xref: /linux/arch/powerpc/kernel/fadump.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34 
35 static struct fw_dump fw_dump;
36 
37 static void __init fadump_reserve_crash_area(u64 base);
38 
39 struct kobject *fadump_kobj;
40 
41 #ifndef CONFIG_PRESERVE_FA_DUMP
42 static DEFINE_MUTEX(fadump_mutex);
43 struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
44 
45 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
46 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
47 				 sizeof(struct fadump_memory_range))
48 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
49 struct fadump_mrange_info reserved_mrange_info = { "reserved", rngs,
50 						   RESERVED_RNGS_SZ, 0,
51 						   RESERVED_RNGS_CNT, true };
52 
53 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
54 
55 #ifdef CONFIG_CMA
56 static struct cma *fadump_cma;
57 
58 /*
59  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
60  *
61  * This function initializes CMA area from fadump reserved memory.
62  * The total size of fadump reserved memory covers for boot memory size
63  * + cpu data size + hpte size and metadata.
64  * Initialize only the area equivalent to boot memory size for CMA use.
65  * The reamining portion of fadump reserved memory will be not given
66  * to CMA and pages for thoes will stay reserved. boot memory size is
67  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
68  * But for some reason even if it fails we still have the memory reservation
69  * with us and we can still continue doing fadump.
70  */
71 int __init fadump_cma_init(void)
72 {
73 	unsigned long long base, size;
74 	int rc;
75 
76 	if (!fw_dump.fadump_enabled)
77 		return 0;
78 
79 	/*
80 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
81 	 * Return 1 to continue with fadump old behaviour.
82 	 */
83 	if (fw_dump.nocma)
84 		return 1;
85 
86 	base = fw_dump.reserve_dump_area_start;
87 	size = fw_dump.boot_memory_size;
88 
89 	if (!size)
90 		return 0;
91 
92 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
93 	if (rc) {
94 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
95 		/*
96 		 * Though the CMA init has failed we still have memory
97 		 * reservation with us. The reserved memory will be
98 		 * blocked from production system usage.  Hence return 1,
99 		 * so that we can continue with fadump.
100 		 */
101 		return 1;
102 	}
103 
104 	/*
105 	 * So we now have successfully initialized cma area for fadump.
106 	 */
107 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
108 		"bytes of memory reserved for firmware-assisted dump\n",
109 		cma_get_size(fadump_cma),
110 		(unsigned long)cma_get_base(fadump_cma) >> 20,
111 		fw_dump.reserve_dump_area_size);
112 	return 1;
113 }
114 #else
115 static int __init fadump_cma_init(void) { return 1; }
116 #endif /* CONFIG_CMA */
117 
118 /* Scan the Firmware Assisted dump configuration details. */
119 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
120 				      int depth, void *data)
121 {
122 	if (depth == 0) {
123 		early_init_dt_scan_reserved_ranges(node);
124 		return 0;
125 	}
126 
127 	if (depth != 1)
128 		return 0;
129 
130 	if (strcmp(uname, "rtas") == 0) {
131 		rtas_fadump_dt_scan(&fw_dump, node);
132 		return 1;
133 	}
134 
135 	if (strcmp(uname, "ibm,opal") == 0) {
136 		opal_fadump_dt_scan(&fw_dump, node);
137 		return 1;
138 	}
139 
140 	return 0;
141 }
142 
143 /*
144  * If fadump is registered, check if the memory provided
145  * falls within boot memory area and reserved memory area.
146  */
147 int is_fadump_memory_area(u64 addr, unsigned long size)
148 {
149 	u64 d_start, d_end;
150 
151 	if (!fw_dump.dump_registered)
152 		return 0;
153 
154 	if (!size)
155 		return 0;
156 
157 	d_start = fw_dump.reserve_dump_area_start;
158 	d_end = d_start + fw_dump.reserve_dump_area_size;
159 	if (((addr + size) > d_start) && (addr <= d_end))
160 		return 1;
161 
162 	return (addr <= fw_dump.boot_mem_top);
163 }
164 
165 int should_fadump_crash(void)
166 {
167 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
168 		return 0;
169 	return 1;
170 }
171 
172 int is_fadump_active(void)
173 {
174 	return fw_dump.dump_active;
175 }
176 
177 /*
178  * Returns true, if there are no holes in memory area between d_start to d_end,
179  * false otherwise.
180  */
181 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
182 {
183 	struct memblock_region *reg;
184 	bool ret = false;
185 	u64 start, end;
186 
187 	for_each_memblock(memory, reg) {
188 		start = max_t(u64, d_start, reg->base);
189 		end = min_t(u64, d_end, (reg->base + reg->size));
190 		if (d_start < end) {
191 			/* Memory hole from d_start to start */
192 			if (start > d_start)
193 				break;
194 
195 			if (end == d_end) {
196 				ret = true;
197 				break;
198 			}
199 
200 			d_start = end + 1;
201 		}
202 	}
203 
204 	return ret;
205 }
206 
207 /*
208  * Returns true, if there are no holes in boot memory area,
209  * false otherwise.
210  */
211 bool is_fadump_boot_mem_contiguous(void)
212 {
213 	unsigned long d_start, d_end;
214 	bool ret = false;
215 	int i;
216 
217 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
218 		d_start = fw_dump.boot_mem_addr[i];
219 		d_end   = d_start + fw_dump.boot_mem_sz[i];
220 
221 		ret = is_fadump_mem_area_contiguous(d_start, d_end);
222 		if (!ret)
223 			break;
224 	}
225 
226 	return ret;
227 }
228 
229 /*
230  * Returns true, if there are no holes in reserved memory area,
231  * false otherwise.
232  */
233 bool is_fadump_reserved_mem_contiguous(void)
234 {
235 	u64 d_start, d_end;
236 
237 	d_start	= fw_dump.reserve_dump_area_start;
238 	d_end	= d_start + fw_dump.reserve_dump_area_size;
239 	return is_fadump_mem_area_contiguous(d_start, d_end);
240 }
241 
242 /* Print firmware assisted dump configurations for debugging purpose. */
243 static void fadump_show_config(void)
244 {
245 	int i;
246 
247 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
248 			(fw_dump.fadump_supported ? "present" : "no support"));
249 
250 	if (!fw_dump.fadump_supported)
251 		return;
252 
253 	pr_debug("Fadump enabled    : %s\n",
254 				(fw_dump.fadump_enabled ? "yes" : "no"));
255 	pr_debug("Dump Active       : %s\n",
256 				(fw_dump.dump_active ? "yes" : "no"));
257 	pr_debug("Dump section sizes:\n");
258 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
259 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
260 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
261 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
262 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
263 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
264 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
265 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
266 	}
267 }
268 
269 /**
270  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
271  *
272  * Function to find the largest memory size we need to reserve during early
273  * boot process. This will be the size of the memory that is required for a
274  * kernel to boot successfully.
275  *
276  * This function has been taken from phyp-assisted dump feature implementation.
277  *
278  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
279  *
280  * TODO: Come up with better approach to find out more accurate memory size
281  * that is required for a kernel to boot successfully.
282  *
283  */
284 static inline u64 fadump_calculate_reserve_size(void)
285 {
286 	u64 base, size, bootmem_min;
287 	int ret;
288 
289 	if (fw_dump.reserve_bootvar)
290 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
291 
292 	/*
293 	 * Check if the size is specified through crashkernel= cmdline
294 	 * option. If yes, then use that but ignore base as fadump reserves
295 	 * memory at a predefined offset.
296 	 */
297 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
298 				&size, &base);
299 	if (ret == 0 && size > 0) {
300 		unsigned long max_size;
301 
302 		if (fw_dump.reserve_bootvar)
303 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
304 
305 		fw_dump.reserve_bootvar = (unsigned long)size;
306 
307 		/*
308 		 * Adjust if the boot memory size specified is above
309 		 * the upper limit.
310 		 */
311 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
312 		if (fw_dump.reserve_bootvar > max_size) {
313 			fw_dump.reserve_bootvar = max_size;
314 			pr_info("Adjusted boot memory size to %luMB\n",
315 				(fw_dump.reserve_bootvar >> 20));
316 		}
317 
318 		return fw_dump.reserve_bootvar;
319 	} else if (fw_dump.reserve_bootvar) {
320 		/*
321 		 * 'fadump_reserve_mem=' is being used to reserve memory
322 		 * for firmware-assisted dump.
323 		 */
324 		return fw_dump.reserve_bootvar;
325 	}
326 
327 	/* divide by 20 to get 5% of value */
328 	size = memblock_phys_mem_size() / 20;
329 
330 	/* round it down in multiples of 256 */
331 	size = size & ~0x0FFFFFFFUL;
332 
333 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
334 	if (memory_limit && size > memory_limit)
335 		size = memory_limit;
336 
337 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
338 	return (size > bootmem_min ? size : bootmem_min);
339 }
340 
341 /*
342  * Calculate the total memory size required to be reserved for
343  * firmware-assisted dump registration.
344  */
345 static unsigned long get_fadump_area_size(void)
346 {
347 	unsigned long size = 0;
348 
349 	size += fw_dump.cpu_state_data_size;
350 	size += fw_dump.hpte_region_size;
351 	size += fw_dump.boot_memory_size;
352 	size += sizeof(struct fadump_crash_info_header);
353 	size += sizeof(struct elfhdr); /* ELF core header.*/
354 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
355 	/* Program headers for crash memory regions. */
356 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
357 
358 	size = PAGE_ALIGN(size);
359 
360 	/* This is to hold kernel metadata on platforms that support it */
361 	size += (fw_dump.ops->fadump_get_metadata_size ?
362 		 fw_dump.ops->fadump_get_metadata_size() : 0);
363 	return size;
364 }
365 
366 static int __init add_boot_mem_region(unsigned long rstart,
367 				      unsigned long rsize)
368 {
369 	int i = fw_dump.boot_mem_regs_cnt++;
370 
371 	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
372 		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
373 		return 0;
374 	}
375 
376 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
377 		 i, rstart, (rstart + rsize));
378 	fw_dump.boot_mem_addr[i] = rstart;
379 	fw_dump.boot_mem_sz[i] = rsize;
380 	return 1;
381 }
382 
383 /*
384  * Firmware usually has a hard limit on the data it can copy per region.
385  * Honour that by splitting a memory range into multiple regions.
386  */
387 static int __init add_boot_mem_regions(unsigned long mstart,
388 				       unsigned long msize)
389 {
390 	unsigned long rstart, rsize, max_size;
391 	int ret = 1;
392 
393 	rstart = mstart;
394 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
395 	while (msize) {
396 		if (msize > max_size)
397 			rsize = max_size;
398 		else
399 			rsize = msize;
400 
401 		ret = add_boot_mem_region(rstart, rsize);
402 		if (!ret)
403 			break;
404 
405 		msize -= rsize;
406 		rstart += rsize;
407 	}
408 
409 	return ret;
410 }
411 
412 static int __init fadump_get_boot_mem_regions(void)
413 {
414 	unsigned long base, size, cur_size, hole_size, last_end;
415 	unsigned long mem_size = fw_dump.boot_memory_size;
416 	struct memblock_region *reg;
417 	int ret = 1;
418 
419 	fw_dump.boot_mem_regs_cnt = 0;
420 
421 	last_end = 0;
422 	hole_size = 0;
423 	cur_size = 0;
424 	for_each_memblock(memory, reg) {
425 		base = reg->base;
426 		size = reg->size;
427 		hole_size += (base - last_end);
428 
429 		if ((cur_size + size) >= mem_size) {
430 			size = (mem_size - cur_size);
431 			ret = add_boot_mem_regions(base, size);
432 			break;
433 		}
434 
435 		mem_size -= size;
436 		cur_size += size;
437 		ret = add_boot_mem_regions(base, size);
438 		if (!ret)
439 			break;
440 
441 		last_end = base + size;
442 	}
443 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
444 
445 	return ret;
446 }
447 
448 /*
449  * Returns true, if the given range overlaps with reserved memory ranges
450  * starting at idx. Also, updates idx to index of overlapping memory range
451  * with the given memory range.
452  * False, otherwise.
453  */
454 static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx)
455 {
456 	bool ret = false;
457 	int i;
458 
459 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
460 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
461 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
462 
463 		if (end <= rbase)
464 			break;
465 
466 		if ((end > rbase) &&  (base < rend)) {
467 			*idx = i;
468 			ret = true;
469 			break;
470 		}
471 	}
472 
473 	return ret;
474 }
475 
476 /*
477  * Locate a suitable memory area to reserve memory for FADump. While at it,
478  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
479  */
480 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
481 {
482 	struct fadump_memory_range *mrngs;
483 	phys_addr_t mstart, mend;
484 	int idx = 0;
485 	u64 i, ret = 0;
486 
487 	mrngs = reserved_mrange_info.mem_ranges;
488 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
489 				&mstart, &mend, NULL) {
490 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
491 			 i, mstart, mend, base);
492 
493 		if (mstart > base)
494 			base = PAGE_ALIGN(mstart);
495 
496 		while ((mend > base) && ((mend - base) >= size)) {
497 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
498 				ret = base;
499 				goto out;
500 			}
501 
502 			base = mrngs[idx].base + mrngs[idx].size;
503 			base = PAGE_ALIGN(base);
504 		}
505 	}
506 
507 out:
508 	return ret;
509 }
510 
511 int __init fadump_reserve_mem(void)
512 {
513 	u64 base, size, mem_boundary, bootmem_min;
514 	int ret = 1;
515 
516 	if (!fw_dump.fadump_enabled)
517 		return 0;
518 
519 	if (!fw_dump.fadump_supported) {
520 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
521 		goto error_out;
522 	}
523 
524 	/*
525 	 * Initialize boot memory size
526 	 * If dump is active then we have already calculated the size during
527 	 * first kernel.
528 	 */
529 	if (!fw_dump.dump_active) {
530 		fw_dump.boot_memory_size =
531 			PAGE_ALIGN(fadump_calculate_reserve_size());
532 #ifdef CONFIG_CMA
533 		if (!fw_dump.nocma) {
534 			fw_dump.boot_memory_size =
535 				ALIGN(fw_dump.boot_memory_size,
536 				      FADUMP_CMA_ALIGNMENT);
537 		}
538 #endif
539 
540 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
541 		if (fw_dump.boot_memory_size < bootmem_min) {
542 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
543 			       fw_dump.boot_memory_size, bootmem_min);
544 			goto error_out;
545 		}
546 
547 		if (!fadump_get_boot_mem_regions()) {
548 			pr_err("Too many holes in boot memory area to enable fadump\n");
549 			goto error_out;
550 		}
551 	}
552 
553 	/*
554 	 * Calculate the memory boundary.
555 	 * If memory_limit is less than actual memory boundary then reserve
556 	 * the memory for fadump beyond the memory_limit and adjust the
557 	 * memory_limit accordingly, so that the running kernel can run with
558 	 * specified memory_limit.
559 	 */
560 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
561 		size = get_fadump_area_size();
562 		if ((memory_limit + size) < memblock_end_of_DRAM())
563 			memory_limit += size;
564 		else
565 			memory_limit = memblock_end_of_DRAM();
566 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
567 				" dump, now %#016llx\n", memory_limit);
568 	}
569 	if (memory_limit)
570 		mem_boundary = memory_limit;
571 	else
572 		mem_boundary = memblock_end_of_DRAM();
573 
574 	base = fw_dump.boot_mem_top;
575 	size = get_fadump_area_size();
576 	fw_dump.reserve_dump_area_size = size;
577 	if (fw_dump.dump_active) {
578 		pr_info("Firmware-assisted dump is active.\n");
579 
580 #ifdef CONFIG_HUGETLB_PAGE
581 		/*
582 		 * FADump capture kernel doesn't care much about hugepages.
583 		 * In fact, handling hugepages in capture kernel is asking for
584 		 * trouble. So, disable HugeTLB support when fadump is active.
585 		 */
586 		hugetlb_disabled = true;
587 #endif
588 		/*
589 		 * If last boot has crashed then reserve all the memory
590 		 * above boot memory size so that we don't touch it until
591 		 * dump is written to disk by userspace tool. This memory
592 		 * can be released for general use by invalidating fadump.
593 		 */
594 		fadump_reserve_crash_area(base);
595 
596 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
597 		pr_debug("Reserve dump area start address: 0x%lx\n",
598 			 fw_dump.reserve_dump_area_start);
599 	} else {
600 		/*
601 		 * Reserve memory at an offset closer to bottom of the RAM to
602 		 * minimize the impact of memory hot-remove operation.
603 		 */
604 		base = fadump_locate_reserve_mem(base, size);
605 
606 		if (!base || (base + size > mem_boundary)) {
607 			pr_err("Failed to find memory chunk for reservation!\n");
608 			goto error_out;
609 		}
610 		fw_dump.reserve_dump_area_start = base;
611 
612 		/*
613 		 * Calculate the kernel metadata address and register it with
614 		 * f/w if the platform supports.
615 		 */
616 		if (fw_dump.ops->fadump_setup_metadata &&
617 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
618 			goto error_out;
619 
620 		if (memblock_reserve(base, size)) {
621 			pr_err("Failed to reserve memory!\n");
622 			goto error_out;
623 		}
624 
625 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
626 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
627 
628 		ret = fadump_cma_init();
629 	}
630 
631 	return ret;
632 error_out:
633 	fw_dump.fadump_enabled = 0;
634 	return 0;
635 }
636 
637 /* Look for fadump= cmdline option. */
638 static int __init early_fadump_param(char *p)
639 {
640 	if (!p)
641 		return 1;
642 
643 	if (strncmp(p, "on", 2) == 0)
644 		fw_dump.fadump_enabled = 1;
645 	else if (strncmp(p, "off", 3) == 0)
646 		fw_dump.fadump_enabled = 0;
647 	else if (strncmp(p, "nocma", 5) == 0) {
648 		fw_dump.fadump_enabled = 1;
649 		fw_dump.nocma = 1;
650 	}
651 
652 	return 0;
653 }
654 early_param("fadump", early_fadump_param);
655 
656 /*
657  * Look for fadump_reserve_mem= cmdline option
658  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
659  *       the sooner 'crashkernel=' parameter is accustomed to.
660  */
661 static int __init early_fadump_reserve_mem(char *p)
662 {
663 	if (p)
664 		fw_dump.reserve_bootvar = memparse(p, &p);
665 	return 0;
666 }
667 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
668 
669 void crash_fadump(struct pt_regs *regs, const char *str)
670 {
671 	struct fadump_crash_info_header *fdh = NULL;
672 	int old_cpu, this_cpu;
673 
674 	if (!should_fadump_crash())
675 		return;
676 
677 	/*
678 	 * old_cpu == -1 means this is the first CPU which has come here,
679 	 * go ahead and trigger fadump.
680 	 *
681 	 * old_cpu != -1 means some other CPU has already on it's way
682 	 * to trigger fadump, just keep looping here.
683 	 */
684 	this_cpu = smp_processor_id();
685 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
686 
687 	if (old_cpu != -1) {
688 		/*
689 		 * We can't loop here indefinitely. Wait as long as fadump
690 		 * is in force. If we race with fadump un-registration this
691 		 * loop will break and then we go down to normal panic path
692 		 * and reboot. If fadump is in force the first crashing
693 		 * cpu will definitely trigger fadump.
694 		 */
695 		while (fw_dump.dump_registered)
696 			cpu_relax();
697 		return;
698 	}
699 
700 	fdh = __va(fw_dump.fadumphdr_addr);
701 	fdh->crashing_cpu = crashing_cpu;
702 	crash_save_vmcoreinfo();
703 
704 	if (regs)
705 		fdh->regs = *regs;
706 	else
707 		ppc_save_regs(&fdh->regs);
708 
709 	fdh->online_mask = *cpu_online_mask;
710 
711 	fw_dump.ops->fadump_trigger(fdh, str);
712 }
713 
714 u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
715 {
716 	struct elf_prstatus prstatus;
717 
718 	memset(&prstatus, 0, sizeof(prstatus));
719 	/*
720 	 * FIXME: How do i get PID? Do I really need it?
721 	 * prstatus.pr_pid = ????
722 	 */
723 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
724 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
725 			      &prstatus, sizeof(prstatus));
726 	return buf;
727 }
728 
729 void fadump_update_elfcore_header(char *bufp)
730 {
731 	struct elfhdr *elf;
732 	struct elf_phdr *phdr;
733 
734 	elf = (struct elfhdr *)bufp;
735 	bufp += sizeof(struct elfhdr);
736 
737 	/* First note is a place holder for cpu notes info. */
738 	phdr = (struct elf_phdr *)bufp;
739 
740 	if (phdr->p_type == PT_NOTE) {
741 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
742 		phdr->p_offset	= phdr->p_paddr;
743 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
744 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
745 	}
746 	return;
747 }
748 
749 static void *fadump_alloc_buffer(unsigned long size)
750 {
751 	unsigned long count, i;
752 	struct page *page;
753 	void *vaddr;
754 
755 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
756 	if (!vaddr)
757 		return NULL;
758 
759 	count = PAGE_ALIGN(size) / PAGE_SIZE;
760 	page = virt_to_page(vaddr);
761 	for (i = 0; i < count; i++)
762 		mark_page_reserved(page + i);
763 	return vaddr;
764 }
765 
766 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
767 {
768 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
769 }
770 
771 s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
772 {
773 	/* Allocate buffer to hold cpu crash notes. */
774 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
775 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
776 	fw_dump.cpu_notes_buf_vaddr =
777 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
778 	if (!fw_dump.cpu_notes_buf_vaddr) {
779 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
780 		       fw_dump.cpu_notes_buf_size);
781 		return -ENOMEM;
782 	}
783 
784 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
785 		 fw_dump.cpu_notes_buf_size,
786 		 fw_dump.cpu_notes_buf_vaddr);
787 	return 0;
788 }
789 
790 void fadump_free_cpu_notes_buf(void)
791 {
792 	if (!fw_dump.cpu_notes_buf_vaddr)
793 		return;
794 
795 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
796 			   fw_dump.cpu_notes_buf_size);
797 	fw_dump.cpu_notes_buf_vaddr = 0;
798 	fw_dump.cpu_notes_buf_size = 0;
799 }
800 
801 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
802 {
803 	if (mrange_info->is_static) {
804 		mrange_info->mem_range_cnt = 0;
805 		return;
806 	}
807 
808 	kfree(mrange_info->mem_ranges);
809 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
810 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
811 }
812 
813 /*
814  * Allocate or reallocate mem_ranges array in incremental units
815  * of PAGE_SIZE.
816  */
817 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
818 {
819 	struct fadump_memory_range *new_array;
820 	u64 new_size;
821 
822 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
823 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
824 		 new_size, mrange_info->name);
825 
826 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
827 	if (new_array == NULL) {
828 		pr_err("Insufficient memory for setting up %s memory ranges\n",
829 		       mrange_info->name);
830 		fadump_free_mem_ranges(mrange_info);
831 		return -ENOMEM;
832 	}
833 
834 	mrange_info->mem_ranges = new_array;
835 	mrange_info->mem_ranges_sz = new_size;
836 	mrange_info->max_mem_ranges = (new_size /
837 				       sizeof(struct fadump_memory_range));
838 	return 0;
839 }
840 
841 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
842 				       u64 base, u64 end)
843 {
844 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
845 	bool is_adjacent = false;
846 	u64 start, size;
847 
848 	if (base == end)
849 		return 0;
850 
851 	/*
852 	 * Fold adjacent memory ranges to bring down the memory ranges/
853 	 * PT_LOAD segments count.
854 	 */
855 	if (mrange_info->mem_range_cnt) {
856 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
857 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
858 
859 		if ((start + size) == base)
860 			is_adjacent = true;
861 	}
862 	if (!is_adjacent) {
863 		/* resize the array on reaching the limit */
864 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
865 			int ret;
866 
867 			if (mrange_info->is_static) {
868 				pr_err("Reached array size limit for %s memory ranges\n",
869 				       mrange_info->name);
870 				return -ENOSPC;
871 			}
872 
873 			ret = fadump_alloc_mem_ranges(mrange_info);
874 			if (ret)
875 				return ret;
876 
877 			/* Update to the new resized array */
878 			mem_ranges = mrange_info->mem_ranges;
879 		}
880 
881 		start = base;
882 		mem_ranges[mrange_info->mem_range_cnt].base = start;
883 		mrange_info->mem_range_cnt++;
884 	}
885 
886 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
887 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
888 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
889 		 start, end - 1, (end - start));
890 	return 0;
891 }
892 
893 static int fadump_exclude_reserved_area(u64 start, u64 end)
894 {
895 	u64 ra_start, ra_end;
896 	int ret = 0;
897 
898 	ra_start = fw_dump.reserve_dump_area_start;
899 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
900 
901 	if ((ra_start < end) && (ra_end > start)) {
902 		if ((start < ra_start) && (end > ra_end)) {
903 			ret = fadump_add_mem_range(&crash_mrange_info,
904 						   start, ra_start);
905 			if (ret)
906 				return ret;
907 
908 			ret = fadump_add_mem_range(&crash_mrange_info,
909 						   ra_end, end);
910 		} else if (start < ra_start) {
911 			ret = fadump_add_mem_range(&crash_mrange_info,
912 						   start, ra_start);
913 		} else if (ra_end < end) {
914 			ret = fadump_add_mem_range(&crash_mrange_info,
915 						   ra_end, end);
916 		}
917 	} else
918 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
919 
920 	return ret;
921 }
922 
923 static int fadump_init_elfcore_header(char *bufp)
924 {
925 	struct elfhdr *elf;
926 
927 	elf = (struct elfhdr *) bufp;
928 	bufp += sizeof(struct elfhdr);
929 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
930 	elf->e_ident[EI_CLASS] = ELF_CLASS;
931 	elf->e_ident[EI_DATA] = ELF_DATA;
932 	elf->e_ident[EI_VERSION] = EV_CURRENT;
933 	elf->e_ident[EI_OSABI] = ELF_OSABI;
934 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
935 	elf->e_type = ET_CORE;
936 	elf->e_machine = ELF_ARCH;
937 	elf->e_version = EV_CURRENT;
938 	elf->e_entry = 0;
939 	elf->e_phoff = sizeof(struct elfhdr);
940 	elf->e_shoff = 0;
941 #if defined(_CALL_ELF)
942 	elf->e_flags = _CALL_ELF;
943 #else
944 	elf->e_flags = 0;
945 #endif
946 	elf->e_ehsize = sizeof(struct elfhdr);
947 	elf->e_phentsize = sizeof(struct elf_phdr);
948 	elf->e_phnum = 0;
949 	elf->e_shentsize = 0;
950 	elf->e_shnum = 0;
951 	elf->e_shstrndx = 0;
952 
953 	return 0;
954 }
955 
956 /*
957  * Traverse through memblock structure and setup crash memory ranges. These
958  * ranges will be used create PT_LOAD program headers in elfcore header.
959  */
960 static int fadump_setup_crash_memory_ranges(void)
961 {
962 	struct memblock_region *reg;
963 	u64 start, end;
964 	int i, ret;
965 
966 	pr_debug("Setup crash memory ranges.\n");
967 	crash_mrange_info.mem_range_cnt = 0;
968 
969 	/*
970 	 * Boot memory region(s) registered with firmware are moved to
971 	 * different location at the time of crash. Create separate program
972 	 * header(s) for this memory chunk(s) with the correct offset.
973 	 */
974 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
975 		start = fw_dump.boot_mem_addr[i];
976 		end = start + fw_dump.boot_mem_sz[i];
977 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
978 		if (ret)
979 			return ret;
980 	}
981 
982 	for_each_memblock(memory, reg) {
983 		start = (u64)reg->base;
984 		end = start + (u64)reg->size;
985 
986 		/*
987 		 * skip the memory chunk that is already added
988 		 * (0 through boot_memory_top).
989 		 */
990 		if (start < fw_dump.boot_mem_top) {
991 			if (end > fw_dump.boot_mem_top)
992 				start = fw_dump.boot_mem_top;
993 			else
994 				continue;
995 		}
996 
997 		/* add this range excluding the reserved dump area. */
998 		ret = fadump_exclude_reserved_area(start, end);
999 		if (ret)
1000 			return ret;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * If the given physical address falls within the boot memory region then
1008  * return the relocated address that points to the dump region reserved
1009  * for saving initial boot memory contents.
1010  */
1011 static inline unsigned long fadump_relocate(unsigned long paddr)
1012 {
1013 	unsigned long raddr, rstart, rend, rlast, hole_size;
1014 	int i;
1015 
1016 	hole_size = 0;
1017 	rlast = 0;
1018 	raddr = paddr;
1019 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1020 		rstart = fw_dump.boot_mem_addr[i];
1021 		rend = rstart + fw_dump.boot_mem_sz[i];
1022 		hole_size += (rstart - rlast);
1023 
1024 		if (paddr >= rstart && paddr < rend) {
1025 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1026 			break;
1027 		}
1028 
1029 		rlast = rend;
1030 	}
1031 
1032 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1033 	return raddr;
1034 }
1035 
1036 static int fadump_create_elfcore_headers(char *bufp)
1037 {
1038 	unsigned long long raddr, offset;
1039 	struct elf_phdr *phdr;
1040 	struct elfhdr *elf;
1041 	int i, j;
1042 
1043 	fadump_init_elfcore_header(bufp);
1044 	elf = (struct elfhdr *)bufp;
1045 	bufp += sizeof(struct elfhdr);
1046 
1047 	/*
1048 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1049 	 * will be populated during second kernel boot after crash. Hence
1050 	 * this PT_NOTE will always be the first elf note.
1051 	 *
1052 	 * NOTE: Any new ELF note addition should be placed after this note.
1053 	 */
1054 	phdr = (struct elf_phdr *)bufp;
1055 	bufp += sizeof(struct elf_phdr);
1056 	phdr->p_type = PT_NOTE;
1057 	phdr->p_flags = 0;
1058 	phdr->p_vaddr = 0;
1059 	phdr->p_align = 0;
1060 
1061 	phdr->p_offset = 0;
1062 	phdr->p_paddr = 0;
1063 	phdr->p_filesz = 0;
1064 	phdr->p_memsz = 0;
1065 
1066 	(elf->e_phnum)++;
1067 
1068 	/* setup ELF PT_NOTE for vmcoreinfo */
1069 	phdr = (struct elf_phdr *)bufp;
1070 	bufp += sizeof(struct elf_phdr);
1071 	phdr->p_type	= PT_NOTE;
1072 	phdr->p_flags	= 0;
1073 	phdr->p_vaddr	= 0;
1074 	phdr->p_align	= 0;
1075 
1076 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1077 	phdr->p_offset	= phdr->p_paddr;
1078 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1079 
1080 	/* Increment number of program headers. */
1081 	(elf->e_phnum)++;
1082 
1083 	/* setup PT_LOAD sections. */
1084 	j = 0;
1085 	offset = 0;
1086 	raddr = fw_dump.boot_mem_addr[0];
1087 	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1088 		u64 mbase, msize;
1089 
1090 		mbase = crash_mrange_info.mem_ranges[i].base;
1091 		msize = crash_mrange_info.mem_ranges[i].size;
1092 		if (!msize)
1093 			continue;
1094 
1095 		phdr = (struct elf_phdr *)bufp;
1096 		bufp += sizeof(struct elf_phdr);
1097 		phdr->p_type	= PT_LOAD;
1098 		phdr->p_flags	= PF_R|PF_W|PF_X;
1099 		phdr->p_offset	= mbase;
1100 
1101 		if (mbase == raddr) {
1102 			/*
1103 			 * The entire real memory region will be moved by
1104 			 * firmware to the specified destination_address.
1105 			 * Hence set the correct offset.
1106 			 */
1107 			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1108 			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1109 				offset += fw_dump.boot_mem_sz[j];
1110 				raddr = fw_dump.boot_mem_addr[++j];
1111 			}
1112 		}
1113 
1114 		phdr->p_paddr = mbase;
1115 		phdr->p_vaddr = (unsigned long)__va(mbase);
1116 		phdr->p_filesz = msize;
1117 		phdr->p_memsz = msize;
1118 		phdr->p_align = 0;
1119 
1120 		/* Increment number of program headers. */
1121 		(elf->e_phnum)++;
1122 	}
1123 	return 0;
1124 }
1125 
1126 static unsigned long init_fadump_header(unsigned long addr)
1127 {
1128 	struct fadump_crash_info_header *fdh;
1129 
1130 	if (!addr)
1131 		return 0;
1132 
1133 	fdh = __va(addr);
1134 	addr += sizeof(struct fadump_crash_info_header);
1135 
1136 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1137 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1138 	fdh->elfcorehdr_addr = addr;
1139 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1140 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1141 
1142 	return addr;
1143 }
1144 
1145 static int register_fadump(void)
1146 {
1147 	unsigned long addr;
1148 	void *vaddr;
1149 	int ret;
1150 
1151 	/*
1152 	 * If no memory is reserved then we can not register for firmware-
1153 	 * assisted dump.
1154 	 */
1155 	if (!fw_dump.reserve_dump_area_size)
1156 		return -ENODEV;
1157 
1158 	ret = fadump_setup_crash_memory_ranges();
1159 	if (ret)
1160 		return ret;
1161 
1162 	addr = fw_dump.fadumphdr_addr;
1163 
1164 	/* Initialize fadump crash info header. */
1165 	addr = init_fadump_header(addr);
1166 	vaddr = __va(addr);
1167 
1168 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1169 	fadump_create_elfcore_headers(vaddr);
1170 
1171 	/* register the future kernel dump with firmware. */
1172 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1173 	return fw_dump.ops->fadump_register(&fw_dump);
1174 }
1175 
1176 void fadump_cleanup(void)
1177 {
1178 	if (!fw_dump.fadump_supported)
1179 		return;
1180 
1181 	/* Invalidate the registration only if dump is active. */
1182 	if (fw_dump.dump_active) {
1183 		pr_debug("Invalidating firmware-assisted dump registration\n");
1184 		fw_dump.ops->fadump_invalidate(&fw_dump);
1185 	} else if (fw_dump.dump_registered) {
1186 		/* Un-register Firmware-assisted dump if it was registered. */
1187 		fw_dump.ops->fadump_unregister(&fw_dump);
1188 		fadump_free_mem_ranges(&crash_mrange_info);
1189 	}
1190 
1191 	if (fw_dump.ops->fadump_cleanup)
1192 		fw_dump.ops->fadump_cleanup(&fw_dump);
1193 }
1194 
1195 static void fadump_free_reserved_memory(unsigned long start_pfn,
1196 					unsigned long end_pfn)
1197 {
1198 	unsigned long pfn;
1199 	unsigned long time_limit = jiffies + HZ;
1200 
1201 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1202 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1203 
1204 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1205 		free_reserved_page(pfn_to_page(pfn));
1206 
1207 		if (time_after(jiffies, time_limit)) {
1208 			cond_resched();
1209 			time_limit = jiffies + HZ;
1210 		}
1211 	}
1212 }
1213 
1214 /*
1215  * Skip memory holes and free memory that was actually reserved.
1216  */
1217 static void fadump_release_reserved_area(u64 start, u64 end)
1218 {
1219 	u64 tstart, tend, spfn, epfn;
1220 	struct memblock_region *reg;
1221 
1222 	spfn = PHYS_PFN(start);
1223 	epfn = PHYS_PFN(end);
1224 	for_each_memblock(memory, reg) {
1225 		tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
1226 		tend   = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
1227 		if (tstart < tend) {
1228 			fadump_free_reserved_memory(tstart, tend);
1229 
1230 			if (tend == epfn)
1231 				break;
1232 
1233 			spfn = tend;
1234 		}
1235 	}
1236 }
1237 
1238 /*
1239  * Sort the mem ranges in-place and merge adjacent ranges
1240  * to minimize the memory ranges count.
1241  */
1242 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1243 {
1244 	struct fadump_memory_range *mem_ranges;
1245 	struct fadump_memory_range tmp_range;
1246 	u64 base, size;
1247 	int i, j, idx;
1248 
1249 	if (!reserved_mrange_info.mem_range_cnt)
1250 		return;
1251 
1252 	/* Sort the memory ranges */
1253 	mem_ranges = mrange_info->mem_ranges;
1254 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1255 		idx = i;
1256 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1257 			if (mem_ranges[idx].base > mem_ranges[j].base)
1258 				idx = j;
1259 		}
1260 		if (idx != i) {
1261 			tmp_range = mem_ranges[idx];
1262 			mem_ranges[idx] = mem_ranges[i];
1263 			mem_ranges[i] = tmp_range;
1264 		}
1265 	}
1266 
1267 	/* Merge adjacent reserved ranges */
1268 	idx = 0;
1269 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1270 		base = mem_ranges[i-1].base;
1271 		size = mem_ranges[i-1].size;
1272 		if (mem_ranges[i].base == (base + size))
1273 			mem_ranges[idx].size += mem_ranges[i].size;
1274 		else {
1275 			idx++;
1276 			if (i == idx)
1277 				continue;
1278 
1279 			mem_ranges[idx] = mem_ranges[i];
1280 		}
1281 	}
1282 	mrange_info->mem_range_cnt = idx + 1;
1283 }
1284 
1285 /*
1286  * Scan reserved-ranges to consider them while reserving/releasing
1287  * memory for FADump.
1288  */
1289 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1290 {
1291 	const __be32 *prop;
1292 	int len, ret = -1;
1293 	unsigned long i;
1294 
1295 	/* reserved-ranges already scanned */
1296 	if (reserved_mrange_info.mem_range_cnt != 0)
1297 		return;
1298 
1299 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1300 	if (!prop)
1301 		return;
1302 
1303 	/*
1304 	 * Each reserved range is an (address,size) pair, 2 cells each,
1305 	 * totalling 4 cells per range.
1306 	 */
1307 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1308 		u64 base, size;
1309 
1310 		base = of_read_number(prop + (i * 4) + 0, 2);
1311 		size = of_read_number(prop + (i * 4) + 2, 2);
1312 
1313 		if (size) {
1314 			ret = fadump_add_mem_range(&reserved_mrange_info,
1315 						   base, base + size);
1316 			if (ret < 0) {
1317 				pr_warn("some reserved ranges are ignored!\n");
1318 				break;
1319 			}
1320 		}
1321 	}
1322 
1323 	/* Compact reserved ranges */
1324 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1325 }
1326 
1327 /*
1328  * Release the memory that was reserved during early boot to preserve the
1329  * crash'ed kernel's memory contents except reserved dump area (permanent
1330  * reservation) and reserved ranges used by F/W. The released memory will
1331  * be available for general use.
1332  */
1333 static void fadump_release_memory(u64 begin, u64 end)
1334 {
1335 	u64 ra_start, ra_end, tstart;
1336 	int i, ret;
1337 
1338 	ra_start = fw_dump.reserve_dump_area_start;
1339 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1340 
1341 	/*
1342 	 * If reserved ranges array limit is hit, overwrite the last reserved
1343 	 * memory range with reserved dump area to ensure it is excluded from
1344 	 * the memory being released (reused for next FADump registration).
1345 	 */
1346 	if (reserved_mrange_info.mem_range_cnt ==
1347 	    reserved_mrange_info.max_mem_ranges)
1348 		reserved_mrange_info.mem_range_cnt--;
1349 
1350 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1351 	if (ret != 0)
1352 		return;
1353 
1354 	/* Get the reserved ranges list in order first. */
1355 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1356 
1357 	/* Exclude reserved ranges and release remaining memory */
1358 	tstart = begin;
1359 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1360 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1361 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1362 
1363 		if (tstart >= ra_end)
1364 			continue;
1365 
1366 		if (tstart < ra_start)
1367 			fadump_release_reserved_area(tstart, ra_start);
1368 		tstart = ra_end;
1369 	}
1370 
1371 	if (tstart < end)
1372 		fadump_release_reserved_area(tstart, end);
1373 }
1374 
1375 static void fadump_invalidate_release_mem(void)
1376 {
1377 	mutex_lock(&fadump_mutex);
1378 	if (!fw_dump.dump_active) {
1379 		mutex_unlock(&fadump_mutex);
1380 		return;
1381 	}
1382 
1383 	fadump_cleanup();
1384 	mutex_unlock(&fadump_mutex);
1385 
1386 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1387 	fadump_free_cpu_notes_buf();
1388 
1389 	/*
1390 	 * Setup kernel metadata and initialize the kernel dump
1391 	 * memory structure for FADump re-registration.
1392 	 */
1393 	if (fw_dump.ops->fadump_setup_metadata &&
1394 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1395 		pr_warn("Failed to setup kernel metadata!\n");
1396 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1397 }
1398 
1399 static ssize_t release_mem_store(struct kobject *kobj,
1400 				 struct kobj_attribute *attr,
1401 				 const char *buf, size_t count)
1402 {
1403 	int input = -1;
1404 
1405 	if (!fw_dump.dump_active)
1406 		return -EPERM;
1407 
1408 	if (kstrtoint(buf, 0, &input))
1409 		return -EINVAL;
1410 
1411 	if (input == 1) {
1412 		/*
1413 		 * Take away the '/proc/vmcore'. We are releasing the dump
1414 		 * memory, hence it will not be valid anymore.
1415 		 */
1416 #ifdef CONFIG_PROC_VMCORE
1417 		vmcore_cleanup();
1418 #endif
1419 		fadump_invalidate_release_mem();
1420 
1421 	} else
1422 		return -EINVAL;
1423 	return count;
1424 }
1425 
1426 /* Release the reserved memory and disable the FADump */
1427 static void unregister_fadump(void)
1428 {
1429 	fadump_cleanup();
1430 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1431 			      fw_dump.reserve_dump_area_size);
1432 	fw_dump.fadump_enabled = 0;
1433 	kobject_put(fadump_kobj);
1434 }
1435 
1436 static ssize_t enabled_show(struct kobject *kobj,
1437 			    struct kobj_attribute *attr,
1438 			    char *buf)
1439 {
1440 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1441 }
1442 
1443 static ssize_t mem_reserved_show(struct kobject *kobj,
1444 				 struct kobj_attribute *attr,
1445 				 char *buf)
1446 {
1447 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1448 }
1449 
1450 static ssize_t registered_show(struct kobject *kobj,
1451 			       struct kobj_attribute *attr,
1452 			       char *buf)
1453 {
1454 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1455 }
1456 
1457 static ssize_t registered_store(struct kobject *kobj,
1458 				struct kobj_attribute *attr,
1459 				const char *buf, size_t count)
1460 {
1461 	int ret = 0;
1462 	int input = -1;
1463 
1464 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1465 		return -EPERM;
1466 
1467 	if (kstrtoint(buf, 0, &input))
1468 		return -EINVAL;
1469 
1470 	mutex_lock(&fadump_mutex);
1471 
1472 	switch (input) {
1473 	case 0:
1474 		if (fw_dump.dump_registered == 0) {
1475 			goto unlock_out;
1476 		}
1477 
1478 		/* Un-register Firmware-assisted dump */
1479 		pr_debug("Un-register firmware-assisted dump\n");
1480 		fw_dump.ops->fadump_unregister(&fw_dump);
1481 		break;
1482 	case 1:
1483 		if (fw_dump.dump_registered == 1) {
1484 			/* Un-register Firmware-assisted dump */
1485 			fw_dump.ops->fadump_unregister(&fw_dump);
1486 		}
1487 		/* Register Firmware-assisted dump */
1488 		ret = register_fadump();
1489 		break;
1490 	default:
1491 		ret = -EINVAL;
1492 		break;
1493 	}
1494 
1495 unlock_out:
1496 	mutex_unlock(&fadump_mutex);
1497 	return ret < 0 ? ret : count;
1498 }
1499 
1500 static int fadump_region_show(struct seq_file *m, void *private)
1501 {
1502 	if (!fw_dump.fadump_enabled)
1503 		return 0;
1504 
1505 	mutex_lock(&fadump_mutex);
1506 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1507 	mutex_unlock(&fadump_mutex);
1508 	return 0;
1509 }
1510 
1511 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1512 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1513 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1514 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1515 
1516 static struct attribute *fadump_attrs[] = {
1517 	&enable_attr.attr,
1518 	&register_attr.attr,
1519 	&mem_reserved_attr.attr,
1520 	NULL,
1521 };
1522 
1523 ATTRIBUTE_GROUPS(fadump);
1524 
1525 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1526 
1527 static void fadump_init_files(void)
1528 {
1529 	int rc = 0;
1530 
1531 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1532 	if (!fadump_kobj) {
1533 		pr_err("failed to create fadump kobject\n");
1534 		return;
1535 	}
1536 
1537 	debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
1538 			    &fadump_region_fops);
1539 
1540 	if (fw_dump.dump_active) {
1541 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1542 		if (rc)
1543 			pr_err("unable to create release_mem sysfs file (%d)\n",
1544 			       rc);
1545 	}
1546 
1547 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1548 	if (rc) {
1549 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1550 		       rc);
1551 		unregister_fadump();
1552 		return;
1553 	}
1554 
1555 	/*
1556 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1557 	 * create symlink at old location to maintain backward compatibility.
1558 	 *
1559 	 *      - fadump_enabled -> fadump/enabled
1560 	 *      - fadump_registered -> fadump/registered
1561 	 *      - fadump_release_mem -> fadump/release_mem
1562 	 */
1563 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1564 						  "enabled", "fadump_enabled");
1565 	if (rc) {
1566 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1567 		return;
1568 	}
1569 
1570 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1571 						  "registered",
1572 						  "fadump_registered");
1573 	if (rc) {
1574 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1575 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1576 		return;
1577 	}
1578 
1579 	if (fw_dump.dump_active) {
1580 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1581 							  fadump_kobj,
1582 							  "release_mem",
1583 							  "fadump_release_mem");
1584 		if (rc)
1585 			pr_err("unable to create fadump_release_mem symlink (%d)",
1586 			       rc);
1587 	}
1588 	return;
1589 }
1590 
1591 /*
1592  * Prepare for firmware-assisted dump.
1593  */
1594 int __init setup_fadump(void)
1595 {
1596 	if (!fw_dump.fadump_supported)
1597 		return 0;
1598 
1599 	fadump_init_files();
1600 	fadump_show_config();
1601 
1602 	if (!fw_dump.fadump_enabled)
1603 		return 1;
1604 
1605 	/*
1606 	 * If dump data is available then see if it is valid and prepare for
1607 	 * saving it to the disk.
1608 	 */
1609 	if (fw_dump.dump_active) {
1610 		/*
1611 		 * if dump process fails then invalidate the registration
1612 		 * and release memory before proceeding for re-registration.
1613 		 */
1614 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1615 			fadump_invalidate_release_mem();
1616 	}
1617 	/* Initialize the kernel dump memory structure for FAD registration. */
1618 	else if (fw_dump.reserve_dump_area_size)
1619 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1620 
1621 	return 1;
1622 }
1623 subsys_initcall(setup_fadump);
1624 #else /* !CONFIG_PRESERVE_FA_DUMP */
1625 
1626 /* Scan the Firmware Assisted dump configuration details. */
1627 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1628 				      int depth, void *data)
1629 {
1630 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1631 		return 0;
1632 
1633 	opal_fadump_dt_scan(&fw_dump, node);
1634 	return 1;
1635 }
1636 
1637 /*
1638  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1639  * preserve crash data. The subsequent memory preserving kernel boot
1640  * is likely to process this crash data.
1641  */
1642 int __init fadump_reserve_mem(void)
1643 {
1644 	if (fw_dump.dump_active) {
1645 		/*
1646 		 * If last boot has crashed then reserve all the memory
1647 		 * above boot memory to preserve crash data.
1648 		 */
1649 		pr_info("Preserving crash data for processing in next boot.\n");
1650 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1651 	} else
1652 		pr_debug("FADump-aware kernel..\n");
1653 
1654 	return 1;
1655 }
1656 #endif /* CONFIG_PRESERVE_FA_DUMP */
1657 
1658 /* Preserve everything above the base address */
1659 static void __init fadump_reserve_crash_area(u64 base)
1660 {
1661 	struct memblock_region *reg;
1662 	u64 mstart, msize;
1663 
1664 	for_each_memblock(memory, reg) {
1665 		mstart = reg->base;
1666 		msize  = reg->size;
1667 
1668 		if ((mstart + msize) < base)
1669 			continue;
1670 
1671 		if (mstart < base) {
1672 			msize -= (base - mstart);
1673 			mstart = base;
1674 		}
1675 
1676 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1677 			(msize >> 20), mstart);
1678 		memblock_reserve(mstart, msize);
1679 	}
1680 }
1681 
1682 unsigned long __init arch_reserved_kernel_pages(void)
1683 {
1684 	return memblock_reserved_size() / PAGE_SIZE;
1685 }
1686