xref: /linux/arch/powerpc/kernel/fadump.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 
31 #include <asm/page.h>
32 #include <asm/fadump.h>
33 #include <asm/fadump-internal.h>
34 #include <asm/setup.h>
35 #include <asm/interrupt.h>
36 
37 /*
38  * The CPU who acquired the lock to trigger the fadump crash should
39  * wait for other CPUs to enter.
40  *
41  * The timeout is in milliseconds.
42  */
43 #define CRASH_TIMEOUT		500
44 
45 static struct fw_dump fw_dump;
46 
47 static void __init fadump_reserve_crash_area(u64 base);
48 
49 #ifndef CONFIG_PRESERVE_FA_DUMP
50 
51 static struct kobject *fadump_kobj;
52 
53 static atomic_t cpus_in_fadump;
54 static DEFINE_MUTEX(fadump_mutex);
55 
56 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
57 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
58 				 sizeof(struct fadump_memory_range))
59 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
60 static struct fadump_mrange_info
61 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
62 
63 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
64 
65 #ifdef CONFIG_CMA
66 static struct cma *fadump_cma;
67 
68 /*
69  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
70  *
71  * This function initializes CMA area from fadump reserved memory.
72  * The total size of fadump reserved memory covers for boot memory size
73  * + cpu data size + hpte size and metadata.
74  * Initialize only the area equivalent to boot memory size for CMA use.
75  * The remaining portion of fadump reserved memory will be not given
76  * to CMA and pages for those will stay reserved. boot memory size is
77  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
78  * But for some reason even if it fails we still have the memory reservation
79  * with us and we can still continue doing fadump.
80  */
81 void __init fadump_cma_init(void)
82 {
83 	unsigned long long base, size, end;
84 	int rc;
85 
86 	if (!fw_dump.fadump_supported || !fw_dump.fadump_enabled ||
87 			fw_dump.dump_active)
88 		return;
89 	/*
90 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
91 	 */
92 	if (fw_dump.nocma || !fw_dump.boot_memory_size)
93 		return;
94 
95 	/*
96 	 * [base, end) should be reserved during early init in
97 	 * fadump_reserve_mem(). No need to check this here as
98 	 * cma_init_reserved_mem() already checks for overlap.
99 	 * Here we give the aligned chunk of this reserved memory to CMA.
100 	 */
101 	base = fw_dump.reserve_dump_area_start;
102 	size = fw_dump.boot_memory_size;
103 	end = base + size;
104 
105 	base = ALIGN(base, CMA_MIN_ALIGNMENT_BYTES);
106 	end = ALIGN_DOWN(end, CMA_MIN_ALIGNMENT_BYTES);
107 	size = end - base;
108 
109 	if (end <= base) {
110 		pr_warn("%s: Too less memory to give to CMA\n", __func__);
111 		return;
112 	}
113 
114 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
115 	if (rc) {
116 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
117 		/*
118 		 * Though the CMA init has failed we still have memory
119 		 * reservation with us. The reserved memory will be
120 		 * blocked from production system usage.  Hence return 1,
121 		 * so that we can continue with fadump.
122 		 */
123 		return;
124 	}
125 
126 	/*
127 	 *  If CMA activation fails, keep the pages reserved, instead of
128 	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
129 	 */
130 	cma_reserve_pages_on_error(fadump_cma);
131 
132 	/*
133 	 * So we now have successfully initialized cma area for fadump.
134 	 */
135 	pr_info("Initialized [0x%llx, %luMB] cma area from [0x%lx, %luMB] "
136 		"bytes of memory reserved for firmware-assisted dump\n",
137 		cma_get_base(fadump_cma), cma_get_size(fadump_cma) >> 20,
138 		fw_dump.reserve_dump_area_start,
139 		fw_dump.boot_memory_size >> 20);
140 	return;
141 }
142 #endif /* CONFIG_CMA */
143 
144 /*
145  * Additional parameters meant for capture kernel are placed in a dedicated area.
146  * If this is capture kernel boot, append these parameters to bootargs.
147  */
148 void __init fadump_append_bootargs(void)
149 {
150 	char *append_args;
151 	size_t len;
152 
153 	if (!fw_dump.dump_active || !fw_dump.param_area_supported || !fw_dump.param_area)
154 		return;
155 
156 	if (fw_dump.param_area < fw_dump.boot_mem_top) {
157 		if (memblock_reserve(fw_dump.param_area, COMMAND_LINE_SIZE)) {
158 			pr_warn("WARNING: Can't use additional parameters area!\n");
159 			fw_dump.param_area = 0;
160 			return;
161 		}
162 	}
163 
164 	append_args = (char *)fw_dump.param_area;
165 	len = strlen(boot_command_line);
166 
167 	/*
168 	 * Too late to fail even if cmdline size exceeds. Truncate additional parameters
169 	 * to cmdline size and proceed anyway.
170 	 */
171 	if (len + strlen(append_args) >= COMMAND_LINE_SIZE - 1)
172 		pr_warn("WARNING: Appending parameters exceeds cmdline size. Truncating!\n");
173 
174 	pr_debug("Cmdline: %s\n", boot_command_line);
175 	snprintf(boot_command_line + len, COMMAND_LINE_SIZE - len, " %s", append_args);
176 	pr_info("Updated cmdline: %s\n", boot_command_line);
177 }
178 
179 /* Scan the Firmware Assisted dump configuration details. */
180 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
181 				      int depth, void *data)
182 {
183 	if (depth == 0) {
184 		early_init_dt_scan_reserved_ranges(node);
185 		return 0;
186 	}
187 
188 	if (depth != 1)
189 		return 0;
190 
191 	if (strcmp(uname, "rtas") == 0) {
192 		rtas_fadump_dt_scan(&fw_dump, node);
193 		return 1;
194 	}
195 
196 	if (strcmp(uname, "ibm,opal") == 0) {
197 		opal_fadump_dt_scan(&fw_dump, node);
198 		return 1;
199 	}
200 
201 	return 0;
202 }
203 
204 /*
205  * If fadump is registered, check if the memory provided
206  * falls within boot memory area and reserved memory area.
207  */
208 int is_fadump_memory_area(u64 addr, unsigned long size)
209 {
210 	u64 d_start, d_end;
211 
212 	if (!fw_dump.dump_registered)
213 		return 0;
214 
215 	if (!size)
216 		return 0;
217 
218 	d_start = fw_dump.reserve_dump_area_start;
219 	d_end = d_start + fw_dump.reserve_dump_area_size;
220 	if (((addr + size) > d_start) && (addr <= d_end))
221 		return 1;
222 
223 	return (addr <= fw_dump.boot_mem_top);
224 }
225 
226 int should_fadump_crash(void)
227 {
228 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
229 		return 0;
230 	return 1;
231 }
232 
233 int is_fadump_active(void)
234 {
235 	return fw_dump.dump_active;
236 }
237 
238 /*
239  * Returns true, if there are no holes in memory area between d_start to d_end,
240  * false otherwise.
241  */
242 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
243 {
244 	phys_addr_t reg_start, reg_end;
245 	bool ret = false;
246 	u64 i, start, end;
247 
248 	for_each_mem_range(i, &reg_start, &reg_end) {
249 		start = max_t(u64, d_start, reg_start);
250 		end = min_t(u64, d_end, reg_end);
251 		if (d_start < end) {
252 			/* Memory hole from d_start to start */
253 			if (start > d_start)
254 				break;
255 
256 			if (end == d_end) {
257 				ret = true;
258 				break;
259 			}
260 
261 			d_start = end + 1;
262 		}
263 	}
264 
265 	return ret;
266 }
267 
268 /*
269  * Returns true, if there are no holes in reserved memory area,
270  * false otherwise.
271  */
272 bool is_fadump_reserved_mem_contiguous(void)
273 {
274 	u64 d_start, d_end;
275 
276 	d_start	= fw_dump.reserve_dump_area_start;
277 	d_end	= d_start + fw_dump.reserve_dump_area_size;
278 	return is_fadump_mem_area_contiguous(d_start, d_end);
279 }
280 
281 /* Print firmware assisted dump configurations for debugging purpose. */
282 static void __init fadump_show_config(void)
283 {
284 	int i;
285 
286 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
287 			(fw_dump.fadump_supported ? "present" : "no support"));
288 
289 	if (!fw_dump.fadump_supported)
290 		return;
291 
292 	pr_debug("Fadump enabled    : %s\n",
293 				(fw_dump.fadump_enabled ? "yes" : "no"));
294 	pr_debug("Dump Active       : %s\n",
295 				(fw_dump.dump_active ? "yes" : "no"));
296 	pr_debug("Dump section sizes:\n");
297 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
298 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
299 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
300 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
301 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
302 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
303 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
304 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
305 	}
306 }
307 
308 /**
309  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
310  *
311  * Function to find the largest memory size we need to reserve during early
312  * boot process. This will be the size of the memory that is required for a
313  * kernel to boot successfully.
314  *
315  * This function has been taken from phyp-assisted dump feature implementation.
316  *
317  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
318  *
319  * TODO: Come up with better approach to find out more accurate memory size
320  * that is required for a kernel to boot successfully.
321  *
322  */
323 static __init u64 fadump_calculate_reserve_size(void)
324 {
325 	u64 base, size, bootmem_min;
326 	int ret;
327 
328 	if (fw_dump.reserve_bootvar)
329 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
330 
331 	/*
332 	 * Check if the size is specified through crashkernel= cmdline
333 	 * option. If yes, then use that but ignore base as fadump reserves
334 	 * memory at a predefined offset.
335 	 */
336 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
337 				&size, &base, NULL, NULL);
338 	if (ret == 0 && size > 0) {
339 		unsigned long max_size;
340 
341 		if (fw_dump.reserve_bootvar)
342 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
343 
344 		fw_dump.reserve_bootvar = (unsigned long)size;
345 
346 		/*
347 		 * Adjust if the boot memory size specified is above
348 		 * the upper limit.
349 		 */
350 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
351 		if (fw_dump.reserve_bootvar > max_size) {
352 			fw_dump.reserve_bootvar = max_size;
353 			pr_info("Adjusted boot memory size to %luMB\n",
354 				(fw_dump.reserve_bootvar >> 20));
355 		}
356 
357 		return fw_dump.reserve_bootvar;
358 	} else if (fw_dump.reserve_bootvar) {
359 		/*
360 		 * 'fadump_reserve_mem=' is being used to reserve memory
361 		 * for firmware-assisted dump.
362 		 */
363 		return fw_dump.reserve_bootvar;
364 	}
365 
366 	/* divide by 20 to get 5% of value */
367 	size = memblock_phys_mem_size() / 20;
368 
369 	/* round it down in multiples of 256 */
370 	size = size & ~0x0FFFFFFFUL;
371 
372 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
373 	if (memory_limit && size > memory_limit)
374 		size = memory_limit;
375 
376 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
377 	return (size > bootmem_min ? size : bootmem_min);
378 }
379 
380 /*
381  * Calculate the total memory size required to be reserved for
382  * firmware-assisted dump registration.
383  */
384 static unsigned long __init get_fadump_area_size(void)
385 {
386 	unsigned long size = 0;
387 
388 	size += fw_dump.cpu_state_data_size;
389 	size += fw_dump.hpte_region_size;
390 	/*
391 	 * Account for pagesize alignment of boot memory area destination address.
392 	 * This faciliates in mmap reading of first kernel's memory.
393 	 */
394 	size = PAGE_ALIGN(size);
395 	size += fw_dump.boot_memory_size;
396 	size += sizeof(struct fadump_crash_info_header);
397 
398 	/* This is to hold kernel metadata on platforms that support it */
399 	size += (fw_dump.ops->fadump_get_metadata_size ?
400 		 fw_dump.ops->fadump_get_metadata_size() : 0);
401 	return size;
402 }
403 
404 static int __init add_boot_mem_region(unsigned long rstart,
405 				      unsigned long rsize)
406 {
407 	int max_boot_mem_rgns = fw_dump.ops->fadump_max_boot_mem_rgns();
408 	int i = fw_dump.boot_mem_regs_cnt++;
409 
410 	if (fw_dump.boot_mem_regs_cnt > max_boot_mem_rgns) {
411 		fw_dump.boot_mem_regs_cnt = max_boot_mem_rgns;
412 		return 0;
413 	}
414 
415 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
416 		 i, rstart, (rstart + rsize));
417 	fw_dump.boot_mem_addr[i] = rstart;
418 	fw_dump.boot_mem_sz[i] = rsize;
419 	return 1;
420 }
421 
422 /*
423  * Firmware usually has a hard limit on the data it can copy per region.
424  * Honour that by splitting a memory range into multiple regions.
425  */
426 static int __init add_boot_mem_regions(unsigned long mstart,
427 				       unsigned long msize)
428 {
429 	unsigned long rstart, rsize, max_size;
430 	int ret = 1;
431 
432 	rstart = mstart;
433 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
434 	while (msize) {
435 		if (msize > max_size)
436 			rsize = max_size;
437 		else
438 			rsize = msize;
439 
440 		ret = add_boot_mem_region(rstart, rsize);
441 		if (!ret)
442 			break;
443 
444 		msize -= rsize;
445 		rstart += rsize;
446 	}
447 
448 	return ret;
449 }
450 
451 static int __init fadump_get_boot_mem_regions(void)
452 {
453 	unsigned long size, cur_size, hole_size, last_end;
454 	unsigned long mem_size = fw_dump.boot_memory_size;
455 	phys_addr_t reg_start, reg_end;
456 	int ret = 1;
457 	u64 i;
458 
459 	fw_dump.boot_mem_regs_cnt = 0;
460 
461 	last_end = 0;
462 	hole_size = 0;
463 	cur_size = 0;
464 	for_each_mem_range(i, &reg_start, &reg_end) {
465 		size = reg_end - reg_start;
466 		hole_size += (reg_start - last_end);
467 
468 		if ((cur_size + size) >= mem_size) {
469 			size = (mem_size - cur_size);
470 			ret = add_boot_mem_regions(reg_start, size);
471 			break;
472 		}
473 
474 		mem_size -= size;
475 		cur_size += size;
476 		ret = add_boot_mem_regions(reg_start, size);
477 		if (!ret)
478 			break;
479 
480 		last_end = reg_end;
481 	}
482 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
483 
484 	return ret;
485 }
486 
487 /*
488  * Returns true, if the given range overlaps with reserved memory ranges
489  * starting at idx. Also, updates idx to index of overlapping memory range
490  * with the given memory range.
491  * False, otherwise.
492  */
493 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
494 {
495 	bool ret = false;
496 	int i;
497 
498 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
499 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
500 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
501 
502 		if (end <= rbase)
503 			break;
504 
505 		if ((end > rbase) &&  (base < rend)) {
506 			*idx = i;
507 			ret = true;
508 			break;
509 		}
510 	}
511 
512 	return ret;
513 }
514 
515 /*
516  * Locate a suitable memory area to reserve memory for FADump. While at it,
517  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
518  */
519 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
520 {
521 	struct fadump_memory_range *mrngs;
522 	phys_addr_t mstart, mend;
523 	int idx = 0;
524 	u64 i, ret = 0;
525 
526 	mrngs = reserved_mrange_info.mem_ranges;
527 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
528 				&mstart, &mend, NULL) {
529 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
530 			 i, mstart, mend, base);
531 
532 		if (mstart > base)
533 			base = PAGE_ALIGN(mstart);
534 
535 		while ((mend > base) && ((mend - base) >= size)) {
536 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
537 				ret = base;
538 				goto out;
539 			}
540 
541 			base = mrngs[idx].base + mrngs[idx].size;
542 			base = PAGE_ALIGN(base);
543 		}
544 	}
545 
546 out:
547 	return ret;
548 }
549 
550 int __init fadump_reserve_mem(void)
551 {
552 	u64 base, size, mem_boundary, bootmem_min;
553 	int ret = 1;
554 
555 	if (!fw_dump.fadump_enabled)
556 		return 0;
557 
558 	if (!fw_dump.fadump_supported) {
559 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
560 		goto error_out;
561 	}
562 
563 	/*
564 	 * Initialize boot memory size
565 	 * If dump is active then we have already calculated the size during
566 	 * first kernel.
567 	 */
568 	if (!fw_dump.dump_active) {
569 		fw_dump.boot_memory_size =
570 			PAGE_ALIGN(fadump_calculate_reserve_size());
571 
572 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
573 		if (fw_dump.boot_memory_size < bootmem_min) {
574 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
575 			       fw_dump.boot_memory_size, bootmem_min);
576 			goto error_out;
577 		}
578 
579 		if (!fadump_get_boot_mem_regions()) {
580 			pr_err("Too many holes in boot memory area to enable fadump\n");
581 			goto error_out;
582 		}
583 	}
584 
585 	if (memory_limit)
586 		mem_boundary = memory_limit;
587 	else
588 		mem_boundary = memblock_end_of_DRAM();
589 
590 	base = fw_dump.boot_mem_top;
591 	size = get_fadump_area_size();
592 	fw_dump.reserve_dump_area_size = size;
593 	if (fw_dump.dump_active) {
594 		pr_info("Firmware-assisted dump is active.\n");
595 
596 #ifdef CONFIG_HUGETLB_PAGE
597 		/*
598 		 * FADump capture kernel doesn't care much about hugepages.
599 		 * In fact, handling hugepages in capture kernel is asking for
600 		 * trouble. So, disable HugeTLB support when fadump is active.
601 		 */
602 		hugetlb_disabled = true;
603 #endif
604 		/*
605 		 * If last boot has crashed then reserve all the memory
606 		 * above boot memory size so that we don't touch it until
607 		 * dump is written to disk by userspace tool. This memory
608 		 * can be released for general use by invalidating fadump.
609 		 */
610 		fadump_reserve_crash_area(base);
611 
612 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
613 		pr_debug("Reserve dump area start address: 0x%lx\n",
614 			 fw_dump.reserve_dump_area_start);
615 	} else {
616 		/*
617 		 * Reserve memory at an offset closer to bottom of the RAM to
618 		 * minimize the impact of memory hot-remove operation.
619 		 */
620 		base = fadump_locate_reserve_mem(base, size);
621 
622 		if (!base || (base + size > mem_boundary)) {
623 			pr_err("Failed to find memory chunk for reservation!\n");
624 			goto error_out;
625 		}
626 		fw_dump.reserve_dump_area_start = base;
627 
628 		/*
629 		 * Calculate the kernel metadata address and register it with
630 		 * f/w if the platform supports.
631 		 */
632 		if (fw_dump.ops->fadump_setup_metadata &&
633 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
634 			goto error_out;
635 
636 		if (memblock_reserve(base, size)) {
637 			pr_err("Failed to reserve memory!\n");
638 			goto error_out;
639 		}
640 
641 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
642 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
643 	}
644 
645 	return ret;
646 error_out:
647 	fw_dump.fadump_enabled = 0;
648 	fw_dump.reserve_dump_area_size = 0;
649 	return 0;
650 }
651 
652 /* Look for fadump= cmdline option. */
653 static int __init early_fadump_param(char *p)
654 {
655 	if (!p)
656 		return 1;
657 
658 	if (strncmp(p, "on", 2) == 0)
659 		fw_dump.fadump_enabled = 1;
660 	else if (strncmp(p, "off", 3) == 0)
661 		fw_dump.fadump_enabled = 0;
662 	else if (strncmp(p, "nocma", 5) == 0) {
663 		fw_dump.fadump_enabled = 1;
664 		fw_dump.nocma = 1;
665 	}
666 
667 	return 0;
668 }
669 early_param("fadump", early_fadump_param);
670 
671 /*
672  * Look for fadump_reserve_mem= cmdline option
673  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
674  *       the sooner 'crashkernel=' parameter is accustomed to.
675  */
676 static int __init early_fadump_reserve_mem(char *p)
677 {
678 	if (p)
679 		fw_dump.reserve_bootvar = memparse(p, &p);
680 	return 0;
681 }
682 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
683 
684 void crash_fadump(struct pt_regs *regs, const char *str)
685 {
686 	unsigned int msecs;
687 	struct fadump_crash_info_header *fdh = NULL;
688 	int old_cpu, this_cpu;
689 	/* Do not include first CPU */
690 	unsigned int ncpus = num_online_cpus() - 1;
691 
692 	if (!should_fadump_crash())
693 		return;
694 
695 	/*
696 	 * old_cpu == -1 means this is the first CPU which has come here,
697 	 * go ahead and trigger fadump.
698 	 *
699 	 * old_cpu != -1 means some other CPU has already on its way
700 	 * to trigger fadump, just keep looping here.
701 	 */
702 	this_cpu = smp_processor_id();
703 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
704 
705 	if (old_cpu != -1) {
706 		atomic_inc(&cpus_in_fadump);
707 
708 		/*
709 		 * We can't loop here indefinitely. Wait as long as fadump
710 		 * is in force. If we race with fadump un-registration this
711 		 * loop will break and then we go down to normal panic path
712 		 * and reboot. If fadump is in force the first crashing
713 		 * cpu will definitely trigger fadump.
714 		 */
715 		while (fw_dump.dump_registered)
716 			cpu_relax();
717 		return;
718 	}
719 
720 	fdh = __va(fw_dump.fadumphdr_addr);
721 	fdh->crashing_cpu = crashing_cpu;
722 	crash_save_vmcoreinfo();
723 
724 	if (regs)
725 		fdh->regs = *regs;
726 	else
727 		ppc_save_regs(&fdh->regs);
728 
729 	fdh->cpu_mask = *cpu_online_mask;
730 
731 	/*
732 	 * If we came in via system reset, wait a while for the secondary
733 	 * CPUs to enter.
734 	 */
735 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
736 		msecs = CRASH_TIMEOUT;
737 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
738 			mdelay(1);
739 	}
740 
741 	fw_dump.ops->fadump_trigger(fdh, str);
742 }
743 
744 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
745 {
746 	struct elf_prstatus prstatus;
747 
748 	memset(&prstatus, 0, sizeof(prstatus));
749 	/*
750 	 * FIXME: How do i get PID? Do I really need it?
751 	 * prstatus.pr_pid = ????
752 	 */
753 	elf_core_copy_regs(&prstatus.pr_reg, regs);
754 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
755 			      &prstatus, sizeof(prstatus));
756 	return buf;
757 }
758 
759 void __init fadump_update_elfcore_header(char *bufp)
760 {
761 	struct elf_phdr *phdr;
762 
763 	bufp += sizeof(struct elfhdr);
764 
765 	/* First note is a place holder for cpu notes info. */
766 	phdr = (struct elf_phdr *)bufp;
767 
768 	if (phdr->p_type == PT_NOTE) {
769 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
770 		phdr->p_offset	= phdr->p_paddr;
771 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
772 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
773 	}
774 	return;
775 }
776 
777 static void *__init fadump_alloc_buffer(unsigned long size)
778 {
779 	unsigned long count, i;
780 	struct page *page;
781 	void *vaddr;
782 
783 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
784 	if (!vaddr)
785 		return NULL;
786 
787 	count = PAGE_ALIGN(size) / PAGE_SIZE;
788 	page = virt_to_page(vaddr);
789 	for (i = 0; i < count; i++)
790 		mark_page_reserved(page + i);
791 	return vaddr;
792 }
793 
794 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
795 {
796 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
797 }
798 
799 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
800 {
801 	/* Allocate buffer to hold cpu crash notes. */
802 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
803 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
804 	fw_dump.cpu_notes_buf_vaddr =
805 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
806 	if (!fw_dump.cpu_notes_buf_vaddr) {
807 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
808 		       fw_dump.cpu_notes_buf_size);
809 		return -ENOMEM;
810 	}
811 
812 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
813 		 fw_dump.cpu_notes_buf_size,
814 		 fw_dump.cpu_notes_buf_vaddr);
815 	return 0;
816 }
817 
818 void fadump_free_cpu_notes_buf(void)
819 {
820 	if (!fw_dump.cpu_notes_buf_vaddr)
821 		return;
822 
823 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
824 			   fw_dump.cpu_notes_buf_size);
825 	fw_dump.cpu_notes_buf_vaddr = 0;
826 	fw_dump.cpu_notes_buf_size = 0;
827 }
828 
829 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
830 {
831 	if (mrange_info->is_static) {
832 		mrange_info->mem_range_cnt = 0;
833 		return;
834 	}
835 
836 	kfree(mrange_info->mem_ranges);
837 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
838 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
839 }
840 
841 /*
842  * Allocate or reallocate mem_ranges array in incremental units
843  * of PAGE_SIZE.
844  */
845 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
846 {
847 	struct fadump_memory_range *new_array;
848 	u64 new_size;
849 
850 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
851 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
852 		 new_size, mrange_info->name);
853 
854 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
855 	if (new_array == NULL) {
856 		pr_err("Insufficient memory for setting up %s memory ranges\n",
857 		       mrange_info->name);
858 		fadump_free_mem_ranges(mrange_info);
859 		return -ENOMEM;
860 	}
861 
862 	mrange_info->mem_ranges = new_array;
863 	mrange_info->mem_ranges_sz = new_size;
864 	mrange_info->max_mem_ranges = (new_size /
865 				       sizeof(struct fadump_memory_range));
866 	return 0;
867 }
868 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
869 				       u64 base, u64 end)
870 {
871 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
872 	bool is_adjacent = false;
873 	u64 start, size;
874 
875 	if (base == end)
876 		return 0;
877 
878 	/*
879 	 * Fold adjacent memory ranges to bring down the memory ranges/
880 	 * PT_LOAD segments count.
881 	 */
882 	if (mrange_info->mem_range_cnt) {
883 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
884 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
885 
886 		/*
887 		 * Boot memory area needs separate PT_LOAD segment(s) as it
888 		 * is moved to a different location at the time of crash.
889 		 * So, fold only if the region is not boot memory area.
890 		 */
891 		if ((start + size) == base && start >= fw_dump.boot_mem_top)
892 			is_adjacent = true;
893 	}
894 	if (!is_adjacent) {
895 		/* resize the array on reaching the limit */
896 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
897 			int ret;
898 
899 			if (mrange_info->is_static) {
900 				pr_err("Reached array size limit for %s memory ranges\n",
901 				       mrange_info->name);
902 				return -ENOSPC;
903 			}
904 
905 			ret = fadump_alloc_mem_ranges(mrange_info);
906 			if (ret)
907 				return ret;
908 
909 			/* Update to the new resized array */
910 			mem_ranges = mrange_info->mem_ranges;
911 		}
912 
913 		start = base;
914 		mem_ranges[mrange_info->mem_range_cnt].base = start;
915 		mrange_info->mem_range_cnt++;
916 	}
917 
918 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
919 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
920 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
921 		 start, end - 1, (end - start));
922 	return 0;
923 }
924 
925 static int fadump_init_elfcore_header(char *bufp)
926 {
927 	struct elfhdr *elf;
928 
929 	elf = (struct elfhdr *) bufp;
930 	bufp += sizeof(struct elfhdr);
931 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
932 	elf->e_ident[EI_CLASS] = ELF_CLASS;
933 	elf->e_ident[EI_DATA] = ELF_DATA;
934 	elf->e_ident[EI_VERSION] = EV_CURRENT;
935 	elf->e_ident[EI_OSABI] = ELF_OSABI;
936 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
937 	elf->e_type = ET_CORE;
938 	elf->e_machine = ELF_ARCH;
939 	elf->e_version = EV_CURRENT;
940 	elf->e_entry = 0;
941 	elf->e_phoff = sizeof(struct elfhdr);
942 	elf->e_shoff = 0;
943 
944 	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
945 		elf->e_flags = 2;
946 	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
947 		elf->e_flags = 1;
948 	else
949 		elf->e_flags = 0;
950 
951 	elf->e_ehsize = sizeof(struct elfhdr);
952 	elf->e_phentsize = sizeof(struct elf_phdr);
953 	elf->e_phnum = 0;
954 	elf->e_shentsize = 0;
955 	elf->e_shnum = 0;
956 	elf->e_shstrndx = 0;
957 
958 	return 0;
959 }
960 
961 /*
962  * If the given physical address falls within the boot memory region then
963  * return the relocated address that points to the dump region reserved
964  * for saving initial boot memory contents.
965  */
966 static inline unsigned long fadump_relocate(unsigned long paddr)
967 {
968 	unsigned long raddr, rstart, rend, rlast, hole_size;
969 	int i;
970 
971 	hole_size = 0;
972 	rlast = 0;
973 	raddr = paddr;
974 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
975 		rstart = fw_dump.boot_mem_addr[i];
976 		rend = rstart + fw_dump.boot_mem_sz[i];
977 		hole_size += (rstart - rlast);
978 
979 		if (paddr >= rstart && paddr < rend) {
980 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
981 			break;
982 		}
983 
984 		rlast = rend;
985 	}
986 
987 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
988 	return raddr;
989 }
990 
991 static void __init populate_elf_pt_load(struct elf_phdr *phdr, u64 start,
992 			     u64 size, unsigned long long offset)
993 {
994 	phdr->p_align	= 0;
995 	phdr->p_memsz	= size;
996 	phdr->p_filesz	= size;
997 	phdr->p_paddr	= start;
998 	phdr->p_offset	= offset;
999 	phdr->p_type	= PT_LOAD;
1000 	phdr->p_flags	= PF_R|PF_W|PF_X;
1001 	phdr->p_vaddr	= (unsigned long)__va(start);
1002 }
1003 
1004 static void __init fadump_populate_elfcorehdr(struct fadump_crash_info_header *fdh)
1005 {
1006 	char *bufp;
1007 	struct elfhdr *elf;
1008 	struct elf_phdr *phdr;
1009 	u64 boot_mem_dest_offset;
1010 	unsigned long long i, ra_start, ra_end, ra_size, mstart, mend;
1011 
1012 	bufp = (char *) fw_dump.elfcorehdr_addr;
1013 	fadump_init_elfcore_header(bufp);
1014 	elf = (struct elfhdr *)bufp;
1015 	bufp += sizeof(struct elfhdr);
1016 
1017 	/*
1018 	 * Set up ELF PT_NOTE, a placeholder for CPU notes information.
1019 	 * The notes info will be populated later by platform-specific code.
1020 	 * Hence, this PT_NOTE will always be the first ELF note.
1021 	 *
1022 	 * NOTE: Any new ELF note addition should be placed after this note.
1023 	 */
1024 	phdr = (struct elf_phdr *)bufp;
1025 	bufp += sizeof(struct elf_phdr);
1026 	phdr->p_type = PT_NOTE;
1027 	phdr->p_flags	= 0;
1028 	phdr->p_vaddr	= 0;
1029 	phdr->p_align	= 0;
1030 	phdr->p_offset	= 0;
1031 	phdr->p_paddr	= 0;
1032 	phdr->p_filesz	= 0;
1033 	phdr->p_memsz	= 0;
1034 	/* Increment number of program headers. */
1035 	(elf->e_phnum)++;
1036 
1037 	/* setup ELF PT_NOTE for vmcoreinfo */
1038 	phdr = (struct elf_phdr *)bufp;
1039 	bufp += sizeof(struct elf_phdr);
1040 	phdr->p_type	= PT_NOTE;
1041 	phdr->p_flags	= 0;
1042 	phdr->p_vaddr	= 0;
1043 	phdr->p_align	= 0;
1044 	phdr->p_paddr	= phdr->p_offset = fdh->vmcoreinfo_raddr;
1045 	phdr->p_memsz	= phdr->p_filesz = fdh->vmcoreinfo_size;
1046 	/* Increment number of program headers. */
1047 	(elf->e_phnum)++;
1048 
1049 	/*
1050 	 * Setup PT_LOAD sections. first include boot memory regions
1051 	 * and then add rest of the memory regions.
1052 	 */
1053 	boot_mem_dest_offset = fw_dump.boot_mem_dest_addr;
1054 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1055 		phdr = (struct elf_phdr *)bufp;
1056 		bufp += sizeof(struct elf_phdr);
1057 		populate_elf_pt_load(phdr, fw_dump.boot_mem_addr[i],
1058 				     fw_dump.boot_mem_sz[i],
1059 				     boot_mem_dest_offset);
1060 		/* Increment number of program headers. */
1061 		(elf->e_phnum)++;
1062 		boot_mem_dest_offset += fw_dump.boot_mem_sz[i];
1063 	}
1064 
1065 	/* Memory reserved for fadump in first kernel */
1066 	ra_start = fw_dump.reserve_dump_area_start;
1067 	ra_size = get_fadump_area_size();
1068 	ra_end = ra_start + ra_size;
1069 
1070 	phdr = (struct elf_phdr *)bufp;
1071 	for_each_mem_range(i, &mstart, &mend) {
1072 		/* Boot memory regions already added, skip them now */
1073 		if (mstart < fw_dump.boot_mem_top) {
1074 			if (mend > fw_dump.boot_mem_top)
1075 				mstart = fw_dump.boot_mem_top;
1076 			else
1077 				continue;
1078 		}
1079 
1080 		/* Handle memblock regions overlaps with fadump reserved area */
1081 		if ((ra_start < mend) && (ra_end > mstart)) {
1082 			if ((mstart < ra_start) && (mend > ra_end)) {
1083 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1084 				/* Increment number of program headers. */
1085 				(elf->e_phnum)++;
1086 				bufp += sizeof(struct elf_phdr);
1087 				phdr = (struct elf_phdr *)bufp;
1088 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1089 			} else if (mstart < ra_start) {
1090 				populate_elf_pt_load(phdr, mstart, ra_start - mstart, mstart);
1091 			} else if (ra_end < mend) {
1092 				populate_elf_pt_load(phdr, ra_end, mend - ra_end, ra_end);
1093 			}
1094 		} else {
1095 		/* No overlap with fadump reserved memory region */
1096 			populate_elf_pt_load(phdr, mstart, mend - mstart, mstart);
1097 		}
1098 
1099 		/* Increment number of program headers. */
1100 		(elf->e_phnum)++;
1101 		bufp += sizeof(struct elf_phdr);
1102 		phdr = (struct elf_phdr *) bufp;
1103 	}
1104 }
1105 
1106 static unsigned long init_fadump_header(unsigned long addr)
1107 {
1108 	struct fadump_crash_info_header *fdh;
1109 
1110 	if (!addr)
1111 		return 0;
1112 
1113 	fdh = __va(addr);
1114 	addr += sizeof(struct fadump_crash_info_header);
1115 
1116 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1117 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1118 	fdh->version = FADUMP_HEADER_VERSION;
1119 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1120 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1121 
1122 	/*
1123 	 * The physical address and size of vmcoreinfo are required in the
1124 	 * second kernel to prepare elfcorehdr.
1125 	 */
1126 	fdh->vmcoreinfo_raddr = fadump_relocate(paddr_vmcoreinfo_note());
1127 	fdh->vmcoreinfo_size = VMCOREINFO_NOTE_SIZE;
1128 
1129 
1130 	fdh->pt_regs_sz = sizeof(struct pt_regs);
1131 	/*
1132 	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1133 	 * register data is processed while exporting the vmcore.
1134 	 */
1135 	fdh->cpu_mask = *cpu_possible_mask;
1136 	fdh->cpu_mask_sz = sizeof(struct cpumask);
1137 
1138 	return addr;
1139 }
1140 
1141 static int register_fadump(void)
1142 {
1143 	unsigned long addr;
1144 
1145 	/*
1146 	 * If no memory is reserved then we can not register for firmware-
1147 	 * assisted dump.
1148 	 */
1149 	if (!fw_dump.reserve_dump_area_size)
1150 		return -ENODEV;
1151 
1152 	addr = fw_dump.fadumphdr_addr;
1153 
1154 	/* Initialize fadump crash info header. */
1155 	addr = init_fadump_header(addr);
1156 
1157 	/* register the future kernel dump with firmware. */
1158 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1159 	return fw_dump.ops->fadump_register(&fw_dump);
1160 }
1161 
1162 void fadump_cleanup(void)
1163 {
1164 	if (!fw_dump.fadump_supported)
1165 		return;
1166 
1167 	/* Invalidate the registration only if dump is active. */
1168 	if (fw_dump.dump_active) {
1169 		pr_debug("Invalidating firmware-assisted dump registration\n");
1170 		fw_dump.ops->fadump_invalidate(&fw_dump);
1171 	} else if (fw_dump.dump_registered) {
1172 		/* Un-register Firmware-assisted dump if it was registered. */
1173 		fw_dump.ops->fadump_unregister(&fw_dump);
1174 	}
1175 
1176 	if (fw_dump.ops->fadump_cleanup)
1177 		fw_dump.ops->fadump_cleanup(&fw_dump);
1178 }
1179 
1180 static void fadump_free_reserved_memory(unsigned long start_pfn,
1181 					unsigned long end_pfn)
1182 {
1183 	unsigned long pfn;
1184 	unsigned long time_limit = jiffies + HZ;
1185 
1186 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1187 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1188 
1189 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1190 		free_reserved_page(pfn_to_page(pfn));
1191 
1192 		if (time_after(jiffies, time_limit)) {
1193 			cond_resched();
1194 			time_limit = jiffies + HZ;
1195 		}
1196 	}
1197 }
1198 
1199 /*
1200  * Skip memory holes and free memory that was actually reserved.
1201  */
1202 static void fadump_release_reserved_area(u64 start, u64 end)
1203 {
1204 	unsigned long reg_spfn, reg_epfn;
1205 	u64 tstart, tend, spfn, epfn;
1206 	int i;
1207 
1208 	spfn = PHYS_PFN(start);
1209 	epfn = PHYS_PFN(end);
1210 
1211 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1212 		tstart = max_t(u64, spfn, reg_spfn);
1213 		tend   = min_t(u64, epfn, reg_epfn);
1214 
1215 		if (tstart < tend) {
1216 			fadump_free_reserved_memory(tstart, tend);
1217 
1218 			if (tend == epfn)
1219 				break;
1220 
1221 			spfn = tend;
1222 		}
1223 	}
1224 }
1225 
1226 /*
1227  * Sort the mem ranges in-place and merge adjacent ranges
1228  * to minimize the memory ranges count.
1229  */
1230 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1231 {
1232 	struct fadump_memory_range *mem_ranges;
1233 	u64 base, size;
1234 	int i, j, idx;
1235 
1236 	if (!reserved_mrange_info.mem_range_cnt)
1237 		return;
1238 
1239 	/* Sort the memory ranges */
1240 	mem_ranges = mrange_info->mem_ranges;
1241 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1242 		idx = i;
1243 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1244 			if (mem_ranges[idx].base > mem_ranges[j].base)
1245 				idx = j;
1246 		}
1247 		if (idx != i)
1248 			swap(mem_ranges[idx], mem_ranges[i]);
1249 	}
1250 
1251 	/* Merge adjacent reserved ranges */
1252 	idx = 0;
1253 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1254 		base = mem_ranges[i-1].base;
1255 		size = mem_ranges[i-1].size;
1256 		if (mem_ranges[i].base == (base + size))
1257 			mem_ranges[idx].size += mem_ranges[i].size;
1258 		else {
1259 			idx++;
1260 			if (i == idx)
1261 				continue;
1262 
1263 			mem_ranges[idx] = mem_ranges[i];
1264 		}
1265 	}
1266 	mrange_info->mem_range_cnt = idx + 1;
1267 }
1268 
1269 /*
1270  * Scan reserved-ranges to consider them while reserving/releasing
1271  * memory for FADump.
1272  */
1273 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1274 {
1275 	const __be32 *prop;
1276 	int len, ret = -1;
1277 	unsigned long i;
1278 
1279 	/* reserved-ranges already scanned */
1280 	if (reserved_mrange_info.mem_range_cnt != 0)
1281 		return;
1282 
1283 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1284 	if (!prop)
1285 		return;
1286 
1287 	/*
1288 	 * Each reserved range is an (address,size) pair, 2 cells each,
1289 	 * totalling 4 cells per range.
1290 	 */
1291 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1292 		u64 base, size;
1293 
1294 		base = of_read_number(prop + (i * 4) + 0, 2);
1295 		size = of_read_number(prop + (i * 4) + 2, 2);
1296 
1297 		if (size) {
1298 			ret = fadump_add_mem_range(&reserved_mrange_info,
1299 						   base, base + size);
1300 			if (ret < 0) {
1301 				pr_warn("some reserved ranges are ignored!\n");
1302 				break;
1303 			}
1304 		}
1305 	}
1306 
1307 	/* Compact reserved ranges */
1308 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1309 }
1310 
1311 /*
1312  * Release the memory that was reserved during early boot to preserve the
1313  * crash'ed kernel's memory contents except reserved dump area (permanent
1314  * reservation) and reserved ranges used by F/W. The released memory will
1315  * be available for general use.
1316  */
1317 static void fadump_release_memory(u64 begin, u64 end)
1318 {
1319 	u64 ra_start, ra_end, tstart;
1320 	int i, ret;
1321 
1322 	ra_start = fw_dump.reserve_dump_area_start;
1323 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1324 
1325 	/*
1326 	 * If reserved ranges array limit is hit, overwrite the last reserved
1327 	 * memory range with reserved dump area to ensure it is excluded from
1328 	 * the memory being released (reused for next FADump registration).
1329 	 */
1330 	if (reserved_mrange_info.mem_range_cnt ==
1331 	    reserved_mrange_info.max_mem_ranges)
1332 		reserved_mrange_info.mem_range_cnt--;
1333 
1334 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1335 	if (ret != 0)
1336 		return;
1337 
1338 	/* Get the reserved ranges list in order first. */
1339 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1340 
1341 	/* Exclude reserved ranges and release remaining memory */
1342 	tstart = begin;
1343 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1344 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1345 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1346 
1347 		if (tstart >= ra_end)
1348 			continue;
1349 
1350 		if (tstart < ra_start)
1351 			fadump_release_reserved_area(tstart, ra_start);
1352 		tstart = ra_end;
1353 	}
1354 
1355 	if (tstart < end)
1356 		fadump_release_reserved_area(tstart, end);
1357 }
1358 
1359 static void fadump_free_elfcorehdr_buf(void)
1360 {
1361 	if (fw_dump.elfcorehdr_addr == 0 || fw_dump.elfcorehdr_size == 0)
1362 		return;
1363 
1364 	/*
1365 	 * Before freeing the memory of `elfcorehdr`, reset the global
1366 	 * `elfcorehdr_addr` to prevent modules like `vmcore` from accessing
1367 	 * invalid memory.
1368 	 */
1369 	elfcorehdr_addr = ELFCORE_ADDR_ERR;
1370 	fadump_free_buffer(fw_dump.elfcorehdr_addr, fw_dump.elfcorehdr_size);
1371 	fw_dump.elfcorehdr_addr = 0;
1372 	fw_dump.elfcorehdr_size = 0;
1373 }
1374 
1375 static void fadump_invalidate_release_mem(void)
1376 {
1377 	mutex_lock(&fadump_mutex);
1378 	if (!fw_dump.dump_active) {
1379 		mutex_unlock(&fadump_mutex);
1380 		return;
1381 	}
1382 
1383 	fadump_cleanup();
1384 	mutex_unlock(&fadump_mutex);
1385 
1386 	fadump_free_elfcorehdr_buf();
1387 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1388 	fadump_free_cpu_notes_buf();
1389 
1390 	/*
1391 	 * Setup kernel metadata and initialize the kernel dump
1392 	 * memory structure for FADump re-registration.
1393 	 */
1394 	if (fw_dump.ops->fadump_setup_metadata &&
1395 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1396 		pr_warn("Failed to setup kernel metadata!\n");
1397 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1398 }
1399 
1400 static ssize_t release_mem_store(struct kobject *kobj,
1401 				 struct kobj_attribute *attr,
1402 				 const char *buf, size_t count)
1403 {
1404 	int input = -1;
1405 
1406 	if (!fw_dump.dump_active)
1407 		return -EPERM;
1408 
1409 	if (kstrtoint(buf, 0, &input))
1410 		return -EINVAL;
1411 
1412 	if (input == 1) {
1413 		/*
1414 		 * Take away the '/proc/vmcore'. We are releasing the dump
1415 		 * memory, hence it will not be valid anymore.
1416 		 */
1417 #ifdef CONFIG_PROC_VMCORE
1418 		vmcore_cleanup();
1419 #endif
1420 		fadump_invalidate_release_mem();
1421 
1422 	} else
1423 		return -EINVAL;
1424 	return count;
1425 }
1426 
1427 /* Release the reserved memory and disable the FADump */
1428 static void __init unregister_fadump(void)
1429 {
1430 	fadump_cleanup();
1431 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1432 			      fw_dump.reserve_dump_area_size);
1433 	fw_dump.fadump_enabled = 0;
1434 	kobject_put(fadump_kobj);
1435 }
1436 
1437 static ssize_t enabled_show(struct kobject *kobj,
1438 			    struct kobj_attribute *attr,
1439 			    char *buf)
1440 {
1441 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1442 }
1443 
1444 /*
1445  * /sys/kernel/fadump/hotplug_ready sysfs node returns 1, which inidcates
1446  * to usersapce that fadump re-registration is not required on memory
1447  * hotplug events.
1448  */
1449 static ssize_t hotplug_ready_show(struct kobject *kobj,
1450 				      struct kobj_attribute *attr,
1451 				      char *buf)
1452 {
1453 	return sprintf(buf, "%d\n", 1);
1454 }
1455 
1456 static ssize_t mem_reserved_show(struct kobject *kobj,
1457 				 struct kobj_attribute *attr,
1458 				 char *buf)
1459 {
1460 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1461 }
1462 
1463 static ssize_t registered_show(struct kobject *kobj,
1464 			       struct kobj_attribute *attr,
1465 			       char *buf)
1466 {
1467 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1468 }
1469 
1470 static ssize_t bootargs_append_show(struct kobject *kobj,
1471 				   struct kobj_attribute *attr,
1472 				   char *buf)
1473 {
1474 	return sprintf(buf, "%s\n", (char *)__va(fw_dump.param_area));
1475 }
1476 
1477 static ssize_t bootargs_append_store(struct kobject *kobj,
1478 				   struct kobj_attribute *attr,
1479 				   const char *buf, size_t count)
1480 {
1481 	char *params;
1482 
1483 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1484 		return -EPERM;
1485 
1486 	if (count >= COMMAND_LINE_SIZE)
1487 		return -EINVAL;
1488 
1489 	/*
1490 	 * Fail here instead of handling this scenario with
1491 	 * some silly workaround in capture kernel.
1492 	 */
1493 	if (saved_command_line_len + count >= COMMAND_LINE_SIZE) {
1494 		pr_err("Appending parameters exceeds cmdline size!\n");
1495 		return -ENOSPC;
1496 	}
1497 
1498 	params = __va(fw_dump.param_area);
1499 	strscpy_pad(params, buf, COMMAND_LINE_SIZE);
1500 	/* Remove newline character at the end. */
1501 	if (params[count-1] == '\n')
1502 		params[count-1] = '\0';
1503 
1504 	return count;
1505 }
1506 
1507 static ssize_t registered_store(struct kobject *kobj,
1508 				struct kobj_attribute *attr,
1509 				const char *buf, size_t count)
1510 {
1511 	int ret = 0;
1512 	int input = -1;
1513 
1514 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1515 		return -EPERM;
1516 
1517 	if (kstrtoint(buf, 0, &input))
1518 		return -EINVAL;
1519 
1520 	mutex_lock(&fadump_mutex);
1521 
1522 	switch (input) {
1523 	case 0:
1524 		if (fw_dump.dump_registered == 0) {
1525 			goto unlock_out;
1526 		}
1527 
1528 		/* Un-register Firmware-assisted dump */
1529 		pr_debug("Un-register firmware-assisted dump\n");
1530 		fw_dump.ops->fadump_unregister(&fw_dump);
1531 		break;
1532 	case 1:
1533 		if (fw_dump.dump_registered == 1) {
1534 			/* Un-register Firmware-assisted dump */
1535 			fw_dump.ops->fadump_unregister(&fw_dump);
1536 		}
1537 		/* Register Firmware-assisted dump */
1538 		ret = register_fadump();
1539 		break;
1540 	default:
1541 		ret = -EINVAL;
1542 		break;
1543 	}
1544 
1545 unlock_out:
1546 	mutex_unlock(&fadump_mutex);
1547 	return ret < 0 ? ret : count;
1548 }
1549 
1550 static int fadump_region_show(struct seq_file *m, void *private)
1551 {
1552 	if (!fw_dump.fadump_enabled)
1553 		return 0;
1554 
1555 	mutex_lock(&fadump_mutex);
1556 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1557 	mutex_unlock(&fadump_mutex);
1558 	return 0;
1559 }
1560 
1561 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1562 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1563 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1564 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1565 static struct kobj_attribute hotplug_ready_attr = __ATTR_RO(hotplug_ready);
1566 static struct kobj_attribute bootargs_append_attr = __ATTR_RW(bootargs_append);
1567 
1568 static struct attribute *fadump_attrs[] = {
1569 	&enable_attr.attr,
1570 	&register_attr.attr,
1571 	&mem_reserved_attr.attr,
1572 	&hotplug_ready_attr.attr,
1573 	NULL,
1574 };
1575 
1576 ATTRIBUTE_GROUPS(fadump);
1577 
1578 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1579 
1580 static void __init fadump_init_files(void)
1581 {
1582 	int rc = 0;
1583 
1584 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1585 	if (!fadump_kobj) {
1586 		pr_err("failed to create fadump kobject\n");
1587 		return;
1588 	}
1589 
1590 	if (fw_dump.param_area) {
1591 		rc = sysfs_create_file(fadump_kobj, &bootargs_append_attr.attr);
1592 		if (rc)
1593 			pr_err("unable to create bootargs_append sysfs file (%d)\n", rc);
1594 	}
1595 
1596 	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1597 			    &fadump_region_fops);
1598 
1599 	if (fw_dump.dump_active) {
1600 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1601 		if (rc)
1602 			pr_err("unable to create release_mem sysfs file (%d)\n",
1603 			       rc);
1604 	}
1605 
1606 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1607 	if (rc) {
1608 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1609 		       rc);
1610 		unregister_fadump();
1611 		return;
1612 	}
1613 
1614 	/*
1615 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1616 	 * create symlink at old location to maintain backward compatibility.
1617 	 *
1618 	 *      - fadump_enabled -> fadump/enabled
1619 	 *      - fadump_registered -> fadump/registered
1620 	 *      - fadump_release_mem -> fadump/release_mem
1621 	 */
1622 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1623 						  "enabled", "fadump_enabled");
1624 	if (rc) {
1625 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1626 		return;
1627 	}
1628 
1629 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1630 						  "registered",
1631 						  "fadump_registered");
1632 	if (rc) {
1633 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1634 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1635 		return;
1636 	}
1637 
1638 	if (fw_dump.dump_active) {
1639 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1640 							  fadump_kobj,
1641 							  "release_mem",
1642 							  "fadump_release_mem");
1643 		if (rc)
1644 			pr_err("unable to create fadump_release_mem symlink (%d)",
1645 			       rc);
1646 	}
1647 	return;
1648 }
1649 
1650 static int __init fadump_setup_elfcorehdr_buf(void)
1651 {
1652 	int elf_phdr_cnt;
1653 	unsigned long elfcorehdr_size;
1654 
1655 	/*
1656 	 * Program header for CPU notes comes first, followed by one for
1657 	 * vmcoreinfo, and the remaining program headers correspond to
1658 	 * memory regions.
1659 	 */
1660 	elf_phdr_cnt = 2 + fw_dump.boot_mem_regs_cnt + memblock_num_regions(memory);
1661 	elfcorehdr_size = sizeof(struct elfhdr) + (elf_phdr_cnt * sizeof(struct elf_phdr));
1662 	elfcorehdr_size = PAGE_ALIGN(elfcorehdr_size);
1663 
1664 	fw_dump.elfcorehdr_addr = (u64)fadump_alloc_buffer(elfcorehdr_size);
1665 	if (!fw_dump.elfcorehdr_addr) {
1666 		pr_err("Failed to allocate %lu bytes for elfcorehdr\n",
1667 		       elfcorehdr_size);
1668 		return -ENOMEM;
1669 	}
1670 	fw_dump.elfcorehdr_size = elfcorehdr_size;
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Check if the fadump header of crashed kernel is compatible with fadump kernel.
1676  *
1677  * It checks the magic number, endianness, and size of non-primitive type
1678  * members of fadump header to ensure safe dump collection.
1679  */
1680 static bool __init is_fadump_header_compatible(struct fadump_crash_info_header *fdh)
1681 {
1682 	if (fdh->magic_number == FADUMP_CRASH_INFO_MAGIC_OLD) {
1683 		pr_err("Old magic number, can't process the dump.\n");
1684 		return false;
1685 	}
1686 
1687 	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
1688 		if (fdh->magic_number == swab64(FADUMP_CRASH_INFO_MAGIC))
1689 			pr_err("Endianness mismatch between the crashed and fadump kernels.\n");
1690 		else
1691 			pr_err("Fadump header is corrupted.\n");
1692 
1693 		return false;
1694 	}
1695 
1696 	/*
1697 	 * Dump collection is not safe if the size of non-primitive type members
1698 	 * of the fadump header do not match between crashed and fadump kernel.
1699 	 */
1700 	if (fdh->pt_regs_sz != sizeof(struct pt_regs) ||
1701 	    fdh->cpu_mask_sz != sizeof(struct cpumask)) {
1702 		pr_err("Fadump header size mismatch.\n");
1703 		return false;
1704 	}
1705 
1706 	return true;
1707 }
1708 
1709 static void __init fadump_process(void)
1710 {
1711 	struct fadump_crash_info_header *fdh;
1712 
1713 	fdh = (struct fadump_crash_info_header *) __va(fw_dump.fadumphdr_addr);
1714 	if (!fdh) {
1715 		pr_err("Crash info header is empty.\n");
1716 		goto err_out;
1717 	}
1718 
1719 	/* Avoid processing the dump if fadump header isn't compatible */
1720 	if (!is_fadump_header_compatible(fdh))
1721 		goto err_out;
1722 
1723 	/* Allocate buffer for elfcorehdr */
1724 	if (fadump_setup_elfcorehdr_buf())
1725 		goto err_out;
1726 
1727 	fadump_populate_elfcorehdr(fdh);
1728 
1729 	/* Let platform update the CPU notes in elfcorehdr */
1730 	if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1731 		goto err_out;
1732 
1733 	/*
1734 	 * elfcorehdr is now ready to be exported.
1735 	 *
1736 	 * set elfcorehdr_addr so that vmcore module will export the
1737 	 * elfcorehdr through '/proc/vmcore'.
1738 	 */
1739 	elfcorehdr_addr = virt_to_phys((void *)fw_dump.elfcorehdr_addr);
1740 	return;
1741 
1742 err_out:
1743 	fadump_invalidate_release_mem();
1744 }
1745 
1746 /*
1747  * Reserve memory to store additional parameters to be passed
1748  * for fadump/capture kernel.
1749  */
1750 void __init fadump_setup_param_area(void)
1751 {
1752 	phys_addr_t range_start, range_end;
1753 
1754 	if (!fw_dump.param_area_supported || fw_dump.dump_active)
1755 		return;
1756 
1757 	/* This memory can't be used by PFW or bootloader as it is shared across kernels */
1758 	if (early_radix_enabled()) {
1759 		/*
1760 		 * Anywhere in the upper half should be good enough as all memory
1761 		 * is accessible in real mode.
1762 		 */
1763 		range_start = memblock_end_of_DRAM() / 2;
1764 		range_end = memblock_end_of_DRAM();
1765 	} else {
1766 		/*
1767 		 * Passing additional parameters is supported for hash MMU only
1768 		 * if the first memory block size is 768MB or higher.
1769 		 */
1770 		if (ppc64_rma_size < 0x30000000)
1771 			return;
1772 
1773 		/*
1774 		 * 640 MB to 768 MB is not used by PFW/bootloader. So, try reserving
1775 		 * memory for passing additional parameters in this range to avoid
1776 		 * being stomped on by PFW/bootloader.
1777 		 */
1778 		range_start = 0x2A000000;
1779 		range_end = range_start + 0x4000000;
1780 	}
1781 
1782 	fw_dump.param_area = memblock_phys_alloc_range(COMMAND_LINE_SIZE,
1783 						       COMMAND_LINE_SIZE,
1784 						       range_start,
1785 						       range_end);
1786 	if (!fw_dump.param_area) {
1787 		pr_warn("WARNING: Could not setup area to pass additional parameters!\n");
1788 		return;
1789 	}
1790 
1791 	memset((void *)fw_dump.param_area, 0, COMMAND_LINE_SIZE);
1792 }
1793 
1794 /*
1795  * Prepare for firmware-assisted dump.
1796  */
1797 int __init setup_fadump(void)
1798 {
1799 	if (!fw_dump.fadump_supported)
1800 		return 0;
1801 
1802 	fadump_init_files();
1803 	fadump_show_config();
1804 
1805 	if (!fw_dump.fadump_enabled)
1806 		return 1;
1807 
1808 	/*
1809 	 * If dump data is available then see if it is valid and prepare for
1810 	 * saving it to the disk.
1811 	 */
1812 	if (fw_dump.dump_active) {
1813 		fadump_process();
1814 	}
1815 	/* Initialize the kernel dump memory structure and register with f/w */
1816 	else if (fw_dump.reserve_dump_area_size) {
1817 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1818 		register_fadump();
1819 	}
1820 
1821 	/*
1822 	 * In case of panic, fadump is triggered via ppc_panic_event()
1823 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1824 	 * lets panic() function take crash friendly path before panic
1825 	 * notifiers are invoked.
1826 	 */
1827 	crash_kexec_post_notifiers = true;
1828 
1829 	return 1;
1830 }
1831 /*
1832  * Use subsys_initcall_sync() here because there is dependency with
1833  * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1834  * is done before registering with f/w.
1835  */
1836 subsys_initcall_sync(setup_fadump);
1837 #else /* !CONFIG_PRESERVE_FA_DUMP */
1838 
1839 /* Scan the Firmware Assisted dump configuration details. */
1840 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1841 				      int depth, void *data)
1842 {
1843 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1844 		return 0;
1845 
1846 	opal_fadump_dt_scan(&fw_dump, node);
1847 	return 1;
1848 }
1849 
1850 /*
1851  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1852  * preserve crash data. The subsequent memory preserving kernel boot
1853  * is likely to process this crash data.
1854  */
1855 int __init fadump_reserve_mem(void)
1856 {
1857 	if (fw_dump.dump_active) {
1858 		/*
1859 		 * If last boot has crashed then reserve all the memory
1860 		 * above boot memory to preserve crash data.
1861 		 */
1862 		pr_info("Preserving crash data for processing in next boot.\n");
1863 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1864 	} else
1865 		pr_debug("FADump-aware kernel..\n");
1866 
1867 	return 1;
1868 }
1869 #endif /* CONFIG_PRESERVE_FA_DUMP */
1870 
1871 /* Preserve everything above the base address */
1872 static void __init fadump_reserve_crash_area(u64 base)
1873 {
1874 	u64 i, mstart, mend, msize;
1875 
1876 	for_each_mem_range(i, &mstart, &mend) {
1877 		msize  = mend - mstart;
1878 
1879 		if ((mstart + msize) < base)
1880 			continue;
1881 
1882 		if (mstart < base) {
1883 			msize -= (base - mstart);
1884 			mstart = base;
1885 		}
1886 
1887 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1888 			(msize >> 20), mstart);
1889 		memblock_reserve(mstart, msize);
1890 	}
1891 }
1892