xref: /linux/arch/powerpc/kernel/fadump.c (revision 0a94608f0f7de9b1135ffea3546afe68eafef57f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
4  * dump with assistance from firmware. This approach does not use kexec,
5  * instead firmware assists in booting the kdump kernel while preserving
6  * memory contents. The most of the code implementation has been adapted
7  * from phyp assisted dump implementation written by Linas Vepstas and
8  * Manish Ahuja
9  *
10  * Copyright 2011 IBM Corporation
11  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
12  */
13 
14 #undef DEBUG
15 #define pr_fmt(fmt) "fadump: " fmt
16 
17 #include <linux/string.h>
18 #include <linux/memblock.h>
19 #include <linux/delay.h>
20 #include <linux/seq_file.h>
21 #include <linux/crash_dump.h>
22 #include <linux/kobject.h>
23 #include <linux/sysfs.h>
24 #include <linux/slab.h>
25 #include <linux/cma.h>
26 #include <linux/hugetlb.h>
27 #include <linux/debugfs.h>
28 
29 #include <asm/page.h>
30 #include <asm/prom.h>
31 #include <asm/fadump.h>
32 #include <asm/fadump-internal.h>
33 #include <asm/setup.h>
34 #include <asm/interrupt.h>
35 
36 /*
37  * The CPU who acquired the lock to trigger the fadump crash should
38  * wait for other CPUs to enter.
39  *
40  * The timeout is in milliseconds.
41  */
42 #define CRASH_TIMEOUT		500
43 
44 static struct fw_dump fw_dump;
45 
46 static void __init fadump_reserve_crash_area(u64 base);
47 
48 #ifndef CONFIG_PRESERVE_FA_DUMP
49 
50 static struct kobject *fadump_kobj;
51 
52 static atomic_t cpus_in_fadump;
53 static DEFINE_MUTEX(fadump_mutex);
54 
55 static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
56 
57 #define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
58 #define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
59 				 sizeof(struct fadump_memory_range))
60 static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
61 static struct fadump_mrange_info
62 reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
63 
64 static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
65 
66 #ifdef CONFIG_CMA
67 static struct cma *fadump_cma;
68 
69 /*
70  * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
71  *
72  * This function initializes CMA area from fadump reserved memory.
73  * The total size of fadump reserved memory covers for boot memory size
74  * + cpu data size + hpte size and metadata.
75  * Initialize only the area equivalent to boot memory size for CMA use.
76  * The reamining portion of fadump reserved memory will be not given
77  * to CMA and pages for thoes will stay reserved. boot memory size is
78  * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
79  * But for some reason even if it fails we still have the memory reservation
80  * with us and we can still continue doing fadump.
81  */
82 static int __init fadump_cma_init(void)
83 {
84 	unsigned long long base, size;
85 	int rc;
86 
87 	if (!fw_dump.fadump_enabled)
88 		return 0;
89 
90 	/*
91 	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
92 	 * Return 1 to continue with fadump old behaviour.
93 	 */
94 	if (fw_dump.nocma)
95 		return 1;
96 
97 	base = fw_dump.reserve_dump_area_start;
98 	size = fw_dump.boot_memory_size;
99 
100 	if (!size)
101 		return 0;
102 
103 	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
104 	if (rc) {
105 		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
106 		/*
107 		 * Though the CMA init has failed we still have memory
108 		 * reservation with us. The reserved memory will be
109 		 * blocked from production system usage.  Hence return 1,
110 		 * so that we can continue with fadump.
111 		 */
112 		return 1;
113 	}
114 
115 	/*
116 	 *  If CMA activation fails, keep the pages reserved, instead of
117 	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
118 	 */
119 	cma_reserve_pages_on_error(fadump_cma);
120 
121 	/*
122 	 * So we now have successfully initialized cma area for fadump.
123 	 */
124 	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
125 		"bytes of memory reserved for firmware-assisted dump\n",
126 		cma_get_size(fadump_cma),
127 		(unsigned long)cma_get_base(fadump_cma) >> 20,
128 		fw_dump.reserve_dump_area_size);
129 	return 1;
130 }
131 #else
132 static int __init fadump_cma_init(void) { return 1; }
133 #endif /* CONFIG_CMA */
134 
135 /* Scan the Firmware Assisted dump configuration details. */
136 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
137 				      int depth, void *data)
138 {
139 	if (depth == 0) {
140 		early_init_dt_scan_reserved_ranges(node);
141 		return 0;
142 	}
143 
144 	if (depth != 1)
145 		return 0;
146 
147 	if (strcmp(uname, "rtas") == 0) {
148 		rtas_fadump_dt_scan(&fw_dump, node);
149 		return 1;
150 	}
151 
152 	if (strcmp(uname, "ibm,opal") == 0) {
153 		opal_fadump_dt_scan(&fw_dump, node);
154 		return 1;
155 	}
156 
157 	return 0;
158 }
159 
160 /*
161  * If fadump is registered, check if the memory provided
162  * falls within boot memory area and reserved memory area.
163  */
164 int is_fadump_memory_area(u64 addr, unsigned long size)
165 {
166 	u64 d_start, d_end;
167 
168 	if (!fw_dump.dump_registered)
169 		return 0;
170 
171 	if (!size)
172 		return 0;
173 
174 	d_start = fw_dump.reserve_dump_area_start;
175 	d_end = d_start + fw_dump.reserve_dump_area_size;
176 	if (((addr + size) > d_start) && (addr <= d_end))
177 		return 1;
178 
179 	return (addr <= fw_dump.boot_mem_top);
180 }
181 
182 int should_fadump_crash(void)
183 {
184 	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
185 		return 0;
186 	return 1;
187 }
188 
189 int is_fadump_active(void)
190 {
191 	return fw_dump.dump_active;
192 }
193 
194 /*
195  * Returns true, if there are no holes in memory area between d_start to d_end,
196  * false otherwise.
197  */
198 static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
199 {
200 	phys_addr_t reg_start, reg_end;
201 	bool ret = false;
202 	u64 i, start, end;
203 
204 	for_each_mem_range(i, &reg_start, &reg_end) {
205 		start = max_t(u64, d_start, reg_start);
206 		end = min_t(u64, d_end, reg_end);
207 		if (d_start < end) {
208 			/* Memory hole from d_start to start */
209 			if (start > d_start)
210 				break;
211 
212 			if (end == d_end) {
213 				ret = true;
214 				break;
215 			}
216 
217 			d_start = end + 1;
218 		}
219 	}
220 
221 	return ret;
222 }
223 
224 /*
225  * Returns true, if there are no holes in boot memory area,
226  * false otherwise.
227  */
228 bool is_fadump_boot_mem_contiguous(void)
229 {
230 	unsigned long d_start, d_end;
231 	bool ret = false;
232 	int i;
233 
234 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
235 		d_start = fw_dump.boot_mem_addr[i];
236 		d_end   = d_start + fw_dump.boot_mem_sz[i];
237 
238 		ret = is_fadump_mem_area_contiguous(d_start, d_end);
239 		if (!ret)
240 			break;
241 	}
242 
243 	return ret;
244 }
245 
246 /*
247  * Returns true, if there are no holes in reserved memory area,
248  * false otherwise.
249  */
250 bool is_fadump_reserved_mem_contiguous(void)
251 {
252 	u64 d_start, d_end;
253 
254 	d_start	= fw_dump.reserve_dump_area_start;
255 	d_end	= d_start + fw_dump.reserve_dump_area_size;
256 	return is_fadump_mem_area_contiguous(d_start, d_end);
257 }
258 
259 /* Print firmware assisted dump configurations for debugging purpose. */
260 static void __init fadump_show_config(void)
261 {
262 	int i;
263 
264 	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
265 			(fw_dump.fadump_supported ? "present" : "no support"));
266 
267 	if (!fw_dump.fadump_supported)
268 		return;
269 
270 	pr_debug("Fadump enabled    : %s\n",
271 				(fw_dump.fadump_enabled ? "yes" : "no"));
272 	pr_debug("Dump Active       : %s\n",
273 				(fw_dump.dump_active ? "yes" : "no"));
274 	pr_debug("Dump section sizes:\n");
275 	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
276 	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
277 	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
278 	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
279 	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
280 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
281 		pr_debug("[%03d] base = %llx, size = %llx\n", i,
282 			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
283 	}
284 }
285 
286 /**
287  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
288  *
289  * Function to find the largest memory size we need to reserve during early
290  * boot process. This will be the size of the memory that is required for a
291  * kernel to boot successfully.
292  *
293  * This function has been taken from phyp-assisted dump feature implementation.
294  *
295  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
296  *
297  * TODO: Come up with better approach to find out more accurate memory size
298  * that is required for a kernel to boot successfully.
299  *
300  */
301 static __init u64 fadump_calculate_reserve_size(void)
302 {
303 	u64 base, size, bootmem_min;
304 	int ret;
305 
306 	if (fw_dump.reserve_bootvar)
307 		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
308 
309 	/*
310 	 * Check if the size is specified through crashkernel= cmdline
311 	 * option. If yes, then use that but ignore base as fadump reserves
312 	 * memory at a predefined offset.
313 	 */
314 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
315 				&size, &base);
316 	if (ret == 0 && size > 0) {
317 		unsigned long max_size;
318 
319 		if (fw_dump.reserve_bootvar)
320 			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
321 
322 		fw_dump.reserve_bootvar = (unsigned long)size;
323 
324 		/*
325 		 * Adjust if the boot memory size specified is above
326 		 * the upper limit.
327 		 */
328 		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
329 		if (fw_dump.reserve_bootvar > max_size) {
330 			fw_dump.reserve_bootvar = max_size;
331 			pr_info("Adjusted boot memory size to %luMB\n",
332 				(fw_dump.reserve_bootvar >> 20));
333 		}
334 
335 		return fw_dump.reserve_bootvar;
336 	} else if (fw_dump.reserve_bootvar) {
337 		/*
338 		 * 'fadump_reserve_mem=' is being used to reserve memory
339 		 * for firmware-assisted dump.
340 		 */
341 		return fw_dump.reserve_bootvar;
342 	}
343 
344 	/* divide by 20 to get 5% of value */
345 	size = memblock_phys_mem_size() / 20;
346 
347 	/* round it down in multiples of 256 */
348 	size = size & ~0x0FFFFFFFUL;
349 
350 	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
351 	if (memory_limit && size > memory_limit)
352 		size = memory_limit;
353 
354 	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
355 	return (size > bootmem_min ? size : bootmem_min);
356 }
357 
358 /*
359  * Calculate the total memory size required to be reserved for
360  * firmware-assisted dump registration.
361  */
362 static unsigned long __init get_fadump_area_size(void)
363 {
364 	unsigned long size = 0;
365 
366 	size += fw_dump.cpu_state_data_size;
367 	size += fw_dump.hpte_region_size;
368 	size += fw_dump.boot_memory_size;
369 	size += sizeof(struct fadump_crash_info_header);
370 	size += sizeof(struct elfhdr); /* ELF core header.*/
371 	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
372 	/* Program headers for crash memory regions. */
373 	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
374 
375 	size = PAGE_ALIGN(size);
376 
377 	/* This is to hold kernel metadata on platforms that support it */
378 	size += (fw_dump.ops->fadump_get_metadata_size ?
379 		 fw_dump.ops->fadump_get_metadata_size() : 0);
380 	return size;
381 }
382 
383 static int __init add_boot_mem_region(unsigned long rstart,
384 				      unsigned long rsize)
385 {
386 	int i = fw_dump.boot_mem_regs_cnt++;
387 
388 	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
389 		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
390 		return 0;
391 	}
392 
393 	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
394 		 i, rstart, (rstart + rsize));
395 	fw_dump.boot_mem_addr[i] = rstart;
396 	fw_dump.boot_mem_sz[i] = rsize;
397 	return 1;
398 }
399 
400 /*
401  * Firmware usually has a hard limit on the data it can copy per region.
402  * Honour that by splitting a memory range into multiple regions.
403  */
404 static int __init add_boot_mem_regions(unsigned long mstart,
405 				       unsigned long msize)
406 {
407 	unsigned long rstart, rsize, max_size;
408 	int ret = 1;
409 
410 	rstart = mstart;
411 	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
412 	while (msize) {
413 		if (msize > max_size)
414 			rsize = max_size;
415 		else
416 			rsize = msize;
417 
418 		ret = add_boot_mem_region(rstart, rsize);
419 		if (!ret)
420 			break;
421 
422 		msize -= rsize;
423 		rstart += rsize;
424 	}
425 
426 	return ret;
427 }
428 
429 static int __init fadump_get_boot_mem_regions(void)
430 {
431 	unsigned long size, cur_size, hole_size, last_end;
432 	unsigned long mem_size = fw_dump.boot_memory_size;
433 	phys_addr_t reg_start, reg_end;
434 	int ret = 1;
435 	u64 i;
436 
437 	fw_dump.boot_mem_regs_cnt = 0;
438 
439 	last_end = 0;
440 	hole_size = 0;
441 	cur_size = 0;
442 	for_each_mem_range(i, &reg_start, &reg_end) {
443 		size = reg_end - reg_start;
444 		hole_size += (reg_start - last_end);
445 
446 		if ((cur_size + size) >= mem_size) {
447 			size = (mem_size - cur_size);
448 			ret = add_boot_mem_regions(reg_start, size);
449 			break;
450 		}
451 
452 		mem_size -= size;
453 		cur_size += size;
454 		ret = add_boot_mem_regions(reg_start, size);
455 		if (!ret)
456 			break;
457 
458 		last_end = reg_end;
459 	}
460 	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
461 
462 	return ret;
463 }
464 
465 /*
466  * Returns true, if the given range overlaps with reserved memory ranges
467  * starting at idx. Also, updates idx to index of overlapping memory range
468  * with the given memory range.
469  * False, otherwise.
470  */
471 static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
472 {
473 	bool ret = false;
474 	int i;
475 
476 	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
477 		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
478 		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
479 
480 		if (end <= rbase)
481 			break;
482 
483 		if ((end > rbase) &&  (base < rend)) {
484 			*idx = i;
485 			ret = true;
486 			break;
487 		}
488 	}
489 
490 	return ret;
491 }
492 
493 /*
494  * Locate a suitable memory area to reserve memory for FADump. While at it,
495  * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
496  */
497 static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
498 {
499 	struct fadump_memory_range *mrngs;
500 	phys_addr_t mstart, mend;
501 	int idx = 0;
502 	u64 i, ret = 0;
503 
504 	mrngs = reserved_mrange_info.mem_ranges;
505 	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
506 				&mstart, &mend, NULL) {
507 		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
508 			 i, mstart, mend, base);
509 
510 		if (mstart > base)
511 			base = PAGE_ALIGN(mstart);
512 
513 		while ((mend > base) && ((mend - base) >= size)) {
514 			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
515 				ret = base;
516 				goto out;
517 			}
518 
519 			base = mrngs[idx].base + mrngs[idx].size;
520 			base = PAGE_ALIGN(base);
521 		}
522 	}
523 
524 out:
525 	return ret;
526 }
527 
528 int __init fadump_reserve_mem(void)
529 {
530 	u64 base, size, mem_boundary, bootmem_min;
531 	int ret = 1;
532 
533 	if (!fw_dump.fadump_enabled)
534 		return 0;
535 
536 	if (!fw_dump.fadump_supported) {
537 		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
538 		goto error_out;
539 	}
540 
541 	/*
542 	 * Initialize boot memory size
543 	 * If dump is active then we have already calculated the size during
544 	 * first kernel.
545 	 */
546 	if (!fw_dump.dump_active) {
547 		fw_dump.boot_memory_size =
548 			PAGE_ALIGN(fadump_calculate_reserve_size());
549 #ifdef CONFIG_CMA
550 		if (!fw_dump.nocma) {
551 			fw_dump.boot_memory_size =
552 				ALIGN(fw_dump.boot_memory_size,
553 				      CMA_MIN_ALIGNMENT_BYTES);
554 		}
555 #endif
556 
557 		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
558 		if (fw_dump.boot_memory_size < bootmem_min) {
559 			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
560 			       fw_dump.boot_memory_size, bootmem_min);
561 			goto error_out;
562 		}
563 
564 		if (!fadump_get_boot_mem_regions()) {
565 			pr_err("Too many holes in boot memory area to enable fadump\n");
566 			goto error_out;
567 		}
568 	}
569 
570 	/*
571 	 * Calculate the memory boundary.
572 	 * If memory_limit is less than actual memory boundary then reserve
573 	 * the memory for fadump beyond the memory_limit and adjust the
574 	 * memory_limit accordingly, so that the running kernel can run with
575 	 * specified memory_limit.
576 	 */
577 	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
578 		size = get_fadump_area_size();
579 		if ((memory_limit + size) < memblock_end_of_DRAM())
580 			memory_limit += size;
581 		else
582 			memory_limit = memblock_end_of_DRAM();
583 		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
584 				" dump, now %#016llx\n", memory_limit);
585 	}
586 	if (memory_limit)
587 		mem_boundary = memory_limit;
588 	else
589 		mem_boundary = memblock_end_of_DRAM();
590 
591 	base = fw_dump.boot_mem_top;
592 	size = get_fadump_area_size();
593 	fw_dump.reserve_dump_area_size = size;
594 	if (fw_dump.dump_active) {
595 		pr_info("Firmware-assisted dump is active.\n");
596 
597 #ifdef CONFIG_HUGETLB_PAGE
598 		/*
599 		 * FADump capture kernel doesn't care much about hugepages.
600 		 * In fact, handling hugepages in capture kernel is asking for
601 		 * trouble. So, disable HugeTLB support when fadump is active.
602 		 */
603 		hugetlb_disabled = true;
604 #endif
605 		/*
606 		 * If last boot has crashed then reserve all the memory
607 		 * above boot memory size so that we don't touch it until
608 		 * dump is written to disk by userspace tool. This memory
609 		 * can be released for general use by invalidating fadump.
610 		 */
611 		fadump_reserve_crash_area(base);
612 
613 		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
614 		pr_debug("Reserve dump area start address: 0x%lx\n",
615 			 fw_dump.reserve_dump_area_start);
616 	} else {
617 		/*
618 		 * Reserve memory at an offset closer to bottom of the RAM to
619 		 * minimize the impact of memory hot-remove operation.
620 		 */
621 		base = fadump_locate_reserve_mem(base, size);
622 
623 		if (!base || (base + size > mem_boundary)) {
624 			pr_err("Failed to find memory chunk for reservation!\n");
625 			goto error_out;
626 		}
627 		fw_dump.reserve_dump_area_start = base;
628 
629 		/*
630 		 * Calculate the kernel metadata address and register it with
631 		 * f/w if the platform supports.
632 		 */
633 		if (fw_dump.ops->fadump_setup_metadata &&
634 		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
635 			goto error_out;
636 
637 		if (memblock_reserve(base, size)) {
638 			pr_err("Failed to reserve memory!\n");
639 			goto error_out;
640 		}
641 
642 		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
643 			(size >> 20), base, (memblock_phys_mem_size() >> 20));
644 
645 		ret = fadump_cma_init();
646 	}
647 
648 	return ret;
649 error_out:
650 	fw_dump.fadump_enabled = 0;
651 	return 0;
652 }
653 
654 /* Look for fadump= cmdline option. */
655 static int __init early_fadump_param(char *p)
656 {
657 	if (!p)
658 		return 1;
659 
660 	if (strncmp(p, "on", 2) == 0)
661 		fw_dump.fadump_enabled = 1;
662 	else if (strncmp(p, "off", 3) == 0)
663 		fw_dump.fadump_enabled = 0;
664 	else if (strncmp(p, "nocma", 5) == 0) {
665 		fw_dump.fadump_enabled = 1;
666 		fw_dump.nocma = 1;
667 	}
668 
669 	return 0;
670 }
671 early_param("fadump", early_fadump_param);
672 
673 /*
674  * Look for fadump_reserve_mem= cmdline option
675  * TODO: Remove references to 'fadump_reserve_mem=' parameter,
676  *       the sooner 'crashkernel=' parameter is accustomed to.
677  */
678 static int __init early_fadump_reserve_mem(char *p)
679 {
680 	if (p)
681 		fw_dump.reserve_bootvar = memparse(p, &p);
682 	return 0;
683 }
684 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
685 
686 void crash_fadump(struct pt_regs *regs, const char *str)
687 {
688 	unsigned int msecs;
689 	struct fadump_crash_info_header *fdh = NULL;
690 	int old_cpu, this_cpu;
691 	/* Do not include first CPU */
692 	unsigned int ncpus = num_online_cpus() - 1;
693 
694 	if (!should_fadump_crash())
695 		return;
696 
697 	/*
698 	 * old_cpu == -1 means this is the first CPU which has come here,
699 	 * go ahead and trigger fadump.
700 	 *
701 	 * old_cpu != -1 means some other CPU has already on it's way
702 	 * to trigger fadump, just keep looping here.
703 	 */
704 	this_cpu = smp_processor_id();
705 	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
706 
707 	if (old_cpu != -1) {
708 		atomic_inc(&cpus_in_fadump);
709 
710 		/*
711 		 * We can't loop here indefinitely. Wait as long as fadump
712 		 * is in force. If we race with fadump un-registration this
713 		 * loop will break and then we go down to normal panic path
714 		 * and reboot. If fadump is in force the first crashing
715 		 * cpu will definitely trigger fadump.
716 		 */
717 		while (fw_dump.dump_registered)
718 			cpu_relax();
719 		return;
720 	}
721 
722 	fdh = __va(fw_dump.fadumphdr_addr);
723 	fdh->crashing_cpu = crashing_cpu;
724 	crash_save_vmcoreinfo();
725 
726 	if (regs)
727 		fdh->regs = *regs;
728 	else
729 		ppc_save_regs(&fdh->regs);
730 
731 	fdh->online_mask = *cpu_online_mask;
732 
733 	/*
734 	 * If we came in via system reset, wait a while for the secondary
735 	 * CPUs to enter.
736 	 */
737 	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
738 		msecs = CRASH_TIMEOUT;
739 		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
740 			mdelay(1);
741 	}
742 
743 	fw_dump.ops->fadump_trigger(fdh, str);
744 }
745 
746 u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
747 {
748 	struct elf_prstatus prstatus;
749 
750 	memset(&prstatus, 0, sizeof(prstatus));
751 	/*
752 	 * FIXME: How do i get PID? Do I really need it?
753 	 * prstatus.pr_pid = ????
754 	 */
755 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
756 	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
757 			      &prstatus, sizeof(prstatus));
758 	return buf;
759 }
760 
761 void __init fadump_update_elfcore_header(char *bufp)
762 {
763 	struct elf_phdr *phdr;
764 
765 	bufp += sizeof(struct elfhdr);
766 
767 	/* First note is a place holder for cpu notes info. */
768 	phdr = (struct elf_phdr *)bufp;
769 
770 	if (phdr->p_type == PT_NOTE) {
771 		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
772 		phdr->p_offset	= phdr->p_paddr;
773 		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
774 		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
775 	}
776 	return;
777 }
778 
779 static void *__init fadump_alloc_buffer(unsigned long size)
780 {
781 	unsigned long count, i;
782 	struct page *page;
783 	void *vaddr;
784 
785 	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
786 	if (!vaddr)
787 		return NULL;
788 
789 	count = PAGE_ALIGN(size) / PAGE_SIZE;
790 	page = virt_to_page(vaddr);
791 	for (i = 0; i < count; i++)
792 		mark_page_reserved(page + i);
793 	return vaddr;
794 }
795 
796 static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
797 {
798 	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
799 }
800 
801 s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
802 {
803 	/* Allocate buffer to hold cpu crash notes. */
804 	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
805 	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
806 	fw_dump.cpu_notes_buf_vaddr =
807 		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
808 	if (!fw_dump.cpu_notes_buf_vaddr) {
809 		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
810 		       fw_dump.cpu_notes_buf_size);
811 		return -ENOMEM;
812 	}
813 
814 	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
815 		 fw_dump.cpu_notes_buf_size,
816 		 fw_dump.cpu_notes_buf_vaddr);
817 	return 0;
818 }
819 
820 void fadump_free_cpu_notes_buf(void)
821 {
822 	if (!fw_dump.cpu_notes_buf_vaddr)
823 		return;
824 
825 	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
826 			   fw_dump.cpu_notes_buf_size);
827 	fw_dump.cpu_notes_buf_vaddr = 0;
828 	fw_dump.cpu_notes_buf_size = 0;
829 }
830 
831 static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
832 {
833 	if (mrange_info->is_static) {
834 		mrange_info->mem_range_cnt = 0;
835 		return;
836 	}
837 
838 	kfree(mrange_info->mem_ranges);
839 	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
840 	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
841 }
842 
843 /*
844  * Allocate or reallocate mem_ranges array in incremental units
845  * of PAGE_SIZE.
846  */
847 static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
848 {
849 	struct fadump_memory_range *new_array;
850 	u64 new_size;
851 
852 	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
853 	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
854 		 new_size, mrange_info->name);
855 
856 	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
857 	if (new_array == NULL) {
858 		pr_err("Insufficient memory for setting up %s memory ranges\n",
859 		       mrange_info->name);
860 		fadump_free_mem_ranges(mrange_info);
861 		return -ENOMEM;
862 	}
863 
864 	mrange_info->mem_ranges = new_array;
865 	mrange_info->mem_ranges_sz = new_size;
866 	mrange_info->max_mem_ranges = (new_size /
867 				       sizeof(struct fadump_memory_range));
868 	return 0;
869 }
870 
871 static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
872 				       u64 base, u64 end)
873 {
874 	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
875 	bool is_adjacent = false;
876 	u64 start, size;
877 
878 	if (base == end)
879 		return 0;
880 
881 	/*
882 	 * Fold adjacent memory ranges to bring down the memory ranges/
883 	 * PT_LOAD segments count.
884 	 */
885 	if (mrange_info->mem_range_cnt) {
886 		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
887 		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
888 
889 		if ((start + size) == base)
890 			is_adjacent = true;
891 	}
892 	if (!is_adjacent) {
893 		/* resize the array on reaching the limit */
894 		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
895 			int ret;
896 
897 			if (mrange_info->is_static) {
898 				pr_err("Reached array size limit for %s memory ranges\n",
899 				       mrange_info->name);
900 				return -ENOSPC;
901 			}
902 
903 			ret = fadump_alloc_mem_ranges(mrange_info);
904 			if (ret)
905 				return ret;
906 
907 			/* Update to the new resized array */
908 			mem_ranges = mrange_info->mem_ranges;
909 		}
910 
911 		start = base;
912 		mem_ranges[mrange_info->mem_range_cnt].base = start;
913 		mrange_info->mem_range_cnt++;
914 	}
915 
916 	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
917 	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
918 		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
919 		 start, end - 1, (end - start));
920 	return 0;
921 }
922 
923 static int fadump_exclude_reserved_area(u64 start, u64 end)
924 {
925 	u64 ra_start, ra_end;
926 	int ret = 0;
927 
928 	ra_start = fw_dump.reserve_dump_area_start;
929 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
930 
931 	if ((ra_start < end) && (ra_end > start)) {
932 		if ((start < ra_start) && (end > ra_end)) {
933 			ret = fadump_add_mem_range(&crash_mrange_info,
934 						   start, ra_start);
935 			if (ret)
936 				return ret;
937 
938 			ret = fadump_add_mem_range(&crash_mrange_info,
939 						   ra_end, end);
940 		} else if (start < ra_start) {
941 			ret = fadump_add_mem_range(&crash_mrange_info,
942 						   start, ra_start);
943 		} else if (ra_end < end) {
944 			ret = fadump_add_mem_range(&crash_mrange_info,
945 						   ra_end, end);
946 		}
947 	} else
948 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
949 
950 	return ret;
951 }
952 
953 static int fadump_init_elfcore_header(char *bufp)
954 {
955 	struct elfhdr *elf;
956 
957 	elf = (struct elfhdr *) bufp;
958 	bufp += sizeof(struct elfhdr);
959 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
960 	elf->e_ident[EI_CLASS] = ELF_CLASS;
961 	elf->e_ident[EI_DATA] = ELF_DATA;
962 	elf->e_ident[EI_VERSION] = EV_CURRENT;
963 	elf->e_ident[EI_OSABI] = ELF_OSABI;
964 	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
965 	elf->e_type = ET_CORE;
966 	elf->e_machine = ELF_ARCH;
967 	elf->e_version = EV_CURRENT;
968 	elf->e_entry = 0;
969 	elf->e_phoff = sizeof(struct elfhdr);
970 	elf->e_shoff = 0;
971 #if defined(_CALL_ELF)
972 	elf->e_flags = _CALL_ELF;
973 #else
974 	elf->e_flags = 0;
975 #endif
976 	elf->e_ehsize = sizeof(struct elfhdr);
977 	elf->e_phentsize = sizeof(struct elf_phdr);
978 	elf->e_phnum = 0;
979 	elf->e_shentsize = 0;
980 	elf->e_shnum = 0;
981 	elf->e_shstrndx = 0;
982 
983 	return 0;
984 }
985 
986 /*
987  * Traverse through memblock structure and setup crash memory ranges. These
988  * ranges will be used create PT_LOAD program headers in elfcore header.
989  */
990 static int fadump_setup_crash_memory_ranges(void)
991 {
992 	u64 i, start, end;
993 	int ret;
994 
995 	pr_debug("Setup crash memory ranges.\n");
996 	crash_mrange_info.mem_range_cnt = 0;
997 
998 	/*
999 	 * Boot memory region(s) registered with firmware are moved to
1000 	 * different location at the time of crash. Create separate program
1001 	 * header(s) for this memory chunk(s) with the correct offset.
1002 	 */
1003 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1004 		start = fw_dump.boot_mem_addr[i];
1005 		end = start + fw_dump.boot_mem_sz[i];
1006 		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1007 		if (ret)
1008 			return ret;
1009 	}
1010 
1011 	for_each_mem_range(i, &start, &end) {
1012 		/*
1013 		 * skip the memory chunk that is already added
1014 		 * (0 through boot_memory_top).
1015 		 */
1016 		if (start < fw_dump.boot_mem_top) {
1017 			if (end > fw_dump.boot_mem_top)
1018 				start = fw_dump.boot_mem_top;
1019 			else
1020 				continue;
1021 		}
1022 
1023 		/* add this range excluding the reserved dump area. */
1024 		ret = fadump_exclude_reserved_area(start, end);
1025 		if (ret)
1026 			return ret;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 /*
1033  * If the given physical address falls within the boot memory region then
1034  * return the relocated address that points to the dump region reserved
1035  * for saving initial boot memory contents.
1036  */
1037 static inline unsigned long fadump_relocate(unsigned long paddr)
1038 {
1039 	unsigned long raddr, rstart, rend, rlast, hole_size;
1040 	int i;
1041 
1042 	hole_size = 0;
1043 	rlast = 0;
1044 	raddr = paddr;
1045 	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1046 		rstart = fw_dump.boot_mem_addr[i];
1047 		rend = rstart + fw_dump.boot_mem_sz[i];
1048 		hole_size += (rstart - rlast);
1049 
1050 		if (paddr >= rstart && paddr < rend) {
1051 			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1052 			break;
1053 		}
1054 
1055 		rlast = rend;
1056 	}
1057 
1058 	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1059 	return raddr;
1060 }
1061 
1062 static int fadump_create_elfcore_headers(char *bufp)
1063 {
1064 	unsigned long long raddr, offset;
1065 	struct elf_phdr *phdr;
1066 	struct elfhdr *elf;
1067 	int i, j;
1068 
1069 	fadump_init_elfcore_header(bufp);
1070 	elf = (struct elfhdr *)bufp;
1071 	bufp += sizeof(struct elfhdr);
1072 
1073 	/*
1074 	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1075 	 * will be populated during second kernel boot after crash. Hence
1076 	 * this PT_NOTE will always be the first elf note.
1077 	 *
1078 	 * NOTE: Any new ELF note addition should be placed after this note.
1079 	 */
1080 	phdr = (struct elf_phdr *)bufp;
1081 	bufp += sizeof(struct elf_phdr);
1082 	phdr->p_type = PT_NOTE;
1083 	phdr->p_flags = 0;
1084 	phdr->p_vaddr = 0;
1085 	phdr->p_align = 0;
1086 
1087 	phdr->p_offset = 0;
1088 	phdr->p_paddr = 0;
1089 	phdr->p_filesz = 0;
1090 	phdr->p_memsz = 0;
1091 
1092 	(elf->e_phnum)++;
1093 
1094 	/* setup ELF PT_NOTE for vmcoreinfo */
1095 	phdr = (struct elf_phdr *)bufp;
1096 	bufp += sizeof(struct elf_phdr);
1097 	phdr->p_type	= PT_NOTE;
1098 	phdr->p_flags	= 0;
1099 	phdr->p_vaddr	= 0;
1100 	phdr->p_align	= 0;
1101 
1102 	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1103 	phdr->p_offset	= phdr->p_paddr;
1104 	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1105 
1106 	/* Increment number of program headers. */
1107 	(elf->e_phnum)++;
1108 
1109 	/* setup PT_LOAD sections. */
1110 	j = 0;
1111 	offset = 0;
1112 	raddr = fw_dump.boot_mem_addr[0];
1113 	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1114 		u64 mbase, msize;
1115 
1116 		mbase = crash_mrange_info.mem_ranges[i].base;
1117 		msize = crash_mrange_info.mem_ranges[i].size;
1118 		if (!msize)
1119 			continue;
1120 
1121 		phdr = (struct elf_phdr *)bufp;
1122 		bufp += sizeof(struct elf_phdr);
1123 		phdr->p_type	= PT_LOAD;
1124 		phdr->p_flags	= PF_R|PF_W|PF_X;
1125 		phdr->p_offset	= mbase;
1126 
1127 		if (mbase == raddr) {
1128 			/*
1129 			 * The entire real memory region will be moved by
1130 			 * firmware to the specified destination_address.
1131 			 * Hence set the correct offset.
1132 			 */
1133 			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1134 			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1135 				offset += fw_dump.boot_mem_sz[j];
1136 				raddr = fw_dump.boot_mem_addr[++j];
1137 			}
1138 		}
1139 
1140 		phdr->p_paddr = mbase;
1141 		phdr->p_vaddr = (unsigned long)__va(mbase);
1142 		phdr->p_filesz = msize;
1143 		phdr->p_memsz = msize;
1144 		phdr->p_align = 0;
1145 
1146 		/* Increment number of program headers. */
1147 		(elf->e_phnum)++;
1148 	}
1149 	return 0;
1150 }
1151 
1152 static unsigned long init_fadump_header(unsigned long addr)
1153 {
1154 	struct fadump_crash_info_header *fdh;
1155 
1156 	if (!addr)
1157 		return 0;
1158 
1159 	fdh = __va(addr);
1160 	addr += sizeof(struct fadump_crash_info_header);
1161 
1162 	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1163 	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1164 	fdh->elfcorehdr_addr = addr;
1165 	/* We will set the crashing cpu id in crash_fadump() during crash. */
1166 	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1167 
1168 	return addr;
1169 }
1170 
1171 static int register_fadump(void)
1172 {
1173 	unsigned long addr;
1174 	void *vaddr;
1175 	int ret;
1176 
1177 	/*
1178 	 * If no memory is reserved then we can not register for firmware-
1179 	 * assisted dump.
1180 	 */
1181 	if (!fw_dump.reserve_dump_area_size)
1182 		return -ENODEV;
1183 
1184 	ret = fadump_setup_crash_memory_ranges();
1185 	if (ret)
1186 		return ret;
1187 
1188 	addr = fw_dump.fadumphdr_addr;
1189 
1190 	/* Initialize fadump crash info header. */
1191 	addr = init_fadump_header(addr);
1192 	vaddr = __va(addr);
1193 
1194 	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1195 	fadump_create_elfcore_headers(vaddr);
1196 
1197 	/* register the future kernel dump with firmware. */
1198 	pr_debug("Registering for firmware-assisted kernel dump...\n");
1199 	return fw_dump.ops->fadump_register(&fw_dump);
1200 }
1201 
1202 void fadump_cleanup(void)
1203 {
1204 	if (!fw_dump.fadump_supported)
1205 		return;
1206 
1207 	/* Invalidate the registration only if dump is active. */
1208 	if (fw_dump.dump_active) {
1209 		pr_debug("Invalidating firmware-assisted dump registration\n");
1210 		fw_dump.ops->fadump_invalidate(&fw_dump);
1211 	} else if (fw_dump.dump_registered) {
1212 		/* Un-register Firmware-assisted dump if it was registered. */
1213 		fw_dump.ops->fadump_unregister(&fw_dump);
1214 		fadump_free_mem_ranges(&crash_mrange_info);
1215 	}
1216 
1217 	if (fw_dump.ops->fadump_cleanup)
1218 		fw_dump.ops->fadump_cleanup(&fw_dump);
1219 }
1220 
1221 static void fadump_free_reserved_memory(unsigned long start_pfn,
1222 					unsigned long end_pfn)
1223 {
1224 	unsigned long pfn;
1225 	unsigned long time_limit = jiffies + HZ;
1226 
1227 	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1228 		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1229 
1230 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1231 		free_reserved_page(pfn_to_page(pfn));
1232 
1233 		if (time_after(jiffies, time_limit)) {
1234 			cond_resched();
1235 			time_limit = jiffies + HZ;
1236 		}
1237 	}
1238 }
1239 
1240 /*
1241  * Skip memory holes and free memory that was actually reserved.
1242  */
1243 static void fadump_release_reserved_area(u64 start, u64 end)
1244 {
1245 	unsigned long reg_spfn, reg_epfn;
1246 	u64 tstart, tend, spfn, epfn;
1247 	int i;
1248 
1249 	spfn = PHYS_PFN(start);
1250 	epfn = PHYS_PFN(end);
1251 
1252 	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1253 		tstart = max_t(u64, spfn, reg_spfn);
1254 		tend   = min_t(u64, epfn, reg_epfn);
1255 
1256 		if (tstart < tend) {
1257 			fadump_free_reserved_memory(tstart, tend);
1258 
1259 			if (tend == epfn)
1260 				break;
1261 
1262 			spfn = tend;
1263 		}
1264 	}
1265 }
1266 
1267 /*
1268  * Sort the mem ranges in-place and merge adjacent ranges
1269  * to minimize the memory ranges count.
1270  */
1271 static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1272 {
1273 	struct fadump_memory_range *mem_ranges;
1274 	struct fadump_memory_range tmp_range;
1275 	u64 base, size;
1276 	int i, j, idx;
1277 
1278 	if (!reserved_mrange_info.mem_range_cnt)
1279 		return;
1280 
1281 	/* Sort the memory ranges */
1282 	mem_ranges = mrange_info->mem_ranges;
1283 	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1284 		idx = i;
1285 		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1286 			if (mem_ranges[idx].base > mem_ranges[j].base)
1287 				idx = j;
1288 		}
1289 		if (idx != i) {
1290 			tmp_range = mem_ranges[idx];
1291 			mem_ranges[idx] = mem_ranges[i];
1292 			mem_ranges[i] = tmp_range;
1293 		}
1294 	}
1295 
1296 	/* Merge adjacent reserved ranges */
1297 	idx = 0;
1298 	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1299 		base = mem_ranges[i-1].base;
1300 		size = mem_ranges[i-1].size;
1301 		if (mem_ranges[i].base == (base + size))
1302 			mem_ranges[idx].size += mem_ranges[i].size;
1303 		else {
1304 			idx++;
1305 			if (i == idx)
1306 				continue;
1307 
1308 			mem_ranges[idx] = mem_ranges[i];
1309 		}
1310 	}
1311 	mrange_info->mem_range_cnt = idx + 1;
1312 }
1313 
1314 /*
1315  * Scan reserved-ranges to consider them while reserving/releasing
1316  * memory for FADump.
1317  */
1318 static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1319 {
1320 	const __be32 *prop;
1321 	int len, ret = -1;
1322 	unsigned long i;
1323 
1324 	/* reserved-ranges already scanned */
1325 	if (reserved_mrange_info.mem_range_cnt != 0)
1326 		return;
1327 
1328 	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1329 	if (!prop)
1330 		return;
1331 
1332 	/*
1333 	 * Each reserved range is an (address,size) pair, 2 cells each,
1334 	 * totalling 4 cells per range.
1335 	 */
1336 	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1337 		u64 base, size;
1338 
1339 		base = of_read_number(prop + (i * 4) + 0, 2);
1340 		size = of_read_number(prop + (i * 4) + 2, 2);
1341 
1342 		if (size) {
1343 			ret = fadump_add_mem_range(&reserved_mrange_info,
1344 						   base, base + size);
1345 			if (ret < 0) {
1346 				pr_warn("some reserved ranges are ignored!\n");
1347 				break;
1348 			}
1349 		}
1350 	}
1351 
1352 	/* Compact reserved ranges */
1353 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1354 }
1355 
1356 /*
1357  * Release the memory that was reserved during early boot to preserve the
1358  * crash'ed kernel's memory contents except reserved dump area (permanent
1359  * reservation) and reserved ranges used by F/W. The released memory will
1360  * be available for general use.
1361  */
1362 static void fadump_release_memory(u64 begin, u64 end)
1363 {
1364 	u64 ra_start, ra_end, tstart;
1365 	int i, ret;
1366 
1367 	ra_start = fw_dump.reserve_dump_area_start;
1368 	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1369 
1370 	/*
1371 	 * If reserved ranges array limit is hit, overwrite the last reserved
1372 	 * memory range with reserved dump area to ensure it is excluded from
1373 	 * the memory being released (reused for next FADump registration).
1374 	 */
1375 	if (reserved_mrange_info.mem_range_cnt ==
1376 	    reserved_mrange_info.max_mem_ranges)
1377 		reserved_mrange_info.mem_range_cnt--;
1378 
1379 	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1380 	if (ret != 0)
1381 		return;
1382 
1383 	/* Get the reserved ranges list in order first. */
1384 	sort_and_merge_mem_ranges(&reserved_mrange_info);
1385 
1386 	/* Exclude reserved ranges and release remaining memory */
1387 	tstart = begin;
1388 	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1389 		ra_start = reserved_mrange_info.mem_ranges[i].base;
1390 		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1391 
1392 		if (tstart >= ra_end)
1393 			continue;
1394 
1395 		if (tstart < ra_start)
1396 			fadump_release_reserved_area(tstart, ra_start);
1397 		tstart = ra_end;
1398 	}
1399 
1400 	if (tstart < end)
1401 		fadump_release_reserved_area(tstart, end);
1402 }
1403 
1404 static void fadump_invalidate_release_mem(void)
1405 {
1406 	mutex_lock(&fadump_mutex);
1407 	if (!fw_dump.dump_active) {
1408 		mutex_unlock(&fadump_mutex);
1409 		return;
1410 	}
1411 
1412 	fadump_cleanup();
1413 	mutex_unlock(&fadump_mutex);
1414 
1415 	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1416 	fadump_free_cpu_notes_buf();
1417 
1418 	/*
1419 	 * Setup kernel metadata and initialize the kernel dump
1420 	 * memory structure for FADump re-registration.
1421 	 */
1422 	if (fw_dump.ops->fadump_setup_metadata &&
1423 	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1424 		pr_warn("Failed to setup kernel metadata!\n");
1425 	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1426 }
1427 
1428 static ssize_t release_mem_store(struct kobject *kobj,
1429 				 struct kobj_attribute *attr,
1430 				 const char *buf, size_t count)
1431 {
1432 	int input = -1;
1433 
1434 	if (!fw_dump.dump_active)
1435 		return -EPERM;
1436 
1437 	if (kstrtoint(buf, 0, &input))
1438 		return -EINVAL;
1439 
1440 	if (input == 1) {
1441 		/*
1442 		 * Take away the '/proc/vmcore'. We are releasing the dump
1443 		 * memory, hence it will not be valid anymore.
1444 		 */
1445 #ifdef CONFIG_PROC_VMCORE
1446 		vmcore_cleanup();
1447 #endif
1448 		fadump_invalidate_release_mem();
1449 
1450 	} else
1451 		return -EINVAL;
1452 	return count;
1453 }
1454 
1455 /* Release the reserved memory and disable the FADump */
1456 static void __init unregister_fadump(void)
1457 {
1458 	fadump_cleanup();
1459 	fadump_release_memory(fw_dump.reserve_dump_area_start,
1460 			      fw_dump.reserve_dump_area_size);
1461 	fw_dump.fadump_enabled = 0;
1462 	kobject_put(fadump_kobj);
1463 }
1464 
1465 static ssize_t enabled_show(struct kobject *kobj,
1466 			    struct kobj_attribute *attr,
1467 			    char *buf)
1468 {
1469 	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1470 }
1471 
1472 static ssize_t mem_reserved_show(struct kobject *kobj,
1473 				 struct kobj_attribute *attr,
1474 				 char *buf)
1475 {
1476 	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1477 }
1478 
1479 static ssize_t registered_show(struct kobject *kobj,
1480 			       struct kobj_attribute *attr,
1481 			       char *buf)
1482 {
1483 	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1484 }
1485 
1486 static ssize_t registered_store(struct kobject *kobj,
1487 				struct kobj_attribute *attr,
1488 				const char *buf, size_t count)
1489 {
1490 	int ret = 0;
1491 	int input = -1;
1492 
1493 	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1494 		return -EPERM;
1495 
1496 	if (kstrtoint(buf, 0, &input))
1497 		return -EINVAL;
1498 
1499 	mutex_lock(&fadump_mutex);
1500 
1501 	switch (input) {
1502 	case 0:
1503 		if (fw_dump.dump_registered == 0) {
1504 			goto unlock_out;
1505 		}
1506 
1507 		/* Un-register Firmware-assisted dump */
1508 		pr_debug("Un-register firmware-assisted dump\n");
1509 		fw_dump.ops->fadump_unregister(&fw_dump);
1510 		break;
1511 	case 1:
1512 		if (fw_dump.dump_registered == 1) {
1513 			/* Un-register Firmware-assisted dump */
1514 			fw_dump.ops->fadump_unregister(&fw_dump);
1515 		}
1516 		/* Register Firmware-assisted dump */
1517 		ret = register_fadump();
1518 		break;
1519 	default:
1520 		ret = -EINVAL;
1521 		break;
1522 	}
1523 
1524 unlock_out:
1525 	mutex_unlock(&fadump_mutex);
1526 	return ret < 0 ? ret : count;
1527 }
1528 
1529 static int fadump_region_show(struct seq_file *m, void *private)
1530 {
1531 	if (!fw_dump.fadump_enabled)
1532 		return 0;
1533 
1534 	mutex_lock(&fadump_mutex);
1535 	fw_dump.ops->fadump_region_show(&fw_dump, m);
1536 	mutex_unlock(&fadump_mutex);
1537 	return 0;
1538 }
1539 
1540 static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1541 static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1542 static struct kobj_attribute register_attr = __ATTR_RW(registered);
1543 static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1544 
1545 static struct attribute *fadump_attrs[] = {
1546 	&enable_attr.attr,
1547 	&register_attr.attr,
1548 	&mem_reserved_attr.attr,
1549 	NULL,
1550 };
1551 
1552 ATTRIBUTE_GROUPS(fadump);
1553 
1554 DEFINE_SHOW_ATTRIBUTE(fadump_region);
1555 
1556 static void __init fadump_init_files(void)
1557 {
1558 	int rc = 0;
1559 
1560 	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1561 	if (!fadump_kobj) {
1562 		pr_err("failed to create fadump kobject\n");
1563 		return;
1564 	}
1565 
1566 	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1567 			    &fadump_region_fops);
1568 
1569 	if (fw_dump.dump_active) {
1570 		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1571 		if (rc)
1572 			pr_err("unable to create release_mem sysfs file (%d)\n",
1573 			       rc);
1574 	}
1575 
1576 	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1577 	if (rc) {
1578 		pr_err("sysfs group creation failed (%d), unregistering FADump",
1579 		       rc);
1580 		unregister_fadump();
1581 		return;
1582 	}
1583 
1584 	/*
1585 	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1586 	 * create symlink at old location to maintain backward compatibility.
1587 	 *
1588 	 *      - fadump_enabled -> fadump/enabled
1589 	 *      - fadump_registered -> fadump/registered
1590 	 *      - fadump_release_mem -> fadump/release_mem
1591 	 */
1592 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1593 						  "enabled", "fadump_enabled");
1594 	if (rc) {
1595 		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1596 		return;
1597 	}
1598 
1599 	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1600 						  "registered",
1601 						  "fadump_registered");
1602 	if (rc) {
1603 		pr_err("unable to create fadump_registered symlink (%d)", rc);
1604 		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1605 		return;
1606 	}
1607 
1608 	if (fw_dump.dump_active) {
1609 		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1610 							  fadump_kobj,
1611 							  "release_mem",
1612 							  "fadump_release_mem");
1613 		if (rc)
1614 			pr_err("unable to create fadump_release_mem symlink (%d)",
1615 			       rc);
1616 	}
1617 	return;
1618 }
1619 
1620 /*
1621  * Prepare for firmware-assisted dump.
1622  */
1623 int __init setup_fadump(void)
1624 {
1625 	if (!fw_dump.fadump_supported)
1626 		return 0;
1627 
1628 	fadump_init_files();
1629 	fadump_show_config();
1630 
1631 	if (!fw_dump.fadump_enabled)
1632 		return 1;
1633 
1634 	/*
1635 	 * If dump data is available then see if it is valid and prepare for
1636 	 * saving it to the disk.
1637 	 */
1638 	if (fw_dump.dump_active) {
1639 		/*
1640 		 * if dump process fails then invalidate the registration
1641 		 * and release memory before proceeding for re-registration.
1642 		 */
1643 		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1644 			fadump_invalidate_release_mem();
1645 	}
1646 	/* Initialize the kernel dump memory structure and register with f/w */
1647 	else if (fw_dump.reserve_dump_area_size) {
1648 		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1649 		register_fadump();
1650 	}
1651 
1652 	/*
1653 	 * In case of panic, fadump is triggered via ppc_panic_event()
1654 	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1655 	 * lets panic() function take crash friendly path before panic
1656 	 * notifiers are invoked.
1657 	 */
1658 	crash_kexec_post_notifiers = true;
1659 
1660 	return 1;
1661 }
1662 /*
1663  * Use subsys_initcall_sync() here because there is dependency with
1664  * crash_save_vmcoreinfo_init(), which mush run first to ensure vmcoreinfo initialization
1665  * is done before regisering with f/w.
1666  */
1667 subsys_initcall_sync(setup_fadump);
1668 #else /* !CONFIG_PRESERVE_FA_DUMP */
1669 
1670 /* Scan the Firmware Assisted dump configuration details. */
1671 int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1672 				      int depth, void *data)
1673 {
1674 	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1675 		return 0;
1676 
1677 	opal_fadump_dt_scan(&fw_dump, node);
1678 	return 1;
1679 }
1680 
1681 /*
1682  * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1683  * preserve crash data. The subsequent memory preserving kernel boot
1684  * is likely to process this crash data.
1685  */
1686 int __init fadump_reserve_mem(void)
1687 {
1688 	if (fw_dump.dump_active) {
1689 		/*
1690 		 * If last boot has crashed then reserve all the memory
1691 		 * above boot memory to preserve crash data.
1692 		 */
1693 		pr_info("Preserving crash data for processing in next boot.\n");
1694 		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1695 	} else
1696 		pr_debug("FADump-aware kernel..\n");
1697 
1698 	return 1;
1699 }
1700 #endif /* CONFIG_PRESERVE_FA_DUMP */
1701 
1702 /* Preserve everything above the base address */
1703 static void __init fadump_reserve_crash_area(u64 base)
1704 {
1705 	u64 i, mstart, mend, msize;
1706 
1707 	for_each_mem_range(i, &mstart, &mend) {
1708 		msize  = mend - mstart;
1709 
1710 		if ((mstart + msize) < base)
1711 			continue;
1712 
1713 		if (mstart < base) {
1714 			msize -= (base - mstart);
1715 			mstart = base;
1716 		}
1717 
1718 		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1719 			(msize >> 20), mstart);
1720 		memblock_reserve(mstart, msize);
1721 	}
1722 }
1723 
1724 unsigned long __init arch_reserved_kernel_pages(void)
1725 {
1726 	return memblock_reserved_size() / PAGE_SIZE;
1727 }
1728