xref: /linux/arch/powerpc/kernel/fadump.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 
28 #include <asm/debugfs.h>
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/fadump.h>
33 #include <asm/setup.h>
34 
35 static struct fw_dump fw_dump;
36 static struct fadump_mem_struct fdm;
37 static const struct fadump_mem_struct *fdm_active;
38 #ifdef CONFIG_CMA
39 static struct cma *fadump_cma;
40 #endif
41 
42 static DEFINE_MUTEX(fadump_mutex);
43 struct fad_crash_memory_ranges *crash_memory_ranges;
44 int crash_memory_ranges_size;
45 int crash_mem_ranges;
46 int max_crash_mem_ranges;
47 
48 #ifdef CONFIG_CMA
49 /*
50  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
51  *
52  * This function initializes CMA area from fadump reserved memory.
53  * The total size of fadump reserved memory covers for boot memory size
54  * + cpu data size + hpte size and metadata.
55  * Initialize only the area equivalent to boot memory size for CMA use.
56  * The reamining portion of fadump reserved memory will be not given
57  * to CMA and pages for thoes will stay reserved. boot memory size is
58  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
59  * But for some reason even if it fails we still have the memory reservation
60  * with us and we can still continue doing fadump.
61  */
62 int __init fadump_cma_init(void)
63 {
64 	unsigned long long base, size;
65 	int rc;
66 
67 	if (!fw_dump.fadump_enabled)
68 		return 0;
69 
70 	/*
71 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
72 	 * Return 1 to continue with fadump old behaviour.
73 	 */
74 	if (fw_dump.nocma)
75 		return 1;
76 
77 	base = fw_dump.reserve_dump_area_start;
78 	size = fw_dump.boot_memory_size;
79 
80 	if (!size)
81 		return 0;
82 
83 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
84 	if (rc) {
85 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
86 		/*
87 		 * Though the CMA init has failed we still have memory
88 		 * reservation with us. The reserved memory will be
89 		 * blocked from production system usage.  Hence return 1,
90 		 * so that we can continue with fadump.
91 		 */
92 		return 1;
93 	}
94 
95 	/*
96 	 * So we now have successfully initialized cma area for fadump.
97 	 */
98 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
99 		"bytes of memory reserved for firmware-assisted dump\n",
100 		cma_get_size(fadump_cma),
101 		(unsigned long)cma_get_base(fadump_cma) >> 20,
102 		fw_dump.reserve_dump_area_size);
103 	return 1;
104 }
105 #else
106 static int __init fadump_cma_init(void) { return 1; }
107 #endif /* CONFIG_CMA */
108 
109 /* Scan the Firmware Assisted dump configuration details. */
110 int __init early_init_dt_scan_fw_dump(unsigned long node,
111 			const char *uname, int depth, void *data)
112 {
113 	const __be32 *sections;
114 	int i, num_sections;
115 	int size;
116 	const __be32 *token;
117 
118 	if (depth != 1 || strcmp(uname, "rtas") != 0)
119 		return 0;
120 
121 	/*
122 	 * Check if Firmware Assisted dump is supported. if yes, check
123 	 * if dump has been initiated on last reboot.
124 	 */
125 	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
126 	if (!token)
127 		return 1;
128 
129 	fw_dump.fadump_supported = 1;
130 	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
131 
132 	/*
133 	 * The 'ibm,kernel-dump' rtas node is present only if there is
134 	 * dump data waiting for us.
135 	 */
136 	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
137 	if (fdm_active)
138 		fw_dump.dump_active = 1;
139 
140 	/* Get the sizes required to store dump data for the firmware provided
141 	 * dump sections.
142 	 * For each dump section type supported, a 32bit cell which defines
143 	 * the ID of a supported section followed by two 32 bit cells which
144 	 * gives teh size of the section in bytes.
145 	 */
146 	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
147 					&size);
148 
149 	if (!sections)
150 		return 1;
151 
152 	num_sections = size / (3 * sizeof(u32));
153 
154 	for (i = 0; i < num_sections; i++, sections += 3) {
155 		u32 type = (u32)of_read_number(sections, 1);
156 
157 		switch (type) {
158 		case FADUMP_CPU_STATE_DATA:
159 			fw_dump.cpu_state_data_size =
160 					of_read_ulong(&sections[1], 2);
161 			break;
162 		case FADUMP_HPTE_REGION:
163 			fw_dump.hpte_region_size =
164 					of_read_ulong(&sections[1], 2);
165 			break;
166 		}
167 	}
168 
169 	return 1;
170 }
171 
172 /*
173  * If fadump is registered, check if the memory provided
174  * falls within boot memory area and reserved memory area.
175  */
176 int is_fadump_memory_area(u64 addr, ulong size)
177 {
178 	u64 d_start = fw_dump.reserve_dump_area_start;
179 	u64 d_end = d_start + fw_dump.reserve_dump_area_size;
180 
181 	if (!fw_dump.dump_registered)
182 		return 0;
183 
184 	if (((addr + size) > d_start) && (addr <= d_end))
185 		return 1;
186 
187 	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
188 }
189 
190 int should_fadump_crash(void)
191 {
192 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
193 		return 0;
194 	return 1;
195 }
196 
197 int is_fadump_active(void)
198 {
199 	return fw_dump.dump_active;
200 }
201 
202 /*
203  * Returns 1, if there are no holes in boot memory area,
204  * 0 otherwise.
205  */
206 static int is_boot_memory_area_contiguous(void)
207 {
208 	struct memblock_region *reg;
209 	unsigned long tstart, tend;
210 	unsigned long start_pfn = PHYS_PFN(RMA_START);
211 	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
212 	unsigned int ret = 0;
213 
214 	for_each_memblock(memory, reg) {
215 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
216 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
217 		if (tstart < tend) {
218 			/* Memory hole from start_pfn to tstart */
219 			if (tstart > start_pfn)
220 				break;
221 
222 			if (tend == end_pfn) {
223 				ret = 1;
224 				break;
225 			}
226 
227 			start_pfn = tend + 1;
228 		}
229 	}
230 
231 	return ret;
232 }
233 
234 /*
235  * Returns true, if there are no holes in reserved memory area,
236  * false otherwise.
237  */
238 static bool is_reserved_memory_area_contiguous(void)
239 {
240 	struct memblock_region *reg;
241 	unsigned long start, end;
242 	unsigned long d_start = fw_dump.reserve_dump_area_start;
243 	unsigned long d_end = d_start + fw_dump.reserve_dump_area_size;
244 
245 	for_each_memblock(memory, reg) {
246 		start = max(d_start, (unsigned long)reg->base);
247 		end = min(d_end, (unsigned long)(reg->base + reg->size));
248 		if (d_start < end) {
249 			/* Memory hole from d_start to start */
250 			if (start > d_start)
251 				break;
252 
253 			if (end == d_end)
254 				return true;
255 
256 			d_start = end + 1;
257 		}
258 	}
259 
260 	return false;
261 }
262 
263 /* Print firmware assisted dump configurations for debugging purpose. */
264 static void fadump_show_config(void)
265 {
266 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
267 			(fw_dump.fadump_supported ? "present" : "no support"));
268 
269 	if (!fw_dump.fadump_supported)
270 		return;
271 
272 	pr_debug("Fadump enabled    : %s\n",
273 				(fw_dump.fadump_enabled ? "yes" : "no"));
274 	pr_debug("Dump Active       : %s\n",
275 				(fw_dump.dump_active ? "yes" : "no"));
276 	pr_debug("Dump section sizes:\n");
277 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
278 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
279 	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
280 }
281 
282 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
283 				unsigned long addr)
284 {
285 	if (!fdm)
286 		return 0;
287 
288 	memset(fdm, 0, sizeof(struct fadump_mem_struct));
289 	addr = addr & PAGE_MASK;
290 
291 	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
292 	fdm->header.dump_num_sections = cpu_to_be16(3);
293 	fdm->header.dump_status_flag = 0;
294 	fdm->header.offset_first_dump_section =
295 		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
296 
297 	/*
298 	 * Fields for disk dump option.
299 	 * We are not using disk dump option, hence set these fields to 0.
300 	 */
301 	fdm->header.dd_block_size = 0;
302 	fdm->header.dd_block_offset = 0;
303 	fdm->header.dd_num_blocks = 0;
304 	fdm->header.dd_offset_disk_path = 0;
305 
306 	/* set 0 to disable an automatic dump-reboot. */
307 	fdm->header.max_time_auto = 0;
308 
309 	/* Kernel dump sections */
310 	/* cpu state data section. */
311 	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
312 	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
313 	fdm->cpu_state_data.source_address = 0;
314 	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
315 	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
316 	addr += fw_dump.cpu_state_data_size;
317 
318 	/* hpte region section */
319 	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
320 	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
321 	fdm->hpte_region.source_address = 0;
322 	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
323 	fdm->hpte_region.destination_address = cpu_to_be64(addr);
324 	addr += fw_dump.hpte_region_size;
325 
326 	/* RMA region section */
327 	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
328 	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
329 	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
330 	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
331 	fdm->rmr_region.destination_address = cpu_to_be64(addr);
332 	addr += fw_dump.boot_memory_size;
333 
334 	return addr;
335 }
336 
337 /**
338  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
339  *
340  * Function to find the largest memory size we need to reserve during early
341  * boot process. This will be the size of the memory that is required for a
342  * kernel to boot successfully.
343  *
344  * This function has been taken from phyp-assisted dump feature implementation.
345  *
346  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
347  *
348  * TODO: Come up with better approach to find out more accurate memory size
349  * that is required for a kernel to boot successfully.
350  *
351  */
352 static inline unsigned long fadump_calculate_reserve_size(void)
353 {
354 	int ret;
355 	unsigned long long base, size;
356 
357 	if (fw_dump.reserve_bootvar)
358 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
359 
360 	/*
361 	 * Check if the size is specified through crashkernel= cmdline
362 	 * option. If yes, then use that but ignore base as fadump reserves
363 	 * memory at a predefined offset.
364 	 */
365 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
366 				&size, &base);
367 	if (ret == 0 && size > 0) {
368 		unsigned long max_size;
369 
370 		if (fw_dump.reserve_bootvar)
371 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
372 
373 		fw_dump.reserve_bootvar = (unsigned long)size;
374 
375 		/*
376 		 * Adjust if the boot memory size specified is above
377 		 * the upper limit.
378 		 */
379 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
380 		if (fw_dump.reserve_bootvar > max_size) {
381 			fw_dump.reserve_bootvar = max_size;
382 			pr_info("Adjusted boot memory size to %luMB\n",
383 				(fw_dump.reserve_bootvar >> 20));
384 		}
385 
386 		return fw_dump.reserve_bootvar;
387 	} else if (fw_dump.reserve_bootvar) {
388 		/*
389 		 * 'fadump_reserve_mem=' is being used to reserve memory
390 		 * for firmware-assisted dump.
391 		 */
392 		return fw_dump.reserve_bootvar;
393 	}
394 
395 	/* divide by 20 to get 5% of value */
396 	size = memblock_phys_mem_size() / 20;
397 
398 	/* round it down in multiples of 256 */
399 	size = size & ~0x0FFFFFFFUL;
400 
401 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
402 	if (memory_limit && size > memory_limit)
403 		size = memory_limit;
404 
405 	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
406 }
407 
408 /*
409  * Calculate the total memory size required to be reserved for
410  * firmware-assisted dump registration.
411  */
412 static unsigned long get_fadump_area_size(void)
413 {
414 	unsigned long size = 0;
415 
416 	size += fw_dump.cpu_state_data_size;
417 	size += fw_dump.hpte_region_size;
418 	size += fw_dump.boot_memory_size;
419 	size += sizeof(struct fadump_crash_info_header);
420 	size += sizeof(struct elfhdr); /* ELF core header.*/
421 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
422 	/* Program headers for crash memory regions. */
423 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
424 
425 	size = PAGE_ALIGN(size);
426 	return size;
427 }
428 
429 static void __init fadump_reserve_crash_area(unsigned long base,
430 					     unsigned long size)
431 {
432 	struct memblock_region *reg;
433 	unsigned long mstart, mend, msize;
434 
435 	for_each_memblock(memory, reg) {
436 		mstart = max_t(unsigned long, base, reg->base);
437 		mend = reg->base + reg->size;
438 		mend = min(base + size, mend);
439 
440 		if (mstart < mend) {
441 			msize = mend - mstart;
442 			memblock_reserve(mstart, msize);
443 			pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
444 				(msize >> 20), mstart);
445 		}
446 	}
447 }
448 
449 int __init fadump_reserve_mem(void)
450 {
451 	unsigned long base, size, memory_boundary;
452 
453 	if (!fw_dump.fadump_enabled)
454 		return 0;
455 
456 	if (!fw_dump.fadump_supported) {
457 		printk(KERN_INFO "Firmware-assisted dump is not supported on"
458 				" this hardware\n");
459 		fw_dump.fadump_enabled = 0;
460 		return 0;
461 	}
462 	/*
463 	 * Initialize boot memory size
464 	 * If dump is active then we have already calculated the size during
465 	 * first kernel.
466 	 */
467 	if (fdm_active)
468 		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
469 	else {
470 		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
471 #ifdef CONFIG_CMA
472 		if (!fw_dump.nocma)
473 			fw_dump.boot_memory_size =
474 				ALIGN(fw_dump.boot_memory_size,
475 							FADUMP_CMA_ALIGNMENT);
476 #endif
477 	}
478 
479 	/*
480 	 * Calculate the memory boundary.
481 	 * If memory_limit is less than actual memory boundary then reserve
482 	 * the memory for fadump beyond the memory_limit and adjust the
483 	 * memory_limit accordingly, so that the running kernel can run with
484 	 * specified memory_limit.
485 	 */
486 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
487 		size = get_fadump_area_size();
488 		if ((memory_limit + size) < memblock_end_of_DRAM())
489 			memory_limit += size;
490 		else
491 			memory_limit = memblock_end_of_DRAM();
492 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
493 				" dump, now %#016llx\n", memory_limit);
494 	}
495 	if (memory_limit)
496 		memory_boundary = memory_limit;
497 	else
498 		memory_boundary = memblock_end_of_DRAM();
499 
500 	if (fw_dump.dump_active) {
501 		pr_info("Firmware-assisted dump is active.\n");
502 
503 #ifdef CONFIG_HUGETLB_PAGE
504 		/*
505 		 * FADump capture kernel doesn't care much about hugepages.
506 		 * In fact, handling hugepages in capture kernel is asking for
507 		 * trouble. So, disable HugeTLB support when fadump is active.
508 		 */
509 		hugetlb_disabled = true;
510 #endif
511 		/*
512 		 * If last boot has crashed then reserve all the memory
513 		 * above boot_memory_size so that we don't touch it until
514 		 * dump is written to disk by userspace tool. This memory
515 		 * will be released for general use once the dump is saved.
516 		 */
517 		base = fw_dump.boot_memory_size;
518 		size = memory_boundary - base;
519 		fadump_reserve_crash_area(base, size);
520 
521 		fw_dump.fadumphdr_addr =
522 				be64_to_cpu(fdm_active->rmr_region.destination_address) +
523 				be64_to_cpu(fdm_active->rmr_region.source_len);
524 		pr_debug("fadumphdr_addr = %pa\n", &fw_dump.fadumphdr_addr);
525 		fw_dump.reserve_dump_area_start = base;
526 		fw_dump.reserve_dump_area_size = size;
527 	} else {
528 		size = get_fadump_area_size();
529 
530 		/*
531 		 * Reserve memory at an offset closer to bottom of the RAM to
532 		 * minimize the impact of memory hot-remove operation. We can't
533 		 * use memblock_find_in_range() here since it doesn't allocate
534 		 * from bottom to top.
535 		 */
536 		for (base = fw_dump.boot_memory_size;
537 		     base <= (memory_boundary - size);
538 		     base += size) {
539 			if (memblock_is_region_memory(base, size) &&
540 			    !memblock_is_region_reserved(base, size))
541 				break;
542 		}
543 		if ((base > (memory_boundary - size)) ||
544 		    memblock_reserve(base, size)) {
545 			pr_err("Failed to reserve memory\n");
546 			return 0;
547 		}
548 
549 		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
550 			"assisted dump (System RAM: %ldMB)\n",
551 			(unsigned long)(size >> 20),
552 			(unsigned long)(base >> 20),
553 			(unsigned long)(memblock_phys_mem_size() >> 20));
554 
555 		fw_dump.reserve_dump_area_start = base;
556 		fw_dump.reserve_dump_area_size = size;
557 		return fadump_cma_init();
558 	}
559 	return 1;
560 }
561 
562 unsigned long __init arch_reserved_kernel_pages(void)
563 {
564 	return memblock_reserved_size() / PAGE_SIZE;
565 }
566 
567 /* Look for fadump= cmdline option. */
568 static int __init early_fadump_param(char *p)
569 {
570 	if (!p)
571 		return 1;
572 
573 	if (strncmp(p, "on", 2) == 0)
574 		fw_dump.fadump_enabled = 1;
575 	else if (strncmp(p, "off", 3) == 0)
576 		fw_dump.fadump_enabled = 0;
577 	else if (strncmp(p, "nocma", 5) == 0) {
578 		fw_dump.fadump_enabled = 1;
579 		fw_dump.nocma = 1;
580 	}
581 
582 	return 0;
583 }
584 early_param("fadump", early_fadump_param);
585 
586 /*
587  * Look for fadump_reserve_mem= cmdline option
588  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
589  *       the sooner 'crashkernel=' parameter is accustomed to.
590  */
591 static int __init early_fadump_reserve_mem(char *p)
592 {
593 	if (p)
594 		fw_dump.reserve_bootvar = memparse(p, &p);
595 	return 0;
596 }
597 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
598 
599 static int register_fw_dump(struct fadump_mem_struct *fdm)
600 {
601 	int rc, err;
602 	unsigned int wait_time;
603 
604 	pr_debug("Registering for firmware-assisted kernel dump...\n");
605 
606 	/* TODO: Add upper time limit for the delay */
607 	do {
608 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
609 			FADUMP_REGISTER, fdm,
610 			sizeof(struct fadump_mem_struct));
611 
612 		wait_time = rtas_busy_delay_time(rc);
613 		if (wait_time)
614 			mdelay(wait_time);
615 
616 	} while (wait_time);
617 
618 	err = -EIO;
619 	switch (rc) {
620 	default:
621 		pr_err("Failed to register. Unknown Error(%d).\n", rc);
622 		break;
623 	case -1:
624 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
625 			" dump. Hardware Error(%d).\n", rc);
626 		break;
627 	case -3:
628 		if (!is_boot_memory_area_contiguous())
629 			pr_err("Can't have holes in boot memory area while registering fadump\n");
630 		else if (!is_reserved_memory_area_contiguous())
631 			pr_err("Can't have holes in reserved memory area while"
632 			       " registering fadump\n");
633 
634 		printk(KERN_ERR "Failed to register firmware-assisted kernel"
635 			" dump. Parameter Error(%d).\n", rc);
636 		err = -EINVAL;
637 		break;
638 	case -9:
639 		printk(KERN_ERR "firmware-assisted kernel dump is already "
640 			" registered.");
641 		fw_dump.dump_registered = 1;
642 		err = -EEXIST;
643 		break;
644 	case 0:
645 		printk(KERN_INFO "firmware-assisted kernel dump registration"
646 			" is successful\n");
647 		fw_dump.dump_registered = 1;
648 		err = 0;
649 		break;
650 	}
651 	return err;
652 }
653 
654 void crash_fadump(struct pt_regs *regs, const char *str)
655 {
656 	struct fadump_crash_info_header *fdh = NULL;
657 	int old_cpu, this_cpu;
658 
659 	if (!should_fadump_crash())
660 		return;
661 
662 	/*
663 	 * old_cpu == -1 means this is the first CPU which has come here,
664 	 * go ahead and trigger fadump.
665 	 *
666 	 * old_cpu != -1 means some other CPU has already on it's way
667 	 * to trigger fadump, just keep looping here.
668 	 */
669 	this_cpu = smp_processor_id();
670 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
671 
672 	if (old_cpu != -1) {
673 		/*
674 		 * We can't loop here indefinitely. Wait as long as fadump
675 		 * is in force. If we race with fadump un-registration this
676 		 * loop will break and then we go down to normal panic path
677 		 * and reboot. If fadump is in force the first crashing
678 		 * cpu will definitely trigger fadump.
679 		 */
680 		while (fw_dump.dump_registered)
681 			cpu_relax();
682 		return;
683 	}
684 
685 	fdh = __va(fw_dump.fadumphdr_addr);
686 	fdh->crashing_cpu = crashing_cpu;
687 	crash_save_vmcoreinfo();
688 
689 	if (regs)
690 		fdh->regs = *regs;
691 	else
692 		ppc_save_regs(&fdh->regs);
693 
694 	fdh->online_mask = *cpu_online_mask;
695 
696 	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
697 	rtas_os_term((char *)str);
698 }
699 
700 #define GPR_MASK	0xffffff0000000000
701 static inline int fadump_gpr_index(u64 id)
702 {
703 	int i = -1;
704 	char str[3];
705 
706 	if ((id & GPR_MASK) == REG_ID("GPR")) {
707 		/* get the digits at the end */
708 		id &= ~GPR_MASK;
709 		id >>= 24;
710 		str[2] = '\0';
711 		str[1] = id & 0xff;
712 		str[0] = (id >> 8) & 0xff;
713 		sscanf(str, "%d", &i);
714 		if (i > 31)
715 			i = -1;
716 	}
717 	return i;
718 }
719 
720 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
721 								u64 reg_val)
722 {
723 	int i;
724 
725 	i = fadump_gpr_index(reg_id);
726 	if (i >= 0)
727 		regs->gpr[i] = (unsigned long)reg_val;
728 	else if (reg_id == REG_ID("NIA"))
729 		regs->nip = (unsigned long)reg_val;
730 	else if (reg_id == REG_ID("MSR"))
731 		regs->msr = (unsigned long)reg_val;
732 	else if (reg_id == REG_ID("CTR"))
733 		regs->ctr = (unsigned long)reg_val;
734 	else if (reg_id == REG_ID("LR"))
735 		regs->link = (unsigned long)reg_val;
736 	else if (reg_id == REG_ID("XER"))
737 		regs->xer = (unsigned long)reg_val;
738 	else if (reg_id == REG_ID("CR"))
739 		regs->ccr = (unsigned long)reg_val;
740 	else if (reg_id == REG_ID("DAR"))
741 		regs->dar = (unsigned long)reg_val;
742 	else if (reg_id == REG_ID("DSISR"))
743 		regs->dsisr = (unsigned long)reg_val;
744 }
745 
746 static struct fadump_reg_entry*
747 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
748 {
749 	memset(regs, 0, sizeof(struct pt_regs));
750 
751 	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
752 		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
753 					be64_to_cpu(reg_entry->reg_value));
754 		reg_entry++;
755 	}
756 	reg_entry++;
757 	return reg_entry;
758 }
759 
760 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
761 {
762 	struct elf_prstatus prstatus;
763 
764 	memset(&prstatus, 0, sizeof(prstatus));
765 	/*
766 	 * FIXME: How do i get PID? Do I really need it?
767 	 * prstatus.pr_pid = ????
768 	 */
769 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
770 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
771 			      &prstatus, sizeof(prstatus));
772 	return buf;
773 }
774 
775 static void fadump_update_elfcore_header(char *bufp)
776 {
777 	struct elfhdr *elf;
778 	struct elf_phdr *phdr;
779 
780 	elf = (struct elfhdr *)bufp;
781 	bufp += sizeof(struct elfhdr);
782 
783 	/* First note is a place holder for cpu notes info. */
784 	phdr = (struct elf_phdr *)bufp;
785 
786 	if (phdr->p_type == PT_NOTE) {
787 		phdr->p_paddr = fw_dump.cpu_notes_buf;
788 		phdr->p_offset	= phdr->p_paddr;
789 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
790 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
791 	}
792 	return;
793 }
794 
795 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
796 {
797 	void *vaddr;
798 	struct page *page;
799 	unsigned long order, count, i;
800 
801 	order = get_order(size);
802 	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
803 	if (!vaddr)
804 		return NULL;
805 
806 	count = 1 << order;
807 	page = virt_to_page(vaddr);
808 	for (i = 0; i < count; i++)
809 		SetPageReserved(page + i);
810 	return vaddr;
811 }
812 
813 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
814 {
815 	struct page *page;
816 	unsigned long order, count, i;
817 
818 	order = get_order(size);
819 	count = 1 << order;
820 	page = virt_to_page(vaddr);
821 	for (i = 0; i < count; i++)
822 		ClearPageReserved(page + i);
823 	__free_pages(page, order);
824 }
825 
826 /*
827  * Read CPU state dump data and convert it into ELF notes.
828  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
829  * used to access the data to allow for additional fields to be added without
830  * affecting compatibility. Each list of registers for a CPU starts with
831  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
832  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
833  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
834  * of register value. For more details refer to PAPR document.
835  *
836  * Only for the crashing cpu we ignore the CPU dump data and get exact
837  * state from fadump crash info structure populated by first kernel at the
838  * time of crash.
839  */
840 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
841 {
842 	struct fadump_reg_save_area_header *reg_header;
843 	struct fadump_reg_entry *reg_entry;
844 	struct fadump_crash_info_header *fdh = NULL;
845 	void *vaddr;
846 	unsigned long addr;
847 	u32 num_cpus, *note_buf;
848 	struct pt_regs regs;
849 	int i, rc = 0, cpu = 0;
850 
851 	if (!fdm->cpu_state_data.bytes_dumped)
852 		return -EINVAL;
853 
854 	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
855 	vaddr = __va(addr);
856 
857 	reg_header = vaddr;
858 	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
859 		printk(KERN_ERR "Unable to read register save area.\n");
860 		return -ENOENT;
861 	}
862 	pr_debug("--------CPU State Data------------\n");
863 	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
864 	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
865 
866 	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
867 	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
868 	pr_debug("NumCpus     : %u\n", num_cpus);
869 	vaddr += sizeof(u32);
870 	reg_entry = (struct fadump_reg_entry *)vaddr;
871 
872 	/* Allocate buffer to hold cpu crash notes. */
873 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
874 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
875 	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
876 	if (!note_buf) {
877 		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
878 			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
879 		return -ENOMEM;
880 	}
881 	fw_dump.cpu_notes_buf = __pa(note_buf);
882 
883 	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
884 			(num_cpus * sizeof(note_buf_t)), note_buf);
885 
886 	if (fw_dump.fadumphdr_addr)
887 		fdh = __va(fw_dump.fadumphdr_addr);
888 
889 	for (i = 0; i < num_cpus; i++) {
890 		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
891 			printk(KERN_ERR "Unable to read CPU state data\n");
892 			rc = -ENOENT;
893 			goto error_out;
894 		}
895 		/* Lower 4 bytes of reg_value contains logical cpu id */
896 		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
897 		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
898 			SKIP_TO_NEXT_CPU(reg_entry);
899 			continue;
900 		}
901 		pr_debug("Reading register data for cpu %d...\n", cpu);
902 		if (fdh && fdh->crashing_cpu == cpu) {
903 			regs = fdh->regs;
904 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
905 			SKIP_TO_NEXT_CPU(reg_entry);
906 		} else {
907 			reg_entry++;
908 			reg_entry = fadump_read_registers(reg_entry, &regs);
909 			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
910 		}
911 	}
912 	final_note(note_buf);
913 
914 	if (fdh) {
915 		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
916 							fdh->elfcorehdr_addr);
917 		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
918 	}
919 	return 0;
920 
921 error_out:
922 	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
923 					fw_dump.cpu_notes_buf_size);
924 	fw_dump.cpu_notes_buf = 0;
925 	fw_dump.cpu_notes_buf_size = 0;
926 	return rc;
927 
928 }
929 
930 /*
931  * Validate and process the dump data stored by firmware before exporting
932  * it through '/proc/vmcore'.
933  */
934 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
935 {
936 	struct fadump_crash_info_header *fdh;
937 	int rc = 0;
938 
939 	if (!fdm_active || !fw_dump.fadumphdr_addr)
940 		return -EINVAL;
941 
942 	/* Check if the dump data is valid. */
943 	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
944 			(fdm_active->cpu_state_data.error_flags != 0) ||
945 			(fdm_active->rmr_region.error_flags != 0)) {
946 		printk(KERN_ERR "Dump taken by platform is not valid\n");
947 		return -EINVAL;
948 	}
949 	if ((fdm_active->rmr_region.bytes_dumped !=
950 			fdm_active->rmr_region.source_len) ||
951 			!fdm_active->cpu_state_data.bytes_dumped) {
952 		printk(KERN_ERR "Dump taken by platform is incomplete\n");
953 		return -EINVAL;
954 	}
955 
956 	/* Validate the fadump crash info header */
957 	fdh = __va(fw_dump.fadumphdr_addr);
958 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
959 		printk(KERN_ERR "Crash info header is not valid.\n");
960 		return -EINVAL;
961 	}
962 
963 	rc = fadump_build_cpu_notes(fdm_active);
964 	if (rc)
965 		return rc;
966 
967 	/*
968 	 * We are done validating dump info and elfcore header is now ready
969 	 * to be exported. set elfcorehdr_addr so that vmcore module will
970 	 * export the elfcore header through '/proc/vmcore'.
971 	 */
972 	elfcorehdr_addr = fdh->elfcorehdr_addr;
973 
974 	return 0;
975 }
976 
977 static void free_crash_memory_ranges(void)
978 {
979 	kfree(crash_memory_ranges);
980 	crash_memory_ranges = NULL;
981 	crash_memory_ranges_size = 0;
982 	max_crash_mem_ranges = 0;
983 }
984 
985 /*
986  * Allocate or reallocate crash memory ranges array in incremental units
987  * of PAGE_SIZE.
988  */
989 static int allocate_crash_memory_ranges(void)
990 {
991 	struct fad_crash_memory_ranges *new_array;
992 	u64 new_size;
993 
994 	new_size = crash_memory_ranges_size + PAGE_SIZE;
995 	pr_debug("Allocating %llu bytes of memory for crash memory ranges\n",
996 		 new_size);
997 
998 	new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL);
999 	if (new_array == NULL) {
1000 		pr_err("Insufficient memory for setting up crash memory ranges\n");
1001 		free_crash_memory_ranges();
1002 		return -ENOMEM;
1003 	}
1004 
1005 	crash_memory_ranges = new_array;
1006 	crash_memory_ranges_size = new_size;
1007 	max_crash_mem_ranges = (new_size /
1008 				sizeof(struct fad_crash_memory_ranges));
1009 	return 0;
1010 }
1011 
1012 static inline int fadump_add_crash_memory(unsigned long long base,
1013 					  unsigned long long end)
1014 {
1015 	u64  start, size;
1016 	bool is_adjacent = false;
1017 
1018 	if (base == end)
1019 		return 0;
1020 
1021 	/*
1022 	 * Fold adjacent memory ranges to bring down the memory ranges/
1023 	 * PT_LOAD segments count.
1024 	 */
1025 	if (crash_mem_ranges) {
1026 		start = crash_memory_ranges[crash_mem_ranges - 1].base;
1027 		size = crash_memory_ranges[crash_mem_ranges - 1].size;
1028 
1029 		if ((start + size) == base)
1030 			is_adjacent = true;
1031 	}
1032 	if (!is_adjacent) {
1033 		/* resize the array on reaching the limit */
1034 		if (crash_mem_ranges == max_crash_mem_ranges) {
1035 			int ret;
1036 
1037 			ret = allocate_crash_memory_ranges();
1038 			if (ret)
1039 				return ret;
1040 		}
1041 
1042 		start = base;
1043 		crash_memory_ranges[crash_mem_ranges].base = start;
1044 		crash_mem_ranges++;
1045 	}
1046 
1047 	crash_memory_ranges[crash_mem_ranges - 1].size = (end - start);
1048 	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
1049 		(crash_mem_ranges - 1), start, end - 1, (end - start));
1050 	return 0;
1051 }
1052 
1053 static int fadump_exclude_reserved_area(unsigned long long start,
1054 					unsigned long long end)
1055 {
1056 	unsigned long long ra_start, ra_end;
1057 	int ret = 0;
1058 
1059 	ra_start = fw_dump.reserve_dump_area_start;
1060 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1061 
1062 	if ((ra_start < end) && (ra_end > start)) {
1063 		if ((start < ra_start) && (end > ra_end)) {
1064 			ret = fadump_add_crash_memory(start, ra_start);
1065 			if (ret)
1066 				return ret;
1067 
1068 			ret = fadump_add_crash_memory(ra_end, end);
1069 		} else if (start < ra_start) {
1070 			ret = fadump_add_crash_memory(start, ra_start);
1071 		} else if (ra_end < end) {
1072 			ret = fadump_add_crash_memory(ra_end, end);
1073 		}
1074 	} else
1075 		ret = fadump_add_crash_memory(start, end);
1076 
1077 	return ret;
1078 }
1079 
1080 static int fadump_init_elfcore_header(char *bufp)
1081 {
1082 	struct elfhdr *elf;
1083 
1084 	elf = (struct elfhdr *) bufp;
1085 	bufp += sizeof(struct elfhdr);
1086 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1087 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1088 	elf->e_ident[EI_DATA] = ELF_DATA;
1089 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1090 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1091 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
1092 	elf->e_type = ET_CORE;
1093 	elf->e_machine = ELF_ARCH;
1094 	elf->e_version = EV_CURRENT;
1095 	elf->e_entry = 0;
1096 	elf->e_phoff = sizeof(struct elfhdr);
1097 	elf->e_shoff = 0;
1098 #if defined(_CALL_ELF)
1099 	elf->e_flags = _CALL_ELF;
1100 #else
1101 	elf->e_flags = 0;
1102 #endif
1103 	elf->e_ehsize = sizeof(struct elfhdr);
1104 	elf->e_phentsize = sizeof(struct elf_phdr);
1105 	elf->e_phnum = 0;
1106 	elf->e_shentsize = 0;
1107 	elf->e_shnum = 0;
1108 	elf->e_shstrndx = 0;
1109 
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Traverse through memblock structure and setup crash memory ranges. These
1115  * ranges will be used create PT_LOAD program headers in elfcore header.
1116  */
1117 static int fadump_setup_crash_memory_ranges(void)
1118 {
1119 	struct memblock_region *reg;
1120 	unsigned long long start, end;
1121 	int ret;
1122 
1123 	pr_debug("Setup crash memory ranges.\n");
1124 	crash_mem_ranges = 0;
1125 
1126 	/*
1127 	 * add the first memory chunk (RMA_START through boot_memory_size) as
1128 	 * a separate memory chunk. The reason is, at the time crash firmware
1129 	 * will move the content of this memory chunk to different location
1130 	 * specified during fadump registration. We need to create a separate
1131 	 * program header for this chunk with the correct offset.
1132 	 */
1133 	ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
1134 	if (ret)
1135 		return ret;
1136 
1137 	for_each_memblock(memory, reg) {
1138 		start = (unsigned long long)reg->base;
1139 		end = start + (unsigned long long)reg->size;
1140 
1141 		/*
1142 		 * skip the first memory chunk that is already added (RMA_START
1143 		 * through boot_memory_size). This logic needs a relook if and
1144 		 * when RMA_START changes to a non-zero value.
1145 		 */
1146 		BUILD_BUG_ON(RMA_START != 0);
1147 		if (start < fw_dump.boot_memory_size) {
1148 			if (end > fw_dump.boot_memory_size)
1149 				start = fw_dump.boot_memory_size;
1150 			else
1151 				continue;
1152 		}
1153 
1154 		/* add this range excluding the reserved dump area. */
1155 		ret = fadump_exclude_reserved_area(start, end);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * If the given physical address falls within the boot memory region then
1165  * return the relocated address that points to the dump region reserved
1166  * for saving initial boot memory contents.
1167  */
1168 static inline unsigned long fadump_relocate(unsigned long paddr)
1169 {
1170 	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
1171 		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
1172 	else
1173 		return paddr;
1174 }
1175 
1176 static int fadump_create_elfcore_headers(char *bufp)
1177 {
1178 	struct elfhdr *elf;
1179 	struct elf_phdr *phdr;
1180 	int i;
1181 
1182 	fadump_init_elfcore_header(bufp);
1183 	elf = (struct elfhdr *)bufp;
1184 	bufp += sizeof(struct elfhdr);
1185 
1186 	/*
1187 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1188 	 * will be populated during second kernel boot after crash. Hence
1189 	 * this PT_NOTE will always be the first elf note.
1190 	 *
1191 	 * NOTE: Any new ELF note addition should be placed after this note.
1192 	 */
1193 	phdr = (struct elf_phdr *)bufp;
1194 	bufp += sizeof(struct elf_phdr);
1195 	phdr->p_type = PT_NOTE;
1196 	phdr->p_flags = 0;
1197 	phdr->p_vaddr = 0;
1198 	phdr->p_align = 0;
1199 
1200 	phdr->p_offset = 0;
1201 	phdr->p_paddr = 0;
1202 	phdr->p_filesz = 0;
1203 	phdr->p_memsz = 0;
1204 
1205 	(elf->e_phnum)++;
1206 
1207 	/* setup ELF PT_NOTE for vmcoreinfo */
1208 	phdr = (struct elf_phdr *)bufp;
1209 	bufp += sizeof(struct elf_phdr);
1210 	phdr->p_type	= PT_NOTE;
1211 	phdr->p_flags	= 0;
1212 	phdr->p_vaddr	= 0;
1213 	phdr->p_align	= 0;
1214 
1215 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1216 	phdr->p_offset	= phdr->p_paddr;
1217 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1218 
1219 	/* Increment number of program headers. */
1220 	(elf->e_phnum)++;
1221 
1222 	/* setup PT_LOAD sections. */
1223 
1224 	for (i = 0; i < crash_mem_ranges; i++) {
1225 		unsigned long long mbase, msize;
1226 		mbase = crash_memory_ranges[i].base;
1227 		msize = crash_memory_ranges[i].size;
1228 
1229 		if (!msize)
1230 			continue;
1231 
1232 		phdr = (struct elf_phdr *)bufp;
1233 		bufp += sizeof(struct elf_phdr);
1234 		phdr->p_type	= PT_LOAD;
1235 		phdr->p_flags	= PF_R|PF_W|PF_X;
1236 		phdr->p_offset	= mbase;
1237 
1238 		if (mbase == RMA_START) {
1239 			/*
1240 			 * The entire RMA region will be moved by firmware
1241 			 * to the specified destination_address. Hence set
1242 			 * the correct offset.
1243 			 */
1244 			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1245 		}
1246 
1247 		phdr->p_paddr = mbase;
1248 		phdr->p_vaddr = (unsigned long)__va(mbase);
1249 		phdr->p_filesz = msize;
1250 		phdr->p_memsz = msize;
1251 		phdr->p_align = 0;
1252 
1253 		/* Increment number of program headers. */
1254 		(elf->e_phnum)++;
1255 	}
1256 	return 0;
1257 }
1258 
1259 static unsigned long init_fadump_header(unsigned long addr)
1260 {
1261 	struct fadump_crash_info_header *fdh;
1262 
1263 	if (!addr)
1264 		return 0;
1265 
1266 	fw_dump.fadumphdr_addr = addr;
1267 	fdh = __va(addr);
1268 	addr += sizeof(struct fadump_crash_info_header);
1269 
1270 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1271 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1272 	fdh->elfcorehdr_addr = addr;
1273 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1274 	fdh->crashing_cpu = CPU_UNKNOWN;
1275 
1276 	return addr;
1277 }
1278 
1279 static int register_fadump(void)
1280 {
1281 	unsigned long addr;
1282 	void *vaddr;
1283 	int ret;
1284 
1285 	/*
1286 	 * If no memory is reserved then we can not register for firmware-
1287 	 * assisted dump.
1288 	 */
1289 	if (!fw_dump.reserve_dump_area_size)
1290 		return -ENODEV;
1291 
1292 	ret = fadump_setup_crash_memory_ranges();
1293 	if (ret)
1294 		return ret;
1295 
1296 	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1297 	/* Initialize fadump crash info header. */
1298 	addr = init_fadump_header(addr);
1299 	vaddr = __va(addr);
1300 
1301 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1302 	fadump_create_elfcore_headers(vaddr);
1303 
1304 	/* register the future kernel dump with firmware. */
1305 	return register_fw_dump(&fdm);
1306 }
1307 
1308 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1309 {
1310 	int rc = 0;
1311 	unsigned int wait_time;
1312 
1313 	pr_debug("Un-register firmware-assisted dump\n");
1314 
1315 	/* TODO: Add upper time limit for the delay */
1316 	do {
1317 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1318 			FADUMP_UNREGISTER, fdm,
1319 			sizeof(struct fadump_mem_struct));
1320 
1321 		wait_time = rtas_busy_delay_time(rc);
1322 		if (wait_time)
1323 			mdelay(wait_time);
1324 	} while (wait_time);
1325 
1326 	if (rc) {
1327 		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1328 			" unexpected error(%d).\n", rc);
1329 		return rc;
1330 	}
1331 	fw_dump.dump_registered = 0;
1332 	return 0;
1333 }
1334 
1335 static int fadump_invalidate_dump(const struct fadump_mem_struct *fdm)
1336 {
1337 	int rc = 0;
1338 	unsigned int wait_time;
1339 
1340 	pr_debug("Invalidating firmware-assisted dump registration\n");
1341 
1342 	/* TODO: Add upper time limit for the delay */
1343 	do {
1344 		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1345 			FADUMP_INVALIDATE, fdm,
1346 			sizeof(struct fadump_mem_struct));
1347 
1348 		wait_time = rtas_busy_delay_time(rc);
1349 		if (wait_time)
1350 			mdelay(wait_time);
1351 	} while (wait_time);
1352 
1353 	if (rc) {
1354 		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1355 		return rc;
1356 	}
1357 	fw_dump.dump_active = 0;
1358 	fdm_active = NULL;
1359 	return 0;
1360 }
1361 
1362 void fadump_cleanup(void)
1363 {
1364 	/* Invalidate the registration only if dump is active. */
1365 	if (fw_dump.dump_active) {
1366 		/* pass the same memory dump structure provided by platform */
1367 		fadump_invalidate_dump(fdm_active);
1368 	} else if (fw_dump.dump_registered) {
1369 		/* Un-register Firmware-assisted dump if it was registered. */
1370 		fadump_unregister_dump(&fdm);
1371 		free_crash_memory_ranges();
1372 	}
1373 }
1374 
1375 static void fadump_free_reserved_memory(unsigned long start_pfn,
1376 					unsigned long end_pfn)
1377 {
1378 	unsigned long pfn;
1379 	unsigned long time_limit = jiffies + HZ;
1380 
1381 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1382 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1383 
1384 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1385 		free_reserved_page(pfn_to_page(pfn));
1386 
1387 		if (time_after(jiffies, time_limit)) {
1388 			cond_resched();
1389 			time_limit = jiffies + HZ;
1390 		}
1391 	}
1392 }
1393 
1394 /*
1395  * Skip memory holes and free memory that was actually reserved.
1396  */
1397 static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1398 {
1399 	struct memblock_region *reg;
1400 	unsigned long tstart, tend;
1401 	unsigned long start_pfn = PHYS_PFN(start);
1402 	unsigned long end_pfn = PHYS_PFN(end);
1403 
1404 	for_each_memblock(memory, reg) {
1405 		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1406 		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1407 		if (tstart < tend) {
1408 			fadump_free_reserved_memory(tstart, tend);
1409 
1410 			if (tend == end_pfn)
1411 				break;
1412 
1413 			start_pfn = tend + 1;
1414 		}
1415 	}
1416 }
1417 
1418 /*
1419  * Release the memory that was reserved in early boot to preserve the memory
1420  * contents. The released memory will be available for general use.
1421  */
1422 static void fadump_release_memory(unsigned long begin, unsigned long end)
1423 {
1424 	unsigned long ra_start, ra_end;
1425 
1426 	ra_start = fw_dump.reserve_dump_area_start;
1427 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1428 
1429 	/*
1430 	 * exclude the dump reserve area. Will reuse it for next
1431 	 * fadump registration.
1432 	 */
1433 	if (begin < ra_end && end > ra_start) {
1434 		if (begin < ra_start)
1435 			fadump_release_reserved_area(begin, ra_start);
1436 		if (end > ra_end)
1437 			fadump_release_reserved_area(ra_end, end);
1438 	} else
1439 		fadump_release_reserved_area(begin, end);
1440 }
1441 
1442 static void fadump_invalidate_release_mem(void)
1443 {
1444 	unsigned long reserved_area_start, reserved_area_end;
1445 	unsigned long destination_address;
1446 
1447 	mutex_lock(&fadump_mutex);
1448 	if (!fw_dump.dump_active) {
1449 		mutex_unlock(&fadump_mutex);
1450 		return;
1451 	}
1452 
1453 	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1454 	fadump_cleanup();
1455 	mutex_unlock(&fadump_mutex);
1456 
1457 	/*
1458 	 * Save the current reserved memory bounds we will require them
1459 	 * later for releasing the memory for general use.
1460 	 */
1461 	reserved_area_start = fw_dump.reserve_dump_area_start;
1462 	reserved_area_end = reserved_area_start +
1463 			fw_dump.reserve_dump_area_size;
1464 	/*
1465 	 * Setup reserve_dump_area_start and its size so that we can
1466 	 * reuse this reserved memory for Re-registration.
1467 	 */
1468 	fw_dump.reserve_dump_area_start = destination_address;
1469 	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1470 
1471 	fadump_release_memory(reserved_area_start, reserved_area_end);
1472 	if (fw_dump.cpu_notes_buf) {
1473 		fadump_cpu_notes_buf_free(
1474 				(unsigned long)__va(fw_dump.cpu_notes_buf),
1475 				fw_dump.cpu_notes_buf_size);
1476 		fw_dump.cpu_notes_buf = 0;
1477 		fw_dump.cpu_notes_buf_size = 0;
1478 	}
1479 	/* Initialize the kernel dump memory structure for FAD registration. */
1480 	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1481 }
1482 
1483 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1484 					struct kobj_attribute *attr,
1485 					const char *buf, size_t count)
1486 {
1487 	int input = -1;
1488 
1489 	if (!fw_dump.dump_active)
1490 		return -EPERM;
1491 
1492 	if (kstrtoint(buf, 0, &input))
1493 		return -EINVAL;
1494 
1495 	if (input == 1) {
1496 		/*
1497 		 * Take away the '/proc/vmcore'. We are releasing the dump
1498 		 * memory, hence it will not be valid anymore.
1499 		 */
1500 #ifdef CONFIG_PROC_VMCORE
1501 		vmcore_cleanup();
1502 #endif
1503 		fadump_invalidate_release_mem();
1504 
1505 	} else
1506 		return -EINVAL;
1507 	return count;
1508 }
1509 
1510 static ssize_t fadump_enabled_show(struct kobject *kobj,
1511 					struct kobj_attribute *attr,
1512 					char *buf)
1513 {
1514 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1515 }
1516 
1517 static ssize_t fadump_register_show(struct kobject *kobj,
1518 					struct kobj_attribute *attr,
1519 					char *buf)
1520 {
1521 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1522 }
1523 
1524 static ssize_t fadump_register_store(struct kobject *kobj,
1525 					struct kobj_attribute *attr,
1526 					const char *buf, size_t count)
1527 {
1528 	int ret = 0;
1529 	int input = -1;
1530 
1531 	if (!fw_dump.fadump_enabled || fdm_active)
1532 		return -EPERM;
1533 
1534 	if (kstrtoint(buf, 0, &input))
1535 		return -EINVAL;
1536 
1537 	mutex_lock(&fadump_mutex);
1538 
1539 	switch (input) {
1540 	case 0:
1541 		if (fw_dump.dump_registered == 0) {
1542 			goto unlock_out;
1543 		}
1544 		/* Un-register Firmware-assisted dump */
1545 		fadump_unregister_dump(&fdm);
1546 		break;
1547 	case 1:
1548 		if (fw_dump.dump_registered == 1) {
1549 			/* Un-register Firmware-assisted dump */
1550 			fadump_unregister_dump(&fdm);
1551 		}
1552 		/* Register Firmware-assisted dump */
1553 		ret = register_fadump();
1554 		break;
1555 	default:
1556 		ret = -EINVAL;
1557 		break;
1558 	}
1559 
1560 unlock_out:
1561 	mutex_unlock(&fadump_mutex);
1562 	return ret < 0 ? ret : count;
1563 }
1564 
1565 static int fadump_region_show(struct seq_file *m, void *private)
1566 {
1567 	const struct fadump_mem_struct *fdm_ptr;
1568 
1569 	if (!fw_dump.fadump_enabled)
1570 		return 0;
1571 
1572 	mutex_lock(&fadump_mutex);
1573 	if (fdm_active)
1574 		fdm_ptr = fdm_active;
1575 	else {
1576 		mutex_unlock(&fadump_mutex);
1577 		fdm_ptr = &fdm;
1578 	}
1579 
1580 	seq_printf(m,
1581 			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1582 			"Dumped: %#llx\n",
1583 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1584 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1585 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1586 			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1587 			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1588 	seq_printf(m,
1589 			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1590 			"Dumped: %#llx\n",
1591 			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1592 			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1593 			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1594 			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1595 			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1596 	seq_printf(m,
1597 			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1598 			"Dumped: %#llx\n",
1599 			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1600 			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1601 			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1602 			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1603 			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1604 
1605 	if (!fdm_active ||
1606 		(fw_dump.reserve_dump_area_start ==
1607 		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1608 		goto out;
1609 
1610 	/* Dump is active. Show reserved memory region. */
1611 	seq_printf(m,
1612 			"    : [%#016llx-%#016llx] %#llx bytes, "
1613 			"Dumped: %#llx\n",
1614 			(unsigned long long)fw_dump.reserve_dump_area_start,
1615 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1616 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1617 			fw_dump.reserve_dump_area_start,
1618 			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1619 			fw_dump.reserve_dump_area_start);
1620 out:
1621 	if (fdm_active)
1622 		mutex_unlock(&fadump_mutex);
1623 	return 0;
1624 }
1625 
1626 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1627 						0200, NULL,
1628 						fadump_release_memory_store);
1629 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1630 						0444, fadump_enabled_show,
1631 						NULL);
1632 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1633 						0644, fadump_register_show,
1634 						fadump_register_store);
1635 
1636 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1637 
1638 static void fadump_init_files(void)
1639 {
1640 	struct dentry *debugfs_file;
1641 	int rc = 0;
1642 
1643 	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1644 	if (rc)
1645 		printk(KERN_ERR "fadump: unable to create sysfs file"
1646 			" fadump_enabled (%d)\n", rc);
1647 
1648 	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1649 	if (rc)
1650 		printk(KERN_ERR "fadump: unable to create sysfs file"
1651 			" fadump_registered (%d)\n", rc);
1652 
1653 	debugfs_file = debugfs_create_file("fadump_region", 0444,
1654 					powerpc_debugfs_root, NULL,
1655 					&fadump_region_fops);
1656 	if (!debugfs_file)
1657 		printk(KERN_ERR "fadump: unable to create debugfs file"
1658 				" fadump_region\n");
1659 
1660 	if (fw_dump.dump_active) {
1661 		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1662 		if (rc)
1663 			printk(KERN_ERR "fadump: unable to create sysfs file"
1664 				" fadump_release_mem (%d)\n", rc);
1665 	}
1666 	return;
1667 }
1668 
1669 /*
1670  * Prepare for firmware-assisted dump.
1671  */
1672 int __init setup_fadump(void)
1673 {
1674 	if (!fw_dump.fadump_enabled)
1675 		return 0;
1676 
1677 	if (!fw_dump.fadump_supported) {
1678 		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1679 			" this hardware\n");
1680 		return 0;
1681 	}
1682 
1683 	fadump_show_config();
1684 	/*
1685 	 * If dump data is available then see if it is valid and prepare for
1686 	 * saving it to the disk.
1687 	 */
1688 	if (fw_dump.dump_active) {
1689 		/*
1690 		 * if dump process fails then invalidate the registration
1691 		 * and release memory before proceeding for re-registration.
1692 		 */
1693 		if (process_fadump(fdm_active) < 0)
1694 			fadump_invalidate_release_mem();
1695 	}
1696 	/* Initialize the kernel dump memory structure for FAD registration. */
1697 	else if (fw_dump.reserve_dump_area_size)
1698 		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1699 	fadump_init_files();
1700 
1701 	return 1;
1702 }
1703 subsys_initcall(setup_fadump);
1704