /* 793 * Traverse through memblock structure and setup crash memory ranges. These 794 * ranges will be used create PT_LOAD program headers in elfcore header. 795 */ 796 static void fadump_setup_crash_memory_ranges(void) 797 { 798 struct memblock_region *reg; 799 unsigned long long start, end; 800 801 pr_debug("Setup crash memory ranges.\n"); 802 crash_mem_ranges = 0; 803 /* 804 * add the first memory chunk (RMA_START through boot_memory_size) as 805 * a separate memory chunk. The reason is, at the time crash firmware 806 * will move the content of this memory chunk to different location 807 * specified during fadump registration. We need to create a separate 808 * program header for this chunk with the correct offset. 809 */ 810 fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size); 811 812 for_each_memblock(memory, reg) { 813 start = (unsigned long long)reg->base; 814 end = start + (unsigned long long)reg->size; 815 if (start == RMA_START && end >= fw_dump.boot_memory_size) 816 start = fw_dump.boot_memory_size; 817 818 /* add this range excluding the reserved dump area. */ 819 fadump_exclude_reserved_area(start, end); 820 } 821 } 822 823 /* 824 * If the given physical address falls within the boot memory region then 825 * return the relocated address that points to the dump region reserved 826 * for saving initial boot memory contents. 827 */ 828 static inline unsigned long fadump_relocate(unsigned long paddr) 829 { 830 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size) 831 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr; 832 else 833 return paddr; 834 } 835 836 static int fadump_create_elfcore_headers(char *bufp) 837 { 838 struct elfhdr *elf; 839 struct elf_phdr *phdr; 840 int i; 841 842 fadump_init_elfcore_header(bufp); 843 elf = (struct elfhdr *)bufp; 844 bufp += sizeof(struct elfhdr); 845 846 /* 847 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info 848 * will be populated during second kernel boot after crash. Hence 849 * this PT_NOTE will always be the first elf note. 850 * 851 * NOTE: Any new ELF note addition should be placed after this note. 852 */ 853 phdr = (struct elf_phdr *)bufp; 854 bufp += sizeof(struct elf_phdr); 855 phdr->p_type = PT_NOTE; 856 phdr->p_flags = 0; 857 phdr->p_vaddr = 0; 858 phdr->p_align = 0; 859 860 phdr->p_offset = 0; 861 phdr->p_paddr = 0; 862 phdr->p_filesz = 0; 863 phdr->p_memsz = 0; 864 865 (elf->e_phnum)++; 866 867 /* setup ELF PT_NOTE for vmcoreinfo */ 868 phdr = (struct elf_phdr *)bufp; 869 bufp += sizeof(struct elf_phdr); 870 phdr->p_type = PT_NOTE; 871 phdr->p_flags = 0; 872 phdr->p_vaddr = 0; 873 phdr->p_align = 0; 874 875 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note()); 876 phdr->p_offset = phdr->p_paddr; 877 phdr->p_memsz = vmcoreinfo_max_size; 878 phdr->p_filesz = vmcoreinfo_max_size; 879 880 /* Increment number of program headers. */ 881 (elf->e_phnum)++; 882 883 /* setup PT_LOAD sections. */ 884 885 for (i = 0; i < crash_mem_ranges; i++) { 886 unsigned long long mbase, msize; 887 mbase = crash_memory_ranges[i].base; 888 msize = crash_memory_ranges[i].size; 889 890 if (!msize) 891 continue; 892 893 phdr = (struct elf_phdr *)bufp; 894 bufp += sizeof(struct elf_phdr); 895 phdr->p_type = PT_LOAD; 896 phdr->p_flags = PF_R|PF_W|PF_X; 897 phdr->p_offset = mbase; 898 899 if (mbase == RMA_START) { 900 /* 901 * The entire RMA region will be moved by firmware 902 * to the specified destination_address. Hence set 903 * the correct offset. 904 */ 905 phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address); 906 } 907 908 phdr->p_paddr = mbase; 909 phdr->p_vaddr = (unsigned long)__va(mbase); 910 phdr->p_filesz = msize; 911 phdr->p_memsz = msize; 912 phdr->p_align = 0; 913 914 /* Increment number of program headers. */ 915 (elf->e_phnum)++; 916 } 917 return 0; 918 } 919 920 static unsigned long init_fadump_header(unsigned long addr) 921 { 922 struct fadump_crash_info_header *fdh; 923 924 if (!addr) 925 return 0; 926 927 fw_dump.fadumphdr_addr = addr; 928 fdh = __va(addr); 929 addr += sizeof(struct fadump_crash_info_header); 930 931 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 932 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 933 fdh->elfcorehdr_addr = addr; 934 /* We will set the crashing cpu id in crash_fadump() during crash. */ 935 fdh->crashing_cpu = CPU_UNKNOWN; 936 937 return addr; 938 } 939 940 static void register_fadump(void) 941 { 942 unsigned long addr; 943 void *vaddr; 944 945 /* 946 * If no memory is reserved then we can not register for firmware- 947 * assisted dump. 948 */ 949 if (!fw_dump.reserve_dump_area_size) 950 return; 951 952 fadump_setup_crash_memory_ranges(); 953 954 addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len); 955 /* Initialize fadump crash info header. */ 956 addr = init_fadump_header(addr); 957 vaddr = __va(addr); 958 959 pr_debug("Creating ELF core headers at %#016lx\n", addr); 960 fadump_create_elfcore_headers(vaddr); 961 962 /* register the future kernel dump with firmware. */ 963 register_fw_dump(&fdm); 964 } 965 966 static int fadump_unregister_dump(struct fadump_mem_struct *fdm) 967 { 968 int rc = 0; 969 unsigned int wait_time; 970 971 pr_debug("Un-register firmware-assisted dump\n"); 972 973 /* TODO: Add upper time limit for the delay */ 974 do { 975 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, 976 FADUMP_UNREGISTER, fdm, 977 sizeof(struct fadump_mem_struct)); 978 979 wait_time = rtas_busy_delay_time(rc); 980 if (wait_time) 981 mdelay(wait_time); 982 } while (wait_time); 983 984 if (rc) { 985 printk(KERN_ERR "Failed to un-register firmware-assisted dump." 986 " unexpected error(%d).\n", rc); 987 return rc; 988 } 989 fw_dump.dump_registered = 0; 990 return 0; 991 } 992 993 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm) 994 { 995 int rc = 0; 996 unsigned int wait_time; 997 998 pr_debug("Invalidating firmware-assisted dump registration\n"); 999 1000 /* TODO: Add upper time limit for the delay */ 1001 do { 1002 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL, 1003 FADUMP_INVALIDATE, fdm, 1004 sizeof(struct fadump_mem_struct)); 1005 1006 wait_time = rtas_busy_delay_time(rc); 1007 if (wait_time) 1008 mdelay(wait_time); 1009 } while (wait_time); 1010 1011 if (rc) { 1012 printk(KERN_ERR "Failed to invalidate firmware-assisted dump " 1013 "rgistration. unexpected error(%d).\n", rc); 1014 return rc; 1015 } 1016 fw_dump.dump_active = 0; 1017 fdm_active = NULL; 1018 return 0; 1019 } 1020 1021 void fadump_cleanup(void) 1022 { 1023 /* Invalidate the registration only if dump is active. */ 1024 if (fw_dump.dump_active) { 1025 init_fadump_mem_struct(&fdm, 1026 be64_to_cpu(fdm_active->cpu_state_data.destination_address)); 1027 fadump_invalidate_dump(&fdm); 1028 } 1029 } 1030 1031 /* 1032 * Release the memory that was reserved in early boot to preserve the memory 1033 * contents. The released memory will be available for general use. 1034 */ 1035 static void fadump_release_memory(unsigned long begin, unsigned long end) 1036 { 1037 unsigned long addr; 1038 unsigned long ra_start, ra_end; 1039 1040 ra_start = fw_dump.reserve_dump_area_start; 1041 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1042 1043 for (addr = begin; addr < end; addr += PAGE_SIZE) { 1044 /* 1045 * exclude the dump reserve area. Will reuse it for next 1046 * fadump registration. 1047 */ 1048 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start)) 1049 continue; 1050 1051 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1052 } 1053 } 1054 1055 static void fadump_invalidate_release_mem(void) 1056 { 1057 unsigned long reserved_area_start, reserved_area_end; 1058 unsigned long destination_address; 1059 1060 mutex_lock(&fadump_mutex); 1061 if (!fw_dump.dump_active) { 1062 mutex_unlock(&fadump_mutex); 1063 return; 1064 } 1065 1066 destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address); 1067 fadump_cleanup(); 1068 mutex_unlock(&fadump_mutex); 1069 1070 /* 1071 * Save the current reserved memory bounds we will require them 1072 * later for releasing the memory for general use. 1073 */ 1074 reserved_area_start = fw_dump.reserve_dump_area_start; 1075 reserved_area_end = reserved_area_start + 1076 fw_dump.reserve_dump_area_size; 1077 /* 1078 * Setup reserve_dump_area_start and its size so that we can 1079 * reuse this reserved memory for Re-registration. 1080 */ 1081 fw_dump.reserve_dump_area_start = destination_address; 1082 fw_dump.reserve_dump_area_size = get_fadump_area_size(); 1083 1084 fadump_release_memory(reserved_area_start, reserved_area_end); 1085 if (fw_dump.cpu_notes_buf) { 1086 fadump_cpu_notes_buf_free( 1087 (unsigned long)__va(fw_dump.cpu_notes_buf), 1088 fw_dump.cpu_notes_buf_size); 1089 fw_dump.cpu_notes_buf = 0; 1090 fw_dump.cpu_notes_buf_size = 0; 1091 } 1092 /* Initialize the kernel dump memory structure for FAD registration. */ 1093 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start); 1094 } 1095 1096 static ssize_t fadump_release_memory_store(struct kobject *kobj, 1097 struct kobj_attribute *attr, 1098 const char *buf, size_t count) 1099 { 1100 if (!fw_dump.dump_active) 1101 return -EPERM; 1102 1103 if (buf[0] == '1') { 1104 /* 1105 * Take away the '/proc/vmcore'. We are releasing the dump 1106 * memory, hence it will not be valid anymore. 1107 */ 1108 vmcore_cleanup(); 1109 fadump_invalidate_release_mem(); 1110 1111 } else 1112 return -EINVAL; 1113 return count; 1114 } 1115 1116 static ssize_t fadump_enabled_show(struct kobject *kobj, 1117 struct kobj_attribute *attr, 1118 char *buf) 1119 { 1120 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1121 } 1122 1123 static ssize_t fadump_register_show(struct kobject *kobj, 1124 struct kobj_attribute *attr, 1125 char *buf) 1126 { 1127 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1128 } 1129 1130 static ssize_t fadump_register_store(struct kobject *kobj, 1131 struct kobj_attribute *attr, 1132 const char *buf, size_t count) 1133 { 1134 int ret = 0; 1135 1136 if (!fw_dump.fadump_enabled || fdm_active) 1137 return -EPERM; 1138 1139 mutex_lock(&fadump_mutex); 1140 1141 switch (buf[0]) { 1142 case '0': 1143 if (fw_dump.dump_registered == 0) { 1144 ret = -EINVAL; 1145 goto unlock_out; 1146 } 1147 /* Un-register Firmware-assisted dump */ 1148 fadump_unregister_dump(&fdm); 1149 break; 1150 case '1': 1151 if (fw_dump.dump_registered == 1) { 1152 ret = -EINVAL; 1153 goto unlock_out; 1154 } 1155 /* Register Firmware-assisted dump */ 1156 register_fadump(); 1157 break; 1158 default: 1159 ret = -EINVAL; 1160 break; 1161 } 1162 1163 unlock_out: 1164 mutex_unlock(&fadump_mutex); 1165 return ret < 0 ? ret : count; 1166 } 1167 1168 static int fadump_region_show(struct seq_file *m, void *private) 1169 { 1170 const struct fadump_mem_struct *fdm_ptr; 1171 1172 if (!fw_dump.fadump_enabled) 1173 return 0; 1174 1175 mutex_lock(&fadump_mutex); 1176 if (fdm_active) 1177 fdm_ptr = fdm_active; 1178 else { 1179 mutex_unlock(&fadump_mutex); 1180 fdm_ptr = &fdm; 1181 } 1182 1183 seq_printf(m, 1184 "CPU : [%#016llx-%#016llx] %#llx bytes, " 1185 "Dumped: %#llx\n", 1186 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address), 1187 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) + 1188 be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1, 1189 be64_to_cpu(fdm_ptr->cpu_state_data.source_len), 1190 be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped)); 1191 seq_printf(m, 1192 "HPTE: [%#016llx-%#016llx] %#llx bytes, " 1193 "Dumped: %#llx\n", 1194 be64_to_cpu(fdm_ptr->hpte_region.destination_address), 1195 be64_to_cpu(fdm_ptr->hpte_region.destination_address) + 1196 be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1, 1197 be64_to_cpu(fdm_ptr->hpte_region.source_len), 1198 be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped)); 1199 seq_printf(m, 1200 "DUMP: [%#016llx-%#016llx] %#llx bytes, " 1201 "Dumped: %#llx\n", 1202 be64_to_cpu(fdm_ptr->rmr_region.destination_address), 1203 be64_to_cpu(fdm_ptr->rmr_region.destination_address) + 1204 be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1, 1205 be64_to_cpu(fdm_ptr->rmr_region.source_len), 1206 be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped)); 1207 1208 if (!fdm_active || 1209 (fw_dump.reserve_dump_area_start == 1210 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address))) 1211 goto out; 1212 1213 /* Dump is active. Show reserved memory region. */ 1214 seq_printf(m, 1215 " : [%#016llx-%#016llx] %#llx bytes, " 1216 "Dumped: %#llx\n", 1217 (unsigned long long)fw_dump.reserve_dump_area_start, 1218 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1, 1219 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1220 fw_dump.reserve_dump_area_start, 1221 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1222 fw_dump.reserve_dump_area_start); 1223 out: 1224 if (fdm_active) 1225 mutex_unlock(&fadump_mutex); 1226 return 0; 1227 } 1228 1229 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem, 1230 0200, NULL, 1231 fadump_release_memory_store); 1232 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled, 1233 0444, fadump_enabled_show, 1234 NULL); 1235 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered, 1236 0644, fadump_register_show, 1237 fadump_register_store); 1238 1239 static int fadump_region_open(struct inode *inode, struct file *file) 1240 { 1241 return single_open(file, fadump_region_show, inode->i_private); 1242 } 1243 1244 static const struct file_operations fadump_region_fops = { 1245 .open = fadump_region_open, 1246 .read = seq_read, 1247 .llseek = seq_lseek, 1248 .release = single_release, 1249 }; 1250 1251 static void fadump_init_files(void) 1252 { 1253 struct dentry *debugfs_file; 1254 int rc = 0; 1255 1256 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr); 1257 if (rc) 1258 printk(KERN_ERR "fadump: unable to create sysfs file" 1259 " fadump_enabled (%d)\n", rc); 1260 1261 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr); 1262 if (rc) 1263 printk(KERN_ERR "fadump: unable to create sysfs file" 1264 " fadump_registered (%d)\n", rc); 1265 1266 debugfs_file = debugfs_create_file("fadump_region", 0444, 1267 powerpc_debugfs_root, NULL, 1268 &fadump_region_fops); 1269 if (!debugfs_file) 1270 printk(KERN_ERR "fadump: unable to create debugfs file" 1271 " fadump_region\n"); 1272 1273 if (fw_dump.dump_active) { 1274 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr); 1275 if (rc) 1276 printk(KERN_ERR "fadump: unable to create sysfs file" 1277 " fadump_release_mem (%d)\n", rc); 1278 } 1279 return; 1280 } 1281 1282 /* 1283 * Prepare for firmware-assisted dump. 1284 */ 1285 int __init setup_fadump(void) 1286 { 1287 if (!fw_dump.fadump_enabled) 1288 return 0; 1289 1290 if (!fw_dump.fadump_supported) { 1291 printk(KERN_ERR "Firmware-assisted dump is not supported on" 1292 " this hardware\n"); 1293 return 0; 1294 } 1295 1296 fadump_show_config(); 1297 /* 1298 * If dump data is available then see if it is valid and prepare for 1299 * saving it to the disk. 1300 */ 1301 if (fw_dump.dump_active) { 1302 /* 1303 * if dump process fails then invalidate the registration 1304 * and release memory before proceeding for re-registration. 1305 */ 1306 if (process_fadump(fdm_active) < 0) 1307 fadump_invalidate_release_mem(); 1308 } 1309 /* Initialize the kernel dump memory structure for FAD registration. */ 1310 else if (fw_dump.reserve_dump_area_size) 1311 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start); 1312 fadump_init_files(); 1313 1314 return 1; 1315 } 1316 subsys_initcall(setup_fadump); 1317