1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash 4 * dump with assistance from firmware. This approach does not use kexec, 5 * instead firmware assists in booting the kdump kernel while preserving 6 * memory contents. The most of the code implementation has been adapted 7 * from phyp assisted dump implementation written by Linas Vepstas and 8 * Manish Ahuja 9 * 10 * Copyright 2011 IBM Corporation 11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> 12 */ 13 14 #undef DEBUG 15 #define pr_fmt(fmt) "fadump: " fmt 16 17 #include <linux/string.h> 18 #include <linux/memblock.h> 19 #include <linux/delay.h> 20 #include <linux/seq_file.h> 21 #include <linux/crash_dump.h> 22 #include <linux/kobject.h> 23 #include <linux/sysfs.h> 24 #include <linux/slab.h> 25 #include <linux/cma.h> 26 #include <linux/hugetlb.h> 27 #include <linux/debugfs.h> 28 #include <linux/of.h> 29 #include <linux/of_fdt.h> 30 31 #include <asm/page.h> 32 #include <asm/fadump.h> 33 #include <asm/fadump-internal.h> 34 #include <asm/setup.h> 35 #include <asm/interrupt.h> 36 37 /* 38 * The CPU who acquired the lock to trigger the fadump crash should 39 * wait for other CPUs to enter. 40 * 41 * The timeout is in milliseconds. 42 */ 43 #define CRASH_TIMEOUT 500 44 45 static struct fw_dump fw_dump; 46 47 static void __init fadump_reserve_crash_area(u64 base); 48 49 #ifndef CONFIG_PRESERVE_FA_DUMP 50 51 static struct kobject *fadump_kobj; 52 53 static atomic_t cpus_in_fadump; 54 static DEFINE_MUTEX(fadump_mutex); 55 56 #define RESERVED_RNGS_SZ 16384 /* 16K - 128 entries */ 57 #define RESERVED_RNGS_CNT (RESERVED_RNGS_SZ / \ 58 sizeof(struct fadump_memory_range)) 59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT]; 60 static struct fadump_mrange_info 61 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true }; 62 63 static void __init early_init_dt_scan_reserved_ranges(unsigned long node); 64 65 #ifdef CONFIG_CMA 66 static struct cma *fadump_cma; 67 68 /* 69 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory 70 * 71 * This function initializes CMA area from fadump reserved memory. 72 * The total size of fadump reserved memory covers for boot memory size 73 * + cpu data size + hpte size and metadata. 74 * Initialize only the area equivalent to boot memory size for CMA use. 75 * The remaining portion of fadump reserved memory will be not given 76 * to CMA and pages for those will stay reserved. boot memory size is 77 * aligned per CMA requirement to satisy cma_init_reserved_mem() call. 78 * But for some reason even if it fails we still have the memory reservation 79 * with us and we can still continue doing fadump. 80 */ 81 void __init fadump_cma_init(void) 82 { 83 unsigned long long base, size, end; 84 int rc; 85 86 if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled || 87 fw_dump.dump_active) 88 return; 89 /* 90 * Do not use CMA if user has provided fadump=nocma kernel parameter. 91 */ 92 if (fw_dump.nocma || !fw_dump.boot_memory_size) 93 return; 94 95 /* 96 * [base, end) should be reserved during early init in 97 * fadump_reserve_mem(). No need to check this here as 98 * cma_init_reserved_mem() already checks for overlap. 99 * Here we give the aligned chunk of this reserved memory to CMA. 100 */ 101 base = fw_dump.reserve_dump_area_start; 102 size = fw_dump.boot_memory_size; 103 end = base + size; 104 105 base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES); 106 end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES); 107 size = end - base; 108 109 if (end <= base) { 110 pr_warn("%s: Too less memory to give to CMA\n", __func__); 111 return; 112 } 113 114 rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma); 115 if (rc) { 116 pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc); 117 /* 118 * Though the CMA init has failed we still have memory 119 * reservation with us. The reserved memory will be 120 * blocked from production system usage. Hence return 1, 121 * so that we can continue with fadump. 122 */ 123 return; 124 } 125 126 /* 127 * If CMA activation fails, keep the pages reserved, instead of 128 * exposing them to buddy allocator. Same as 'fadump=nocma' case. 129 */ 130 cma_reserve_pages_on_error(fadump_cma); 131 132 /* 133 * So we now have successfully initialized cma area for fadump. 134 */ 135 pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] " 136 "bytes of memory reserved for firmware-assisted dump\n", 137 cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20, 138 fw_dump.reserve_dump_area_start, 139 fw_dump.boot_memory_size >> 20); 140 return; 141 } 142 #endif /* CONFIG_CMA */ 143 144 /* 145 * Additional parameters meant for capture kernel are placed in a dedicated area. 146 * If this is capture kernel boot, append these parameters to bootargs. 147 */ 148 void __init fadump_append_bootargs(void) 149 { 150 char *append_args; 151 size_t len; 152 153 if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area) 154 return; 155 156 if (fw_dump.param_area < fw_dump.boot_mem_top) { 157 if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) { 158 pr_warn("WARNING: Can't use additional parameters area!\n"); 159 fw_dump.param_area = 0; 160 return; 161 } 162 } 163 164 append_args = (char *)fw_dump.param_area; 165 len = strlen(boot_command_line); 166 167 /* 168 * Too late to fail even if cmdline size exceeds. Truncate additional parameters 169 * to cmdline size and proceed anyway. 170 */ 171 if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1) 172 pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n"); 173 174 pr_debug("Cmdline: %s\n", boot_command_line); 175 snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args); 176 pr_info("Updated cmdline: %s\n", boot_command_line); 177 } 178 179 /* Scan the Firmware Assisted dump configuration details. */ 180 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 181 int depth, void *data) 182 { 183 if (depth == 0) { 184 early_init_dt_scan_reserved_ranges(node); 185 return 0; 186 } 187 188 if (depth != 1) 189 return 0; 190 191 if (strcmp(uname, "rtas") == 0) { 192 rtas_fadump_dt_scan(&fw_dump, node); 193 return 1; 194 } 195 196 if (strcmp(uname, "ibm,opal") == 0) { 197 opal_fadump_dt_scan(&fw_dump, node); 198 return 1; 199 } 200 201 return 0; 202 } 203 204 /* 205 * If fadump is registered, check if the memory provided 206 * falls within boot memory area and reserved memory area. 207 */ 208 int is_fadump_memory_area(u64 addr, unsigned long size) 209 { 210 u64 d_start, d_end; 211 212 if (!fw_dump.dump_registered) 213 return 0; 214 215 if (!size) 216 return 0; 217 218 d_start = fw_dump.reserve_dump_area_start; 219 d_end = d_start + fw_dump.reserve_dump_area_size; 220 if (((addr + size) > d_start) && (addr <= d_end)) 221 return 1; 222 223 return (addr <= fw_dump.boot_mem_top); 224 } 225 226 int should_fadump_crash(void) 227 { 228 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr) 229 return 0; 230 return 1; 231 } 232 233 int is_fadump_active(void) 234 { 235 return fw_dump.dump_active; 236 } 237 238 /* 239 * Returns true, if there are no holes in memory area between d_start to d_end, 240 * false otherwise. 241 */ 242 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end) 243 { 244 phys_addr_t reg_start, reg_end; 245 bool ret = false; 246 u64 i, start, end; 247 248 for_each_mem_range(i, ®_start, ®_end) { 249 start = max_t(u64, d_start, reg_start); 250 end = min_t(u64, d_end, reg_end); 251 if (d_start < end) { 252 /* Memory hole from d_start to start */ 253 if (start > d_start) 254 break; 255 256 if (end == d_end) { 257 ret = true; 258 break; 259 } 260 261 d_start = end + 1; 262 } 263 } 264 265 return ret; 266 } 267 268 /* 269 * Returns true, if there are no holes in reserved memory area, 270 * false otherwise. 271 */ 272 bool is_fadump_reserved_mem_contiguous(void) 273 { 274 u64 d_start, d_end; 275 276 d_start = fw_dump.reserve_dump_area_start; 277 d_end = d_start + fw_dump.reserve_dump_area_size; 278 return is_fadump_mem_area_contiguous(d_start, d_end); 279 } 280 281 /* Print firmware assisted dump configurations for debugging purpose. */ 282 static void __init fadump_show_config(void) 283 { 284 int i; 285 286 pr_debug("Support for firmware-assisted dump (fadump): %s\n", 287 (fw_dump.fadump_supported ? "present" : "no support")); 288 289 if (!fw_dump.fadump_supported) 290 return; 291 292 pr_debug("Fadump enabled : %s\n", 293 (fw_dump.fadump_enabled ? "yes" : "no")); 294 pr_debug("Dump Active : %s\n", 295 (fw_dump.dump_active ? "yes" : "no")); 296 pr_debug("Dump section sizes:\n"); 297 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size); 298 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size); 299 pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size); 300 pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top); 301 pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt); 302 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 303 pr_debug("[%03d] base = %llx, size = %llx\n", i, 304 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]); 305 } 306 } 307 308 /** 309 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM 310 * 311 * Function to find the largest memory size we need to reserve during early 312 * boot process. This will be the size of the memory that is required for a 313 * kernel to boot successfully. 314 * 315 * This function has been taken from phyp-assisted dump feature implementation. 316 * 317 * returns larger of 256MB or 5% rounded down to multiples of 256MB. 318 * 319 * TODO: Come up with better approach to find out more accurate memory size 320 * that is required for a kernel to boot successfully. 321 * 322 */ 323 static __init u64 fadump_calculate_reserve_size(void) 324 { 325 u64 base, size, bootmem_min; 326 int ret; 327 328 if (fw_dump.reserve_bootvar) 329 pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n"); 330 331 /* 332 * Check if the size is specified through crashkernel= cmdline 333 * option. If yes, then use that but ignore base as fadump reserves 334 * memory at a predefined offset. 335 */ 336 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 337 &size, &base, NULL, NULL); 338 if (ret == 0 && size > 0) { 339 unsigned long max_size; 340 341 if (fw_dump.reserve_bootvar) 342 pr_info("Using 'crashkernel=' parameter for memory reservation.\n"); 343 344 fw_dump.reserve_bootvar = (unsigned long)size; 345 346 /* 347 * Adjust if the boot memory size specified is above 348 * the upper limit. 349 */ 350 max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO; 351 if (fw_dump.reserve_bootvar > max_size) { 352 fw_dump.reserve_bootvar = max_size; 353 pr_info("Adjusted boot memory size to %luMB\n", 354 (fw_dump.reserve_bootvar >> 20)); 355 } 356 357 return fw_dump.reserve_bootvar; 358 } else if (fw_dump.reserve_bootvar) { 359 /* 360 * 'fadump_reserve_mem=' is being used to reserve memory 361 * for firmware-assisted dump. 362 */ 363 return fw_dump.reserve_bootvar; 364 } 365 366 /* divide by 20 to get 5% of value */ 367 size = memblock_phys_mem_size() / 20; 368 369 /* round it down in multiples of 256 */ 370 size = size & ~0x0FFFFFFFUL; 371 372 /* Truncate to memory_limit. We don't want to over reserve the memory.*/ 373 if (memory_limit && size > memory_limit) 374 size = memory_limit; 375 376 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 377 return (size > bootmem_min ? size : bootmem_min); 378 } 379 380 /* 381 * Calculate the total memory size required to be reserved for 382 * firmware-assisted dump registration. 383 */ 384 static unsigned long __init get_fadump_area_size(void) 385 { 386 unsigned long size = 0; 387 388 size += fw_dump.cpu_state_data_size; 389 size += fw_dump.hpte_region_size; 390 /* 391 * Account for pagesize alignment of boot memory area destination address. 392 * This faciliates in mmap reading of first kernel's memory. 393 */ 394 size = PAGE_ALIGN(size); 395 size += fw_dump.boot_memory_size; 396 size += sizeof(struct fadump_crash_info_header); 397 398 /* This is to hold kernel metadata on platforms that support it */ 399 size += (fw_dump.ops->fadump_get_metadata_size ? 400 fw_dump.ops->fadump_get_metadata_size() : 0); 401 return size; 402 } 403 404 static int __init add_boot_mem_region(unsigned long rstart, 405 unsigned long rsize) 406 { 407 int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns(); 408 int i = fw_dump.boot_mem_regs_cnt++; 409 410 if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) { 411 fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns; 412 return 0; 413 } 414 415 pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n", 416 i, rstart, (rstart + rsize)); 417 fw_dump.boot_mem_addr[i] = rstart; 418 fw_dump.boot_mem_sz[i] = rsize; 419 return 1; 420 } 421 422 /* 423 * Firmware usually has a hard limit on the data it can copy per region. 424 * Honour that by splitting a memory range into multiple regions. 425 */ 426 static int __init add_boot_mem_regions(unsigned long mstart, 427 unsigned long msize) 428 { 429 unsigned long rstart, rsize, max_size; 430 int ret = 1; 431 432 rstart = mstart; 433 max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize; 434 while (msize) { 435 if (msize > max_size) 436 rsize = max_size; 437 else 438 rsize = msize; 439 440 ret = add_boot_mem_region(rstart, rsize); 441 if (!ret) 442 break; 443 444 msize -= rsize; 445 rstart += rsize; 446 } 447 448 return ret; 449 } 450 451 static int __init fadump_get_boot_mem_regions(void) 452 { 453 unsigned long size, cur_size, hole_size, last_end; 454 unsigned long mem_size = fw_dump.boot_memory_size; 455 phys_addr_t reg_start, reg_end; 456 int ret = 1; 457 u64 i; 458 459 fw_dump.boot_mem_regs_cnt = 0; 460 461 last_end = 0; 462 hole_size = 0; 463 cur_size = 0; 464 for_each_mem_range(i, ®_start, ®_end) { 465 size = reg_end - reg_start; 466 hole_size += (reg_start - last_end); 467 468 if ((cur_size + size) >= mem_size) { 469 size = (mem_size - cur_size); 470 ret = add_boot_mem_regions(reg_start, size); 471 break; 472 } 473 474 mem_size -= size; 475 cur_size += size; 476 ret = add_boot_mem_regions(reg_start, size); 477 if (!ret) 478 break; 479 480 last_end = reg_end; 481 } 482 fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size); 483 484 return ret; 485 } 486 487 /* 488 * Returns true, if the given range overlaps with reserved memory ranges 489 * starting at idx. Also, updates idx to index of overlapping memory range 490 * with the given memory range. 491 * False, otherwise. 492 */ 493 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx) 494 { 495 bool ret = false; 496 int i; 497 498 for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) { 499 u64 rbase = reserved_mrange_info.mem_ranges[i].base; 500 u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size; 501 502 if (end <= rbase) 503 break; 504 505 if ((end > rbase) && (base < rend)) { 506 *idx = i; 507 ret = true; 508 break; 509 } 510 } 511 512 return ret; 513 } 514 515 /* 516 * Locate a suitable memory area to reserve memory for FADump. While at it, 517 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W. 518 */ 519 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size) 520 { 521 struct fadump_memory_range *mrngs; 522 phys_addr_t mstart, mend; 523 int idx = 0; 524 u64 i, ret = 0; 525 526 mrngs = reserved_mrange_info.mem_ranges; 527 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 528 &mstart, &mend, NULL) { 529 pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n", 530 i, mstart, mend, base); 531 532 if (mstart > base) 533 base = PAGE_ALIGN(mstart); 534 535 while ((mend > base) && ((mend - base) >= size)) { 536 if (!overlaps_reserved_ranges(base, base+size, &idx)) { 537 ret = base; 538 goto out; 539 } 540 541 base = mrngs[idx].base + mrngs[idx].size; 542 base = PAGE_ALIGN(base); 543 } 544 } 545 546 out: 547 return ret; 548 } 549 550 int __init fadump_reserve_mem(void) 551 { 552 u64 base, size, mem_boundary, bootmem_min; 553 int ret = 1; 554 555 if (!fw_dump.fadump_enabled) 556 return 0; 557 558 if (!fw_dump.fadump_supported) { 559 pr_info("Firmware-Assisted Dump is not supported on this hardware\n"); 560 goto error_out; 561 } 562 563 /* 564 * Initialize boot memory size 565 * If dump is active then we have already calculated the size during 566 * first kernel. 567 */ 568 if (!fw_dump.dump_active) { 569 fw_dump.boot_memory_size = 570 PAGE_ALIGN(fadump_calculate_reserve_size()); 571 572 bootmem_min = fw_dump.ops->fadump_get_bootmem_min(); 573 if (fw_dump.boot_memory_size < bootmem_min) { 574 pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n", 575 fw_dump.boot_memory_size, bootmem_min); 576 goto error_out; 577 } 578 579 if (!fadump_get_boot_mem_regions()) { 580 pr_err("Too many holes in boot memory area to enable fadump\n"); 581 goto error_out; 582 } 583 } 584 585 if (memory_limit) 586 mem_boundary = memory_limit; 587 else 588 mem_boundary = memblock_end_of_DRAM(); 589 590 base = fw_dump.boot_mem_top; 591 size = get_fadump_area_size(); 592 fw_dump.reserve_dump_area_size = size; 593 if (fw_dump.dump_active) { 594 pr_info("Firmware-assisted dump is active.\n"); 595 596 #ifdef CONFIG_HUGETLB_PAGE 597 /* 598 * FADump capture kernel doesn't care much about hugepages. 599 * In fact, handling hugepages in capture kernel is asking for 600 * trouble. So, disable HugeTLB support when fadump is active. 601 */ 602 hugetlb_disabled = true; 603 #endif 604 /* 605 * If last boot has crashed then reserve all the memory 606 * above boot memory size so that we don't touch it until 607 * dump is written to disk by userspace tool. This memory 608 * can be released for general use by invalidating fadump. 609 */ 610 fadump_reserve_crash_area(base); 611 612 pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr); 613 pr_debug("Reserve dump area start address: 0x%lx\n", 614 fw_dump.reserve_dump_area_start); 615 } else { 616 /* 617 * Reserve memory at an offset closer to bottom of the RAM to 618 * minimize the impact of memory hot-remove operation. 619 */ 620 base = fadump_locate_reserve_mem(base, size); 621 622 if (!base || (base + size > mem_boundary)) { 623 pr_err("Failed to find memory chunk for reservation!\n"); 624 goto error_out; 625 } 626 fw_dump.reserve_dump_area_start = base; 627 628 /* 629 * Calculate the kernel metadata address and register it with 630 * f/w if the platform supports. 631 */ 632 if (fw_dump.ops->fadump_setup_metadata && 633 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 634 goto error_out; 635 636 if (memblock_reserve(base, size)) { 637 pr_err("Failed to reserve memory!\n"); 638 goto error_out; 639 } 640 641 pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n", 642 (size >> 20), base, (memblock_phys_mem_size() >> 20)); 643 } 644 645 return ret; 646 error_out: 647 fw_dump.fadump_enabled = 0; 648 fw_dump.reserve_dump_area_size = 0; 649 return 0; 650 } 651 652 /* Look for fadump= cmdline option. */ 653 static int __init early_fadump_param(char *p) 654 { 655 if (!p) 656 return 1; 657 658 if (strncmp(p, "on", 2) == 0) 659 fw_dump.fadump_enabled = 1; 660 else if (strncmp(p, "off", 3) == 0) 661 fw_dump.fadump_enabled = 0; 662 else if (strncmp(p, "nocma", 5) == 0) { 663 fw_dump.fadump_enabled = 1; 664 fw_dump.nocma = 1; 665 } 666 667 return 0; 668 } 669 early_param("fadump", early_fadump_param); 670 671 /* 672 * Look for fadump_reserve_mem= cmdline option 673 * TODO: Remove references to 'fadump_reserve_mem=' parameter, 674 * the sooner 'crashkernel=' parameter is accustomed to. 675 */ 676 static int __init early_fadump_reserve_mem(char *p) 677 { 678 if (p) 679 fw_dump.reserve_bootvar = memparse(p, &p); 680 return 0; 681 } 682 early_param("fadump_reserve_mem", early_fadump_reserve_mem); 683 684 void crash_fadump(struct pt_regs *regs, const char *str) 685 { 686 unsigned int msecs; 687 struct fadump_crash_info_header *fdh = NULL; 688 int old_cpu, this_cpu; 689 /* Do not include first CPU */ 690 unsigned int ncpus = num_online_cpus() - 1; 691 692 if (!should_fadump_crash()) 693 return; 694 695 /* 696 * old_cpu == -1 means this is the first CPU which has come here, 697 * go ahead and trigger fadump. 698 * 699 * old_cpu != -1 means some other CPU has already on its way 700 * to trigger fadump, just keep looping here. 701 */ 702 this_cpu = smp_processor_id(); 703 old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu); 704 705 if (old_cpu != -1) { 706 atomic_inc(&cpus_in_fadump); 707 708 /* 709 * We can't loop here indefinitely. Wait as long as fadump 710 * is in force. If we race with fadump un-registration this 711 * loop will break and then we go down to normal panic path 712 * and reboot. If fadump is in force the first crashing 713 * cpu will definitely trigger fadump. 714 */ 715 while (fw_dump.dump_registered) 716 cpu_relax(); 717 return; 718 } 719 720 fdh = __va(fw_dump.fadumphdr_addr); 721 fdh->crashing_cpu = crashing_cpu; 722 crash_save_vmcoreinfo(); 723 724 if (regs) 725 fdh->regs = *regs; 726 else 727 ppc_save_regs(&fdh->regs); 728 729 fdh->cpu_mask = *cpu_online_mask; 730 731 /* 732 * If we came in via system reset, wait a while for the secondary 733 * CPUs to enter. 734 */ 735 if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) { 736 msecs = CRASH_TIMEOUT; 737 while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0)) 738 mdelay(1); 739 } 740 741 fw_dump.ops->fadump_trigger(fdh, str); 742 } 743 744 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs) 745 { 746 struct elf_prstatus prstatus; 747 748 memset(&prstatus, 0, sizeof(prstatus)); 749 /* 750 * FIXME: How do i get PID? Do I really need it? 751 * prstatus.pr_pid = ???? 752 */ 753 elf_core_copy_regs(&prstatus.pr_reg, regs); 754 buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS, 755 &prstatus, sizeof(prstatus)); 756 return buf; 757 } 758 759 void __init fadump_update_elfcore_header(char *bufp) 760 { 761 struct elf_phdr *phdr; 762 763 bufp += sizeof(struct elfhdr); 764 765 /* First note is a place holder for cpu notes info. */ 766 phdr = (struct elf_phdr *)bufp; 767 768 if (phdr->p_type == PT_NOTE) { 769 phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr); 770 phdr->p_offset = phdr->p_paddr; 771 phdr->p_filesz = fw_dump.cpu_notes_buf_size; 772 phdr->p_memsz = fw_dump.cpu_notes_buf_size; 773 } 774 return; 775 } 776 777 static void *__init fadump_alloc_buffer(unsigned long size) 778 { 779 unsigned long count, i; 780 struct page *page; 781 void *vaddr; 782 783 vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); 784 if (!vaddr) 785 return NULL; 786 787 count = PAGE_ALIGN(size) / PAGE_SIZE; 788 page = virt_to_page(vaddr); 789 for (i = 0; i < count; i++) 790 mark_page_reserved(page + i); 791 return vaddr; 792 } 793 794 static void fadump_free_buffer(unsigned long vaddr, unsigned long size) 795 { 796 free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL); 797 } 798 799 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus) 800 { 801 /* Allocate buffer to hold cpu crash notes. */ 802 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t); 803 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size); 804 fw_dump.cpu_notes_buf_vaddr = 805 (unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size); 806 if (!fw_dump.cpu_notes_buf_vaddr) { 807 pr_err("Failed to allocate %ld bytes for CPU notes buffer\n", 808 fw_dump.cpu_notes_buf_size); 809 return -ENOMEM; 810 } 811 812 pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n", 813 fw_dump.cpu_notes_buf_size, 814 fw_dump.cpu_notes_buf_vaddr); 815 return 0; 816 } 817 818 void fadump_free_cpu_notes_buf(void) 819 { 820 if (!fw_dump.cpu_notes_buf_vaddr) 821 return; 822 823 fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr, 824 fw_dump.cpu_notes_buf_size); 825 fw_dump.cpu_notes_buf_vaddr = 0; 826 fw_dump.cpu_notes_buf_size = 0; 827 } 828 829 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info) 830 { 831 if (mrange_info->is_static) { 832 mrange_info->mem_range_cnt = 0; 833 return; 834 } 835 836 kfree(mrange_info->mem_ranges); 837 memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0, 838 (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ)); 839 } 840 841 /* 842 * Allocate or reallocate mem_ranges array in incremental units 843 * of PAGE_SIZE. 844 */ 845 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info) 846 { 847 struct fadump_memory_range *new_array; 848 u64 new_size; 849 850 new_size = mrange_info->mem_ranges_sz + PAGE_SIZE; 851 pr_debug("Allocating %llu bytes of memory for %s memory ranges\n", 852 new_size, mrange_info->name); 853 854 new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL); 855 if (new_array == NULL) { 856 pr_err("Insufficient memory for setting up %s memory ranges\n", 857 mrange_info->name); 858 fadump_free_mem_ranges(mrange_info); 859 return -ENOMEM; 860 } 861 862 mrange_info->mem_ranges = new_array; 863 mrange_info->mem_ranges_sz = new_size; 864 mrange_info->max_mem_ranges = (new_size / 865 sizeof(struct fadump_memory_range)); 866 return 0; 867 } 868 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info, 869 u64 base, u64 end) 870 { 871 struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges; 872 bool is_adjacent = false; 873 u64 start, size; 874 875 if (base == end) 876 return 0; 877 878 /* 879 * Fold adjacent memory ranges to bring down the memory ranges/ 880 * PT_LOAD segments count. 881 */ 882 if (mrange_info->mem_range_cnt) { 883 start = mem_ranges[mrange_info->mem_range_cnt - 1].base; 884 size = mem_ranges[mrange_info->mem_range_cnt - 1].size; 885 886 /* 887 * Boot memory area needs separate PT_LOAD segment(s) as it 888 * is moved to a different location at the time of crash. 889 * So, fold only if the region is not boot memory area. 890 */ 891 if ((start + size) == base && start >= fw_dump.boot_mem_top) 892 is_adjacent = true; 893 } 894 if (!is_adjacent) { 895 /* resize the array on reaching the limit */ 896 if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) { 897 int ret; 898 899 if (mrange_info->is_static) { 900 pr_err("Reached array size limit for %s memory ranges\n", 901 mrange_info->name); 902 return -ENOSPC; 903 } 904 905 ret = fadump_alloc_mem_ranges(mrange_info); 906 if (ret) 907 return ret; 908 909 /* Update to the new resized array */ 910 mem_ranges = mrange_info->mem_ranges; 911 } 912 913 start = base; 914 mem_ranges[mrange_info->mem_range_cnt].base = start; 915 mrange_info->mem_range_cnt++; 916 } 917 918 mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start); 919 pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n", 920 mrange_info->name, (mrange_info->mem_range_cnt - 1), 921 start, end - 1, (end - start)); 922 return 0; 923 } 924 925 static int fadump_init_elfcore_header(char *bufp) 926 { 927 struct elfhdr *elf; 928 929 elf = (struct elfhdr *) bufp; 930 bufp += sizeof(struct elfhdr); 931 memcpy(elf->e_ident, ELFMAG, SELFMAG); 932 elf->e_ident[EI_CLASS] = ELF_CLASS; 933 elf->e_ident[EI_DATA] = ELF_DATA; 934 elf->e_ident[EI_VERSION] = EV_CURRENT; 935 elf->e_ident[EI_OSABI] = ELF_OSABI; 936 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); 937 elf->e_type = ET_CORE; 938 elf->e_machine = ELF_ARCH; 939 elf->e_version = EV_CURRENT; 940 elf->e_entry = 0; 941 elf->e_phoff = sizeof(struct elfhdr); 942 elf->e_shoff = 0; 943 944 if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2)) 945 elf->e_flags = 2; 946 else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1)) 947 elf->e_flags = 1; 948 else 949 elf->e_flags = 0; 950 951 elf->e_ehsize = sizeof(struct elfhdr); 952 elf->e_phentsize = sizeof(struct elf_phdr); 953 elf->e_phnum = 0; 954 elf->e_shentsize = 0; 955 elf->e_shnum = 0; 956 elf->e_shstrndx = 0; 957 958 return 0; 959 } 960 961 /* 962 * If the given physical address falls within the boot memory region then 963 * return the relocated address that points to the dump region reserved 964 * for saving initial boot memory contents. 965 */ 966 static inline unsigned long fadump_relocate(unsigned long paddr) 967 { 968 unsigned long raddr, rstart, rend, rlast, hole_size; 969 int i; 970 971 hole_size = 0; 972 rlast = 0; 973 raddr = paddr; 974 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 975 rstart = fw_dump.boot_mem_addr[i]; 976 rend = rstart + fw_dump.boot_mem_sz[i]; 977 hole_size += (rstart - rlast); 978 979 if (paddr >= rstart && paddr < rend) { 980 raddr += fw_dump.boot_mem_dest_addr - hole_size; 981 break; 982 } 983 984 rlast = rend; 985 } 986 987 pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr); 988 return raddr; 989 } 990 991 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start, 992 u64 size, unsigned long long offset) 993 { 994 phdr->p_align = 0; 995 phdr->p_memsz = size; 996 phdr->p_filesz = size; 997 phdr->p_paddr = start; 998 phdr->p_offset = offset; 999 phdr->p_type = PT_LOAD; 1000 phdr->p_flags = PF_R|PF_W|PF_X; 1001 phdr->p_vaddr = (unsigned long)__va(start); 1002 } 1003 1004 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh) 1005 { 1006 char *bufp; 1007 struct elfhdr *elf; 1008 struct elf_phdr *phdr; 1009 u64 boot_mem_dest_offset; 1010 unsigned long long i, ra_start, ra_end, ra_size, mstart, mend; 1011 1012 bufp = (char *) fw_dump.elfcorehdr_addr; 1013 fadump_init_elfcore_header(bufp); 1014 elf = (struct elfhdr *)bufp; 1015 bufp += sizeof(struct elfhdr); 1016 1017 /* 1018 * Set up ELF PT_NOTE, a placeholder for CPU notes information. 1019 * The notes info will be populated later by platform-specific code. 1020 * Hence, this PT_NOTE will always be the first ELF note. 1021 * 1022 * NOTE: Any new ELF note addition should be placed after this note. 1023 */ 1024 phdr = (struct elf_phdr *)bufp; 1025 bufp += sizeof(struct elf_phdr); 1026 phdr->p_type = PT_NOTE; 1027 phdr->p_flags = 0; 1028 phdr->p_vaddr = 0; 1029 phdr->p_align = 0; 1030 phdr->p_offset = 0; 1031 phdr->p_paddr = 0; 1032 phdr->p_filesz = 0; 1033 phdr->p_memsz = 0; 1034 /* Increment number of program headers. */ 1035 (elf->e_phnum)++; 1036 1037 /* setup ELF PT_NOTE for vmcoreinfo */ 1038 phdr = (struct elf_phdr *)bufp; 1039 bufp += sizeof(struct elf_phdr); 1040 phdr->p_type = PT_NOTE; 1041 phdr->p_flags = 0; 1042 phdr->p_vaddr = 0; 1043 phdr->p_align = 0; 1044 phdr->p_paddr = phdr->p_offset = fdh->vmcoreinfo_raddr; 1045 phdr->p_memsz = phdr->p_filesz = fdh->vmcoreinfo_size; 1046 /* Increment number of program headers. */ 1047 (elf->e_phnum)++; 1048 1049 /* 1050 * Setup PT_LOAD sections. first include boot memory regions 1051 * and then add rest of the memory regions. 1052 */ 1053 boot_mem_dest_offset = fw_dump.boot_mem_dest_addr; 1054 for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) { 1055 phdr = (struct elf_phdr *)bufp; 1056 bufp += sizeof(struct elf_phdr); 1057 populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i], 1058 fw_dump.boot_mem_sz[i], 1059 boot_mem_dest_offset); 1060 /* Increment number of program headers. */ 1061 (elf->e_phnum)++; 1062 boot_mem_dest_offset += fw_dump.boot_mem_sz[i]; 1063 } 1064 1065 /* Memory reserved for fadump in first kernel */ 1066 ra_start = fw_dump.reserve_dump_area_start; 1067 ra_size = get_fadump_area_size(); 1068 ra_end = ra_start + ra_size; 1069 1070 phdr = (struct elf_phdr *)bufp; 1071 for_each_mem_range(i, &mstart, &mend) { 1072 /* Boot memory regions already added, skip them now */ 1073 if (mstart < fw_dump.boot_mem_top) { 1074 if (mend > fw_dump.boot_mem_top) 1075 mstart = fw_dump.boot_mem_top; 1076 else 1077 continue; 1078 } 1079 1080 /* Handle memblock regions overlaps with fadump reserved area */ 1081 if ((ra_start < mend) && (ra_end > mstart)) { 1082 if ((mstart < ra_start) && (mend > ra_end)) { 1083 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart); 1084 /* Increment number of program headers. */ 1085 (elf->e_phnum)++; 1086 bufp += sizeof(struct elf_phdr); 1087 phdr = (struct elf_phdr *)bufp; 1088 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end); 1089 } else if (mstart < ra_start) { 1090 populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart); 1091 } else if (ra_end < mend) { 1092 populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end); 1093 } 1094 } else { 1095 /* No overlap with fadump reserved memory region */ 1096 populate_elf_pt_load(phdr, mstart, mend - mstart, mstart); 1097 } 1098 1099 /* Increment number of program headers. */ 1100 (elf->e_phnum)++; 1101 bufp += sizeof(struct elf_phdr); 1102 phdr = (struct elf_phdr *) bufp; 1103 } 1104 } 1105 1106 static unsigned long init_fadump_header(unsigned long addr) 1107 { 1108 struct fadump_crash_info_header *fdh; 1109 1110 if (!addr) 1111 return 0; 1112 1113 fdh = __va(addr); 1114 addr += sizeof(struct fadump_crash_info_header); 1115 1116 memset(fdh, 0, sizeof(struct fadump_crash_info_header)); 1117 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC; 1118 fdh->version = FADUMP_HEADER_VERSION; 1119 /* We will set the crashing cpu id in crash_fadump() during crash. */ 1120 fdh->crashing_cpu = FADUMP_CPU_UNKNOWN; 1121 1122 /* 1123 * The physical address and size of vmcoreinfo are required in the 1124 * second kernel to prepare elfcorehdr. 1125 */ 1126 fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note()); 1127 fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE; 1128 1129 1130 fdh->pt_regs_sz = sizeof(struct pt_regs); 1131 /* 1132 * When LPAR is terminated by PYHP, ensure all possible CPUs' 1133 * register data is processed while exporting the vmcore. 1134 */ 1135 fdh->cpu_mask = *cpu_possible_mask; 1136 fdh->cpu_mask_sz = sizeof(struct cpumask); 1137 1138 return addr; 1139 } 1140 1141 static int register_fadump(void) 1142 { 1143 unsigned long addr; 1144 1145 /* 1146 * If no memory is reserved then we can not register for firmware- 1147 * assisted dump. 1148 */ 1149 if (!fw_dump.reserve_dump_area_size) 1150 return -ENODEV; 1151 1152 addr = fw_dump.fadumphdr_addr; 1153 1154 /* Initialize fadump crash info header. */ 1155 addr = init_fadump_header(addr); 1156 1157 /* register the future kernel dump with firmware. */ 1158 pr_debug("Registering for firmware-assisted kernel dump...\n"); 1159 return fw_dump.ops->fadump_register(&fw_dump); 1160 } 1161 1162 void fadump_cleanup(void) 1163 { 1164 if (!fw_dump.fadump_supported) 1165 return; 1166 1167 /* Invalidate the registration only if dump is active. */ 1168 if (fw_dump.dump_active) { 1169 pr_debug("Invalidating firmware-assisted dump registration\n"); 1170 fw_dump.ops->fadump_invalidate(&fw_dump); 1171 } else if (fw_dump.dump_registered) { 1172 /* Un-register Firmware-assisted dump if it was registered. */ 1173 fw_dump.ops->fadump_unregister(&fw_dump); 1174 } 1175 1176 if (fw_dump.ops->fadump_cleanup) 1177 fw_dump.ops->fadump_cleanup(&fw_dump); 1178 } 1179 1180 static void fadump_free_reserved_memory(unsigned long start_pfn, 1181 unsigned long end_pfn) 1182 { 1183 unsigned long pfn; 1184 unsigned long time_limit = jiffies + HZ; 1185 1186 pr_info("freeing reserved memory (0x%llx - 0x%llx)\n", 1187 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn)); 1188 1189 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1190 free_reserved_page(pfn_to_page(pfn)); 1191 1192 if (time_after(jiffies, time_limit)) { 1193 cond_resched(); 1194 time_limit = jiffies + HZ; 1195 } 1196 } 1197 } 1198 1199 /* 1200 * Skip memory holes and free memory that was actually reserved. 1201 */ 1202 static void fadump_release_reserved_area(u64 start, u64 end) 1203 { 1204 unsigned long reg_spfn, reg_epfn; 1205 u64 tstart, tend, spfn, epfn; 1206 int i; 1207 1208 spfn = PHYS_PFN(start); 1209 epfn = PHYS_PFN(end); 1210 1211 for_each_mem_pfn_range(i, MAX_NUMNODES, ®_spfn, ®_epfn, NULL) { 1212 tstart = max_t(u64, spfn, reg_spfn); 1213 tend = min_t(u64, epfn, reg_epfn); 1214 1215 if (tstart < tend) { 1216 fadump_free_reserved_memory(tstart, tend); 1217 1218 if (tend == epfn) 1219 break; 1220 1221 spfn = tend; 1222 } 1223 } 1224 } 1225 1226 /* 1227 * Sort the mem ranges in-place and merge adjacent ranges 1228 * to minimize the memory ranges count. 1229 */ 1230 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info) 1231 { 1232 struct fadump_memory_range *mem_ranges; 1233 u64 base, size; 1234 int i, j, idx; 1235 1236 if (!reserved_mrange_info.mem_range_cnt) 1237 return; 1238 1239 /* Sort the memory ranges */ 1240 mem_ranges = mrange_info->mem_ranges; 1241 for (i = 0; i < mrange_info->mem_range_cnt; i++) { 1242 idx = i; 1243 for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) { 1244 if (mem_ranges[idx].base > mem_ranges[j].base) 1245 idx = j; 1246 } 1247 if (idx != i) 1248 swap(mem_ranges[idx], mem_ranges[i]); 1249 } 1250 1251 /* Merge adjacent reserved ranges */ 1252 idx = 0; 1253 for (i = 1; i < mrange_info->mem_range_cnt; i++) { 1254 base = mem_ranges[i-1].base; 1255 size = mem_ranges[i-1].size; 1256 if (mem_ranges[i].base == (base + size)) 1257 mem_ranges[idx].size += mem_ranges[i].size; 1258 else { 1259 idx++; 1260 if (i == idx) 1261 continue; 1262 1263 mem_ranges[idx] = mem_ranges[i]; 1264 } 1265 } 1266 mrange_info->mem_range_cnt = idx + 1; 1267 } 1268 1269 /* 1270 * Scan reserved-ranges to consider them while reserving/releasing 1271 * memory for FADump. 1272 */ 1273 static void __init early_init_dt_scan_reserved_ranges(unsigned long node) 1274 { 1275 const __be32 *prop; 1276 int len, ret = -1; 1277 unsigned long i; 1278 1279 /* reserved-ranges already scanned */ 1280 if (reserved_mrange_info.mem_range_cnt != 0) 1281 return; 1282 1283 prop = of_get_flat_dt_prop(node, "reserved-ranges", &len); 1284 if (!prop) 1285 return; 1286 1287 /* 1288 * Each reserved range is an (address,size) pair, 2 cells each, 1289 * totalling 4 cells per range. 1290 */ 1291 for (i = 0; i < len / (sizeof(*prop) * 4); i++) { 1292 u64 base, size; 1293 1294 base = of_read_number(prop + (i * 4) + 0, 2); 1295 size = of_read_number(prop + (i * 4) + 2, 2); 1296 1297 if (size) { 1298 ret = fadump_add_mem_range(&reserved_mrange_info, 1299 base, base + size); 1300 if (ret < 0) { 1301 pr_warn("some reserved ranges are ignored!\n"); 1302 break; 1303 } 1304 } 1305 } 1306 1307 /* Compact reserved ranges */ 1308 sort_and_merge_mem_ranges(&reserved_mrange_info); 1309 } 1310 1311 /* 1312 * Release the memory that was reserved during early boot to preserve the 1313 * crash'ed kernel's memory contents except reserved dump area (permanent 1314 * reservation) and reserved ranges used by F/W. The released memory will 1315 * be available for general use. 1316 */ 1317 static void fadump_release_memory(u64 begin, u64 end) 1318 { 1319 u64 ra_start, ra_end, tstart; 1320 int i, ret; 1321 1322 ra_start = fw_dump.reserve_dump_area_start; 1323 ra_end = ra_start + fw_dump.reserve_dump_area_size; 1324 1325 /* 1326 * If reserved ranges array limit is hit, overwrite the last reserved 1327 * memory range with reserved dump area to ensure it is excluded from 1328 * the memory being released (reused for next FADump registration). 1329 */ 1330 if (reserved_mrange_info.mem_range_cnt == 1331 reserved_mrange_info.max_mem_ranges) 1332 reserved_mrange_info.mem_range_cnt--; 1333 1334 ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end); 1335 if (ret != 0) 1336 return; 1337 1338 /* Get the reserved ranges list in order first. */ 1339 sort_and_merge_mem_ranges(&reserved_mrange_info); 1340 1341 /* Exclude reserved ranges and release remaining memory */ 1342 tstart = begin; 1343 for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) { 1344 ra_start = reserved_mrange_info.mem_ranges[i].base; 1345 ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size; 1346 1347 if (tstart >= ra_end) 1348 continue; 1349 1350 if (tstart < ra_start) 1351 fadump_release_reserved_area(tstart, ra_start); 1352 tstart = ra_end; 1353 } 1354 1355 if (tstart < end) 1356 fadump_release_reserved_area(tstart, end); 1357 } 1358 1359 static void fadump_free_elfcorehdr_buf(void) 1360 { 1361 if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0) 1362 return; 1363 1364 /* 1365 * Before freeing the memory of `elfcorehdr`, reset the global 1366 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing 1367 * invalid memory. 1368 */ 1369 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1370 fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size); 1371 fw_dump.elfcorehdr_addr = 0; 1372 fw_dump.elfcorehdr_size = 0; 1373 } 1374 1375 static void fadump_invalidate_release_mem(void) 1376 { 1377 mutex_lock(&fadump_mutex); 1378 if (!fw_dump.dump_active) { 1379 mutex_unlock(&fadump_mutex); 1380 return; 1381 } 1382 1383 fadump_cleanup(); 1384 mutex_unlock(&fadump_mutex); 1385 1386 fadump_free_elfcorehdr_buf(); 1387 fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM()); 1388 fadump_free_cpu_notes_buf(); 1389 1390 /* 1391 * Setup kernel metadata and initialize the kernel dump 1392 * memory structure for FADump re-registration. 1393 */ 1394 if (fw_dump.ops->fadump_setup_metadata && 1395 (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0)) 1396 pr_warn("Failed to setup kernel metadata!\n"); 1397 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1398 } 1399 1400 static ssize_t release_mem_store(struct kobject *kobj, 1401 struct kobj_attribute *attr, 1402 const char *buf, size_t count) 1403 { 1404 int input = -1; 1405 1406 if (!fw_dump.dump_active) 1407 return -EPERM; 1408 1409 if (kstrtoint(buf, 0, &input)) 1410 return -EINVAL; 1411 1412 if (input == 1) { 1413 /* 1414 * Take away the '/proc/vmcore'. We are releasing the dump 1415 * memory, hence it will not be valid anymore. 1416 */ 1417 #ifdef CONFIG_PROC_VMCORE 1418 vmcore_cleanup(); 1419 #endif 1420 fadump_invalidate_release_mem(); 1421 1422 } else 1423 return -EINVAL; 1424 return count; 1425 } 1426 1427 /* Release the reserved memory and disable the FADump */ 1428 static void __init unregister_fadump(void) 1429 { 1430 fadump_cleanup(); 1431 fadump_release_memory(fw_dump.reserve_dump_area_start, 1432 fw_dump.reserve_dump_area_size); 1433 fw_dump.fadump_enabled = 0; 1434 kobject_put(fadump_kobj); 1435 } 1436 1437 static ssize_t enabled_show(struct kobject *kobj, 1438 struct kobj_attribute *attr, 1439 char *buf) 1440 { 1441 return sprintf(buf, "%d\n", fw_dump.fadump_enabled); 1442 } 1443 1444 /* 1445 * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates 1446 * to usersapce that fadump re-registration is not required on memory 1447 * hotplug events. 1448 */ 1449 static ssize_t hotplug_ready_show(struct kobject *kobj, 1450 struct kobj_attribute *attr, 1451 char *buf) 1452 { 1453 return sprintf(buf, "%d\n", 1); 1454 } 1455 1456 static ssize_t mem_reserved_show(struct kobject *kobj, 1457 struct kobj_attribute *attr, 1458 char *buf) 1459 { 1460 return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size); 1461 } 1462 1463 static ssize_t registered_show(struct kobject *kobj, 1464 struct kobj_attribute *attr, 1465 char *buf) 1466 { 1467 return sprintf(buf, "%d\n", fw_dump.dump_registered); 1468 } 1469 1470 static ssize_t bootargs_append_show(struct kobject *kobj, 1471 struct kobj_attribute *attr, 1472 char *buf) 1473 { 1474 return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area)); 1475 } 1476 1477 static ssize_t bootargs_append_store(struct kobject *kobj, 1478 struct kobj_attribute *attr, 1479 const char *buf, size_t count) 1480 { 1481 char *params; 1482 1483 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1484 return -EPERM; 1485 1486 if (count >= COMMAND_LINE_SIZE) 1487 return -EINVAL; 1488 1489 /* 1490 * Fail here instead of handling this scenario with 1491 * some silly workaround in capture kernel. 1492 */ 1493 if (saved_command_line_len + count >= COMMAND_LINE_SIZE) { 1494 pr_err("Appending parameters exceeds cmdline size!\n"); 1495 return -ENOSPC; 1496 } 1497 1498 params = __va(fw_dump.param_area); 1499 strscpy_pad(params, buf, COMMAND_LINE_SIZE); 1500 /* Remove newline character at the end. */ 1501 if (params[count-1] == '\n') 1502 params[count-1] = '\0'; 1503 1504 return count; 1505 } 1506 1507 static ssize_t registered_store(struct kobject *kobj, 1508 struct kobj_attribute *attr, 1509 const char *buf, size_t count) 1510 { 1511 int ret = 0; 1512 int input = -1; 1513 1514 if (!fw_dump.fadump_enabled || fw_dump.dump_active) 1515 return -EPERM; 1516 1517 if (kstrtoint(buf, 0, &input)) 1518 return -EINVAL; 1519 1520 mutex_lock(&fadump_mutex); 1521 1522 switch (input) { 1523 case 0: 1524 if (fw_dump.dump_registered == 0) { 1525 goto unlock_out; 1526 } 1527 1528 /* Un-register Firmware-assisted dump */ 1529 pr_debug("Un-register firmware-assisted dump\n"); 1530 fw_dump.ops->fadump_unregister(&fw_dump); 1531 break; 1532 case 1: 1533 if (fw_dump.dump_registered == 1) { 1534 /* Un-register Firmware-assisted dump */ 1535 fw_dump.ops->fadump_unregister(&fw_dump); 1536 } 1537 /* Register Firmware-assisted dump */ 1538 ret = register_fadump(); 1539 break; 1540 default: 1541 ret = -EINVAL; 1542 break; 1543 } 1544 1545 unlock_out: 1546 mutex_unlock(&fadump_mutex); 1547 return ret < 0 ? ret : count; 1548 } 1549 1550 static int fadump_region_show(struct seq_file *m, void *private) 1551 { 1552 if (!fw_dump.fadump_enabled) 1553 return 0; 1554 1555 mutex_lock(&fadump_mutex); 1556 fw_dump.ops->fadump_region_show(&fw_dump, m); 1557 mutex_unlock(&fadump_mutex); 1558 return 0; 1559 } 1560 1561 static struct kobj_attribute release_attr = __ATTR_WO(release_mem); 1562 static struct kobj_attribute enable_attr = __ATTR_RO(enabled); 1563 static struct kobj_attribute register_attr = __ATTR_RW(registered); 1564 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved); 1565 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready); 1566 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append); 1567 1568 static struct attribute *fadump_attrs[] = { 1569 &enable_attr.attr, 1570 ®ister_attr.attr, 1571 &mem_reserved_attr.attr, 1572 &hotplug_ready_attr.attr, 1573 NULL, 1574 }; 1575 1576 ATTRIBUTE_GROUPS(fadump); 1577 1578 DEFINE_SHOW_ATTRIBUTE(fadump_region); 1579 1580 static void __init fadump_init_files(void) 1581 { 1582 int rc = 0; 1583 1584 fadump_kobj = kobject_create_and_add("fadump", kernel_kobj); 1585 if (!fadump_kobj) { 1586 pr_err("failed to create fadump kobject\n"); 1587 return; 1588 } 1589 1590 if (fw_dump.param_area) { 1591 rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr); 1592 if (rc) 1593 pr_err("unable to create bootargs_append sysfs file (%d)\n", rc); 1594 } 1595 1596 debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL, 1597 &fadump_region_fops); 1598 1599 if (fw_dump.dump_active) { 1600 rc = sysfs_create_file(fadump_kobj, &release_attr.attr); 1601 if (rc) 1602 pr_err("unable to create release_mem sysfs file (%d)\n", 1603 rc); 1604 } 1605 1606 rc = sysfs_create_groups(fadump_kobj, fadump_groups); 1607 if (rc) { 1608 pr_err("sysfs group creation failed (%d), unregistering FADump", 1609 rc); 1610 unregister_fadump(); 1611 return; 1612 } 1613 1614 /* 1615 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to 1616 * create symlink at old location to maintain backward compatibility. 1617 * 1618 * - fadump_enabled -> fadump/enabled 1619 * - fadump_registered -> fadump/registered 1620 * - fadump_release_mem -> fadump/release_mem 1621 */ 1622 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1623 "enabled", "fadump_enabled"); 1624 if (rc) { 1625 pr_err("unable to create fadump_enabled symlink (%d)", rc); 1626 return; 1627 } 1628 1629 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj, 1630 "registered", 1631 "fadump_registered"); 1632 if (rc) { 1633 pr_err("unable to create fadump_registered symlink (%d)", rc); 1634 sysfs_remove_link(kernel_kobj, "fadump_enabled"); 1635 return; 1636 } 1637 1638 if (fw_dump.dump_active) { 1639 rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, 1640 fadump_kobj, 1641 "release_mem", 1642 "fadump_release_mem"); 1643 if (rc) 1644 pr_err("unable to create fadump_release_mem symlink (%d)", 1645 rc); 1646 } 1647 return; 1648 } 1649 1650 static int __init fadump_setup_elfcorehdr_buf(void) 1651 { 1652 int elf_phdr_cnt; 1653 unsigned long elfcorehdr_size; 1654 1655 /* 1656 * Program header for CPU notes comes first, followed by one for 1657 * vmcoreinfo, and the remaining program headers correspond to 1658 * memory regions. 1659 */ 1660 elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory); 1661 elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr)); 1662 elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size); 1663 1664 fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size); 1665 if (!fw_dump.elfcorehdr_addr) { 1666 pr_err("Failed to allocate %lu bytes for elfcorehdr\n", 1667 elfcorehdr_size); 1668 return -ENOMEM; 1669 } 1670 fw_dump.elfcorehdr_size = elfcorehdr_size; 1671 return 0; 1672 } 1673 1674 /* 1675 * Check if the fadump header of crashed kernel is compatible with fadump kernel. 1676 * 1677 * It checks the magic number, endianness, and size of non-primitive type 1678 * members of fadump header to ensure safe dump collection. 1679 */ 1680 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh) 1681 { 1682 if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) { 1683 pr_err("Old magic number, can't process the dump.\n"); 1684 return false; 1685 } 1686 1687 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) { 1688 if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC)) 1689 pr_err("Endianness mismatch between the crashed and fadump kernels.\n"); 1690 else 1691 pr_err("Fadump header is corrupted.\n"); 1692 1693 return false; 1694 } 1695 1696 /* 1697 * Dump collection is not safe if the size of non-primitive type members 1698 * of the fadump header do not match between crashed and fadump kernel. 1699 */ 1700 if (fdh->pt_regs_sz != sizeof(struct pt_regs) || 1701 fdh->cpu_mask_sz != sizeof(struct cpumask)) { 1702 pr_err("Fadump header size mismatch.\n"); 1703 return false; 1704 } 1705 1706 return true; 1707 } 1708 1709 static void __init fadump_process(void) 1710 { 1711 struct fadump_crash_info_header *fdh; 1712 1713 fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr); 1714 if (!fdh) { 1715 pr_err("Crash info header is empty.\n"); 1716 goto err_out; 1717 } 1718 1719 /* Avoid processing the dump if fadump header isn't compatible */ 1720 if (!is_fadump_header_compatible(fdh)) 1721 goto err_out; 1722 1723 /* Allocate buffer for elfcorehdr */ 1724 if (fadump_setup_elfcorehdr_buf()) 1725 goto err_out; 1726 1727 fadump_populate_elfcorehdr(fdh); 1728 1729 /* Let platform update the CPU notes in elfcorehdr */ 1730 if (fw_dump.ops->fadump_process(&fw_dump) < 0) 1731 goto err_out; 1732 1733 /* 1734 * elfcorehdr is now ready to be exported. 1735 * 1736 * set elfcorehdr_addr so that vmcore module will export the 1737 * elfcorehdr through '/proc/vmcore'. 1738 */ 1739 elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr); 1740 return; 1741 1742 err_out: 1743 fadump_invalidate_release_mem(); 1744 } 1745 1746 /* 1747 * Reserve memory to store additional parameters to be passed 1748 * for fadump/capture kernel. 1749 */ 1750 void __init fadump_setup_param_area(void) 1751 { 1752 phys_addr_t range_start, range_end; 1753 1754 if (!fw_dump.param_area_supported || fw_dump.dump_active) 1755 return; 1756 1757 /* This memory can't be used by PFW or bootloader as it is shared across kernels */ 1758 if (early_radix_enabled()) { 1759 /* 1760 * Anywhere in the upper half should be good enough as all memory 1761 * is accessible in real mode. 1762 */ 1763 range_start = memblock_end_of_DRAM() / 2; 1764 range_end = memblock_end_of_DRAM(); 1765 } else { 1766 /* 1767 * Passing additional parameters is supported for hash MMU only 1768 * if the first memory block size is 768MB or higher. 1769 */ 1770 if (ppc64_rma_size < 0x30000000) 1771 return; 1772 1773 /* 1774 * 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving 1775 * memory for passing additional parameters in this range to avoid 1776 * being stomped on by PFW/bootloader. 1777 */ 1778 range_start = 0x2A000000; 1779 range_end = range_start + 0x4000000; 1780 } 1781 1782 fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE, 1783 COMMAND_LINE_SIZE, 1784 range_start, 1785 range_end); 1786 if (!fw_dump.param_area) { 1787 pr_warn("WARNING: Could not setup area to pass additional parameters!\n"); 1788 return; 1789 } 1790 1791 memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE); 1792 } 1793 1794 /* 1795 * Prepare for firmware-assisted dump. 1796 */ 1797 int __init setup_fadump(void) 1798 { 1799 if (!fw_dump.fadump_supported) 1800 return 0; 1801 1802 fadump_init_files(); 1803 fadump_show_config(); 1804 1805 if (!fw_dump.fadump_enabled) 1806 return 1; 1807 1808 /* 1809 * If dump data is available then see if it is valid and prepare for 1810 * saving it to the disk. 1811 */ 1812 if (fw_dump.dump_active) { 1813 fadump_process(); 1814 } 1815 /* Initialize the kernel dump memory structure and register with f/w */ 1816 else if (fw_dump.reserve_dump_area_size) { 1817 fw_dump.ops->fadump_init_mem_struct(&fw_dump); 1818 register_fadump(); 1819 } 1820 1821 /* 1822 * In case of panic, fadump is triggered via ppc_panic_event() 1823 * panic notifier. Setting crash_kexec_post_notifiers to 'true' 1824 * lets panic() function take crash friendly path before panic 1825 * notifiers are invoked. 1826 */ 1827 crash_kexec_post_notifiers = true; 1828 1829 return 1; 1830 } 1831 /* 1832 * Use subsys_initcall_sync() here because there is dependency with 1833 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization 1834 * is done before registering with f/w. 1835 */ 1836 subsys_initcall_sync(setup_fadump); 1837 #else /* !CONFIG_PRESERVE_FA_DUMP */ 1838 1839 /* Scan the Firmware Assisted dump configuration details. */ 1840 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname, 1841 int depth, void *data) 1842 { 1843 if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0)) 1844 return 0; 1845 1846 opal_fadump_dt_scan(&fw_dump, node); 1847 return 1; 1848 } 1849 1850 /* 1851 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel, 1852 * preserve crash data. The subsequent memory preserving kernel boot 1853 * is likely to process this crash data. 1854 */ 1855 int __init fadump_reserve_mem(void) 1856 { 1857 if (fw_dump.dump_active) { 1858 /* 1859 * If last boot has crashed then reserve all the memory 1860 * above boot memory to preserve crash data. 1861 */ 1862 pr_info("Preserving crash data for processing in next boot.\n"); 1863 fadump_reserve_crash_area(fw_dump.boot_mem_top); 1864 } else 1865 pr_debug("FADump-aware kernel..\n"); 1866 1867 return 1; 1868 } 1869 #endif /* CONFIG_PRESERVE_FA_DUMP */ 1870 1871 /* Preserve everything above the base address */ 1872 static void __init fadump_reserve_crash_area(u64 base) 1873 { 1874 u64 i, mstart, mend, msize; 1875 1876 for_each_mem_range(i, &mstart, &mend) { 1877 msize = mend - mstart; 1878 1879 if ((mstart + msize) < base) 1880 continue; 1881 1882 if (mstart < base) { 1883 msize -= (base - mstart); 1884 mstart = base; 1885 } 1886 1887 pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data", 1888 (msize >> 20), mstart); 1889 memblock_reserve(mstart, msize); 1890 } 1891 } 1892