xref: /linux/arch/powerpc/kernel/exceptions-64s.S (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16#include <asm/hw_irq.h>
17#include <asm/exception-64s.h>
18#include <asm/ptrace.h>
19#include <asm/cpuidle.h>
20#include <asm/head-64.h>
21#include <asm/feature-fixups.h>
22#include <asm/kup.h>
23
24/*
25 * Following are fixed section helper macros.
26 *
27 * EXC_REAL_BEGIN/END  - real, unrelocated exception vectors
28 * EXC_VIRT_BEGIN/END  - virt (AIL), unrelocated exception vectors
29 * TRAMP_REAL_BEGIN    - real, unrelocated helpers (virt may call these)
30 * TRAMP_VIRT_BEGIN    - virt, unreloc helpers (in practice, real can use)
31 * EXC_COMMON          - After switching to virtual, relocated mode.
32 */
33
34#define EXC_REAL_BEGIN(name, start, size)			\
35	FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
36
37#define EXC_REAL_END(name, start, size)				\
38	FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
39
40#define EXC_VIRT_BEGIN(name, start, size)			\
41	FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
42
43#define EXC_VIRT_END(name, start, size)				\
44	FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
45
46#define EXC_COMMON_BEGIN(name)					\
47	USE_TEXT_SECTION();					\
48	.balign IFETCH_ALIGN_BYTES;				\
49	.global name;						\
50	_ASM_NOKPROBE_SYMBOL(name);				\
51	DEFINE_FIXED_SYMBOL(name, text);			\
52name:
53
54#define TRAMP_REAL_BEGIN(name)					\
55	FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
56
57#define TRAMP_VIRT_BEGIN(name)					\
58	FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
59
60#define EXC_REAL_NONE(start, size)				\
61	FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
62	FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
63
64#define EXC_VIRT_NONE(start, size)				\
65	FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
66	FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
67
68/*
69 * We're short on space and time in the exception prolog, so we can't
70 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
71 * Instead we get the base of the kernel from paca->kernelbase and or in the low
72 * part of label. This requires that the label be within 64KB of kernelbase, and
73 * that kernelbase be 64K aligned.
74 */
75#define LOAD_HANDLER(reg, label)					\
76	ld	reg,PACAKBASE(r13);	/* get high part of &label */	\
77	ori	reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
78
79#define __LOAD_HANDLER(reg, label, section)					\
80	ld	reg,PACAKBASE(r13);					\
81	ori	reg,reg,(ABS_ADDR(label, section))@l
82
83/*
84 * Branches from unrelocated code (e.g., interrupts) to labels outside
85 * head-y require >64K offsets.
86 */
87#define __LOAD_FAR_HANDLER(reg, label, section)					\
88	ld	reg,PACAKBASE(r13);					\
89	ori	reg,reg,(ABS_ADDR(label, section))@l;				\
90	addis	reg,reg,(ABS_ADDR(label, section))@h
91
92/*
93 * Interrupt code generation macros
94 */
95#define IVEC		.L_IVEC_\name\()	/* Interrupt vector address */
96#define IHSRR		.L_IHSRR_\name\()	/* Sets SRR or HSRR registers */
97#define IHSRR_IF_HVMODE	.L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
98#define IAREA		.L_IAREA_\name\()	/* PACA save area */
99#define IVIRT		.L_IVIRT_\name\()	/* Has virt mode entry point */
100#define IISIDE		.L_IISIDE_\name\()	/* Uses SRR0/1 not DAR/DSISR */
101#define ICFAR		.L_ICFAR_\name\()	/* Uses CFAR */
102#define ICFAR_IF_HVMODE	.L_ICFAR_IF_HVMODE_\name\() /* Uses CFAR if HV */
103#define IDAR		.L_IDAR_\name\()	/* Uses DAR (or SRR0) */
104#define IDSISR		.L_IDSISR_\name\()	/* Uses DSISR (or SRR1) */
105#define IBRANCH_TO_COMMON	.L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
106#define IREALMODE_COMMON	.L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
107#define IMASK		.L_IMASK_\name\()	/* IRQ soft-mask bit */
108#define IKVM_REAL	.L_IKVM_REAL_\name\()	/* Real entry tests KVM */
109#define __IKVM_REAL(name)	.L_IKVM_REAL_ ## name
110#define IKVM_VIRT	.L_IKVM_VIRT_\name\()	/* Virt entry tests KVM */
111#define ISTACK		.L_ISTACK_\name\()	/* Set regular kernel stack */
112#define __ISTACK(name)	.L_ISTACK_ ## name
113#define IKUAP		.L_IKUAP_\name\()	/* Do KUAP lock */
114
115#define INT_DEFINE_BEGIN(n)						\
116.macro int_define_ ## n name
117
118#define INT_DEFINE_END(n)						\
119.endm ;									\
120int_define_ ## n n ;							\
121do_define_int n
122
123.macro do_define_int name
124	.ifndef IVEC
125		.error "IVEC not defined"
126	.endif
127	.ifndef IHSRR
128		IHSRR=0
129	.endif
130	.ifndef IHSRR_IF_HVMODE
131		IHSRR_IF_HVMODE=0
132	.endif
133	.ifndef IAREA
134		IAREA=PACA_EXGEN
135	.endif
136	.ifndef IVIRT
137		IVIRT=1
138	.endif
139	.ifndef IISIDE
140		IISIDE=0
141	.endif
142	.ifndef ICFAR
143		ICFAR=1
144	.endif
145	.ifndef ICFAR_IF_HVMODE
146		ICFAR_IF_HVMODE=0
147	.endif
148	.ifndef IDAR
149		IDAR=0
150	.endif
151	.ifndef IDSISR
152		IDSISR=0
153	.endif
154	.ifndef IBRANCH_TO_COMMON
155		IBRANCH_TO_COMMON=1
156	.endif
157	.ifndef IREALMODE_COMMON
158		IREALMODE_COMMON=0
159	.else
160		.if ! IBRANCH_TO_COMMON
161			.error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
162		.endif
163	.endif
164	.ifndef IMASK
165		IMASK=0
166	.endif
167	.ifndef IKVM_REAL
168		IKVM_REAL=0
169	.endif
170	.ifndef IKVM_VIRT
171		IKVM_VIRT=0
172	.endif
173	.ifndef ISTACK
174		ISTACK=1
175	.endif
176	.ifndef IKUAP
177		IKUAP=1
178	.endif
179.endm
180
181/*
182 * All interrupts which set HSRR registers, as well as SRESET and MCE and
183 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
184 * so they all generally need to test whether they were taken in guest context.
185 *
186 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
187 * taken with MSR[HV]=0.
188 *
189 * Interrupts which set SRR registers (with the above exceptions) do not
190 * elevate to MSR[HV]=1 mode, though most can be taken when running with
191 * MSR[HV]=1  (e.g., bare metal kernel and userspace). So these interrupts do
192 * not need to test whether a guest is running because they get delivered to
193 * the guest directly, including nested HV KVM guests.
194 *
195 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
196 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
197 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
198 * delivered to the real-mode entry point, therefore such interrupts only test
199 * KVM in their real mode handlers, and only when PR KVM is possible.
200 *
201 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
202 * delivered in real-mode when the MMU is in hash mode because the MMU
203 * registers are not set appropriately to translate host addresses. In nested
204 * radix mode these can be delivered in virt-mode as the host translations are
205 * used implicitly (see: effective LPID, effective PID).
206 */
207
208/*
209 * If an interrupt is taken while a guest is running, it is immediately routed
210 * to KVM to handle.
211 */
212
213.macro KVMTEST name handler
214#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215	lbz	r10,HSTATE_IN_GUEST(r13)
216	cmpwi	r10,0
217	/* HSRR variants have the 0x2 bit added to their trap number */
218	.if IHSRR_IF_HVMODE
219	BEGIN_FTR_SECTION
220	li	r10,(IVEC + 0x2)
221	FTR_SECTION_ELSE
222	li	r10,(IVEC)
223	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
224	.elseif IHSRR
225	li	r10,(IVEC + 0x2)
226	.else
227	li	r10,(IVEC)
228	.endif
229	bne	\handler
230#endif
231.endm
232
233/*
234 * This is the BOOK3S interrupt entry code macro.
235 *
236 * This can result in one of several things happening:
237 * - Branch to the _common handler, relocated, in virtual mode.
238 *   These are normal interrupts (synchronous and asynchronous) handled by
239 *   the kernel.
240 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
241 *   These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
242 *   / intended for host or guest kernel, but KVM must always be involved
243 *   because the machine state is set for guest execution.
244 * - Branch to the masked handler, unrelocated.
245 *   These occur when maskable asynchronous interrupts are taken with the
246 *   irq_soft_mask set.
247 * - Branch to an "early" handler in real mode but relocated.
248 *   This is done if early=1. MCE and HMI use these to handle errors in real
249 *   mode.
250 * - Fall through and continue executing in real, unrelocated mode.
251 *   This is done if early=2.
252 */
253
254.macro GEN_BRANCH_TO_COMMON name, virt
255	.if IREALMODE_COMMON
256	LOAD_HANDLER(r10, \name\()_common)
257	mtctr	r10
258	bctr
259	.else
260	.if \virt
261#ifndef CONFIG_RELOCATABLE
262	b	\name\()_common_virt
263#else
264	LOAD_HANDLER(r10, \name\()_common_virt)
265	mtctr	r10
266	bctr
267#endif
268	.else
269	LOAD_HANDLER(r10, \name\()_common_real)
270	mtctr	r10
271	bctr
272	.endif
273	.endif
274.endm
275
276.macro GEN_INT_ENTRY name, virt, ool=0
277	SET_SCRATCH0(r13)			/* save r13 */
278	GET_PACA(r13)
279	std	r9,IAREA+EX_R9(r13)		/* save r9 */
280BEGIN_FTR_SECTION
281	mfspr	r9,SPRN_PPR
282END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
283	HMT_MEDIUM
284	std	r10,IAREA+EX_R10(r13)		/* save r10 - r12 */
285	.if ICFAR
286BEGIN_FTR_SECTION
287	mfspr	r10,SPRN_CFAR
288END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
289	.elseif ICFAR_IF_HVMODE
290BEGIN_FTR_SECTION
291  BEGIN_FTR_SECTION_NESTED(69)
292	mfspr	r10,SPRN_CFAR
293  END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
294FTR_SECTION_ELSE
295  BEGIN_FTR_SECTION_NESTED(69)
296	li	r10,0
297  END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69)
298ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
299	.endif
300	.if \ool
301	.if !\virt
302	b	tramp_real_\name
303	.pushsection .text
304	TRAMP_REAL_BEGIN(tramp_real_\name)
305	.else
306	b	tramp_virt_\name
307	.pushsection .text
308	TRAMP_VIRT_BEGIN(tramp_virt_\name)
309	.endif
310	.endif
311
312BEGIN_FTR_SECTION
313	std	r9,IAREA+EX_PPR(r13)
314END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
315	.if ICFAR || ICFAR_IF_HVMODE
316BEGIN_FTR_SECTION
317	std	r10,IAREA+EX_CFAR(r13)
318END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
319	.endif
320	INTERRUPT_TO_KERNEL
321	mfctr	r10
322	std	r10,IAREA+EX_CTR(r13)
323	mfcr	r9
324	std	r11,IAREA+EX_R11(r13)
325	std	r12,IAREA+EX_R12(r13)
326
327	/*
328	 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
329	 * because a d-side MCE will clobber those registers so is
330	 * not recoverable if they are live.
331	 */
332	GET_SCRATCH0(r10)
333	std	r10,IAREA+EX_R13(r13)
334	.if IDAR && !IISIDE
335	.if IHSRR
336	mfspr	r10,SPRN_HDAR
337	.else
338	mfspr	r10,SPRN_DAR
339	.endif
340	std	r10,IAREA+EX_DAR(r13)
341	.endif
342	.if IDSISR && !IISIDE
343	.if IHSRR
344	mfspr	r10,SPRN_HDSISR
345	.else
346	mfspr	r10,SPRN_DSISR
347	.endif
348	stw	r10,IAREA+EX_DSISR(r13)
349	.endif
350
351	.if IHSRR_IF_HVMODE
352	BEGIN_FTR_SECTION
353	mfspr	r11,SPRN_HSRR0		/* save HSRR0 */
354	mfspr	r12,SPRN_HSRR1		/* and HSRR1 */
355	FTR_SECTION_ELSE
356	mfspr	r11,SPRN_SRR0		/* save SRR0 */
357	mfspr	r12,SPRN_SRR1		/* and SRR1 */
358	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
359	.elseif IHSRR
360	mfspr	r11,SPRN_HSRR0		/* save HSRR0 */
361	mfspr	r12,SPRN_HSRR1		/* and HSRR1 */
362	.else
363	mfspr	r11,SPRN_SRR0		/* save SRR0 */
364	mfspr	r12,SPRN_SRR1		/* and SRR1 */
365	.endif
366
367	.if IBRANCH_TO_COMMON
368	GEN_BRANCH_TO_COMMON \name \virt
369	.endif
370
371	.if \ool
372	.popsection
373	.endif
374.endm
375
376/*
377 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
378 * entry, except in the case of the real-mode handlers which require
379 * __GEN_REALMODE_COMMON_ENTRY.
380 *
381 * This switches to virtual mode and sets MSR[RI].
382 */
383.macro __GEN_COMMON_ENTRY name
384DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
385\name\()_common_real:
386	.if IKVM_REAL
387		KVMTEST \name kvm_interrupt
388	.endif
389
390	ld	r10,PACAKMSR(r13)	/* get MSR value for kernel */
391	/* MSR[RI] is clear iff using SRR regs */
392	.if IHSRR_IF_HVMODE
393	BEGIN_FTR_SECTION
394	xori	r10,r10,MSR_RI
395	END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
396	.elseif ! IHSRR
397	xori	r10,r10,MSR_RI
398	.endif
399	mtmsrd	r10
400
401	.if IVIRT
402	.if IKVM_VIRT
403	b	1f /* skip the virt test coming from real */
404	.endif
405
406	.balign IFETCH_ALIGN_BYTES
407DEFINE_FIXED_SYMBOL(\name\()_common_virt, text)
408\name\()_common_virt:
409	.if IKVM_VIRT
410		KVMTEST \name kvm_interrupt
4111:
412	.endif
413	.endif /* IVIRT */
414.endm
415
416/*
417 * Don't switch to virt mode. Used for early MCE and HMI handlers that
418 * want to run in real mode.
419 */
420.macro __GEN_REALMODE_COMMON_ENTRY name
421DEFINE_FIXED_SYMBOL(\name\()_common_real, text)
422\name\()_common_real:
423	.if IKVM_REAL
424		KVMTEST \name kvm_interrupt
425	.endif
426.endm
427
428.macro __GEN_COMMON_BODY name
429	.if IMASK
430		.if ! ISTACK
431		.error "No support for masked interrupt to use custom stack"
432		.endif
433
434		/* If coming from user, skip soft-mask tests. */
435		andi.	r10,r12,MSR_PR
436		bne	3f
437
438		/*
439		 * Kernel code running below __end_soft_masked may be
440		 * implicitly soft-masked if it is within the regions
441		 * in the soft mask table.
442		 */
443		LOAD_HANDLER(r10, __end_soft_masked)
444		cmpld	r11,r10
445		bge+	1f
446
447		/* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */
448		mtctr	r12
449		stw	r9,PACA_EXGEN+EX_CCR(r13)
450		SEARCH_SOFT_MASK_TABLE
451		cmpdi	r12,0
452		mfctr	r12		/* Restore r12 to SRR1 */
453		lwz	r9,PACA_EXGEN+EX_CCR(r13)
454		beq	1f		/* Not in soft-mask table */
455		li	r10,IMASK
456		b	2f		/* In soft-mask table, always mask */
457
458		/* Test the soft mask state against our interrupt's bit */
4591:		lbz	r10,PACAIRQSOFTMASK(r13)
4602:		andi.	r10,r10,IMASK
461		/* Associate vector numbers with bits in paca->irq_happened */
462		.if IVEC == 0x500 || IVEC == 0xea0
463		li	r10,PACA_IRQ_EE
464		.elseif IVEC == 0x900
465		li	r10,PACA_IRQ_DEC
466		.elseif IVEC == 0xa00 || IVEC == 0xe80
467		li	r10,PACA_IRQ_DBELL
468		.elseif IVEC == 0xe60
469		li	r10,PACA_IRQ_HMI
470		.elseif IVEC == 0xf00
471		li	r10,PACA_IRQ_PMI
472		.else
473		.abort "Bad maskable vector"
474		.endif
475
476		.if IHSRR_IF_HVMODE
477		BEGIN_FTR_SECTION
478		bne	masked_Hinterrupt
479		FTR_SECTION_ELSE
480		bne	masked_interrupt
481		ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
482		.elseif IHSRR
483		bne	masked_Hinterrupt
484		.else
485		bne	masked_interrupt
486		.endif
487	.endif
488
489	.if ISTACK
490	andi.	r10,r12,MSR_PR		/* See if coming from user	*/
4913:	mr	r10,r1			/* Save r1			*/
492	subi	r1,r1,INT_FRAME_SIZE	/* alloc frame on kernel stack	*/
493	beq-	100f
494	ld	r1,PACAKSAVE(r13)	/* kernel stack to use		*/
495100:	tdgei	r1,-INT_FRAME_SIZE	/* trap if r1 is in userspace	*/
496	EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
497	.endif
498
499	std	r9,_CCR(r1)		/* save CR in stackframe	*/
500	std	r11,_NIP(r1)		/* save SRR0 in stackframe	*/
501	std	r12,_MSR(r1)		/* save SRR1 in stackframe	*/
502	std	r10,0(r1)		/* make stack chain pointer	*/
503	std	r0,GPR0(r1)		/* save r0 in stackframe	*/
504	std	r10,GPR1(r1)		/* save r1 in stackframe	*/
505
506	/* Mark our [H]SRRs valid for return */
507	li	r10,1
508	.if IHSRR_IF_HVMODE
509	BEGIN_FTR_SECTION
510	stb	r10,PACAHSRR_VALID(r13)
511	FTR_SECTION_ELSE
512	stb	r10,PACASRR_VALID(r13)
513	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
514	.elseif IHSRR
515	stb	r10,PACAHSRR_VALID(r13)
516	.else
517	stb	r10,PACASRR_VALID(r13)
518	.endif
519
520	.if ISTACK
521	.if IKUAP
522	kuap_save_amr_and_lock r9, r10, cr1, cr0
523	.endif
524	beq	101f			/* if from kernel mode		*/
525BEGIN_FTR_SECTION
526	ld	r9,IAREA+EX_PPR(r13)	/* Read PPR from paca		*/
527	std	r9,_PPR(r1)
528END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
529101:
530	.else
531	.if IKUAP
532	kuap_save_amr_and_lock r9, r10, cr1
533	.endif
534	.endif
535
536	/* Save original regs values from save area to stack frame. */
537	ld	r9,IAREA+EX_R9(r13)	/* move r9, r10 to stackframe	*/
538	ld	r10,IAREA+EX_R10(r13)
539	std	r9,GPR9(r1)
540	std	r10,GPR10(r1)
541	ld	r9,IAREA+EX_R11(r13)	/* move r11 - r13 to stackframe	*/
542	ld	r10,IAREA+EX_R12(r13)
543	ld	r11,IAREA+EX_R13(r13)
544	std	r9,GPR11(r1)
545	std	r10,GPR12(r1)
546	std	r11,GPR13(r1)
547
548	SAVE_NVGPRS(r1)
549
550	.if IDAR
551	.if IISIDE
552	ld	r10,_NIP(r1)
553	.else
554	ld	r10,IAREA+EX_DAR(r13)
555	.endif
556	std	r10,_DAR(r1)
557	.endif
558
559	.if IDSISR
560	.if IISIDE
561	ld	r10,_MSR(r1)
562	lis	r11,DSISR_SRR1_MATCH_64S@h
563	and	r10,r10,r11
564	.else
565	lwz	r10,IAREA+EX_DSISR(r13)
566	.endif
567	std	r10,_DSISR(r1)
568	.endif
569
570BEGIN_FTR_SECTION
571	.if ICFAR || ICFAR_IF_HVMODE
572	ld	r10,IAREA+EX_CFAR(r13)
573	.else
574	li	r10,0
575	.endif
576	std	r10,ORIG_GPR3(r1)
577END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
578	ld	r10,IAREA+EX_CTR(r13)
579	std	r10,_CTR(r1)
580	std	r2,GPR2(r1)		/* save r2 in stackframe	*/
581	SAVE_GPRS(3, 8, r1)		/* save r3 - r8 in stackframe   */
582	mflr	r9			/* Get LR, later save to stack	*/
583	ld	r2,PACATOC(r13)		/* get kernel TOC into r2	*/
584	std	r9,_LINK(r1)
585	lbz	r10,PACAIRQSOFTMASK(r13)
586	mfspr	r11,SPRN_XER		/* save XER in stackframe	*/
587	std	r10,SOFTE(r1)
588	std	r11,_XER(r1)
589	li	r9,IVEC
590	std	r9,_TRAP(r1)		/* set trap number		*/
591	li	r10,0
592	ld	r11,exception_marker@toc(r2)
593	std	r10,RESULT(r1)		/* clear regs->result		*/
594	std	r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame	*/
595.endm
596
597/*
598 * On entry r13 points to the paca, r9-r13 are saved in the paca,
599 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
600 * SRR1, and relocation is on.
601 *
602 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
603 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
604 */
605.macro GEN_COMMON name
606	__GEN_COMMON_ENTRY \name
607	__GEN_COMMON_BODY \name
608.endm
609
610.macro SEARCH_RESTART_TABLE
611#ifdef CONFIG_RELOCATABLE
612	mr	r12,r2
613	ld	r2,PACATOC(r13)
614	LOAD_REG_ADDR(r9, __start___restart_table)
615	LOAD_REG_ADDR(r10, __stop___restart_table)
616	mr	r2,r12
617#else
618	LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table)
619	LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table)
620#endif
621300:
622	cmpd	r9,r10
623	beq	302f
624	ld	r12,0(r9)
625	cmpld	r11,r12
626	blt	301f
627	ld	r12,8(r9)
628	cmpld	r11,r12
629	bge	301f
630	ld	r12,16(r9)
631	b	303f
632301:
633	addi	r9,r9,24
634	b	300b
635302:
636	li	r12,0
637303:
638.endm
639
640.macro SEARCH_SOFT_MASK_TABLE
641#ifdef CONFIG_RELOCATABLE
642	mr	r12,r2
643	ld	r2,PACATOC(r13)
644	LOAD_REG_ADDR(r9, __start___soft_mask_table)
645	LOAD_REG_ADDR(r10, __stop___soft_mask_table)
646	mr	r2,r12
647#else
648	LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table)
649	LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table)
650#endif
651300:
652	cmpd	r9,r10
653	beq	302f
654	ld	r12,0(r9)
655	cmpld	r11,r12
656	blt	301f
657	ld	r12,8(r9)
658	cmpld	r11,r12
659	bge	301f
660	li	r12,1
661	b	303f
662301:
663	addi	r9,r9,16
664	b	300b
665302:
666	li	r12,0
667303:
668.endm
669
670/*
671 * Restore all registers including H/SRR0/1 saved in a stack frame of a
672 * standard exception.
673 */
674.macro EXCEPTION_RESTORE_REGS hsrr=0
675	/* Move original SRR0 and SRR1 into the respective regs */
676	ld	r9,_MSR(r1)
677	li	r10,0
678	.if \hsrr
679	mtspr	SPRN_HSRR1,r9
680	stb	r10,PACAHSRR_VALID(r13)
681	.else
682	mtspr	SPRN_SRR1,r9
683	stb	r10,PACASRR_VALID(r13)
684	.endif
685	ld	r9,_NIP(r1)
686	.if \hsrr
687	mtspr	SPRN_HSRR0,r9
688	.else
689	mtspr	SPRN_SRR0,r9
690	.endif
691	ld	r9,_CTR(r1)
692	mtctr	r9
693	ld	r9,_XER(r1)
694	mtxer	r9
695	ld	r9,_LINK(r1)
696	mtlr	r9
697	ld	r9,_CCR(r1)
698	mtcr	r9
699	REST_GPRS(2, 13, r1)
700	REST_GPR(0, r1)
701	/* restore original r1. */
702	ld	r1,GPR1(r1)
703.endm
704
705/*
706 * There are a few constraints to be concerned with.
707 * - Real mode exceptions code/data must be located at their physical location.
708 * - Virtual mode exceptions must be mapped at their 0xc000... location.
709 * - Fixed location code must not call directly beyond the __end_interrupts
710 *   area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
711 *   must be used.
712 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
713 *   virtual 0xc00...
714 * - Conditional branch targets must be within +/-32K of caller.
715 *
716 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
717 * therefore don't have to run in physically located code or rfid to
718 * virtual mode kernel code. However on relocatable kernels they do have
719 * to branch to KERNELBASE offset because the rest of the kernel (outside
720 * the exception vectors) may be located elsewhere.
721 *
722 * Virtual exceptions correspond with physical, except their entry points
723 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
724 * offset applied. Virtual exceptions are enabled with the Alternate
725 * Interrupt Location (AIL) bit set in the LPCR. However this does not
726 * guarantee they will be delivered virtually. Some conditions (see the ISA)
727 * cause exceptions to be delivered in real mode.
728 *
729 * The scv instructions are a special case. They get a 0x3000 offset applied.
730 * scv exceptions have unique reentrancy properties, see below.
731 *
732 * It's impossible to receive interrupts below 0x300 via AIL.
733 *
734 * KVM: None of the virtual exceptions are from the guest. Anything that
735 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
736 *
737 *
738 * We layout physical memory as follows:
739 * 0x0000 - 0x00ff : Secondary processor spin code
740 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
741 * 0x1900 - 0x2fff : Real mode trampolines
742 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
743 * 0x5900 - 0x6fff : Relon mode trampolines
744 * 0x7000 - 0x7fff : FWNMI data area
745 * 0x8000 -   .... : Common interrupt handlers, remaining early
746 *                   setup code, rest of kernel.
747 *
748 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
749 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
750 * vectors there.
751 */
752OPEN_FIXED_SECTION(real_vectors,        0x0100, 0x1900)
753OPEN_FIXED_SECTION(real_trampolines,    0x1900, 0x3000)
754OPEN_FIXED_SECTION(virt_vectors,        0x3000, 0x5900)
755OPEN_FIXED_SECTION(virt_trampolines,    0x5900, 0x7000)
756
757#ifdef CONFIG_PPC_POWERNV
758	.globl start_real_trampolines
759	.globl end_real_trampolines
760	.globl start_virt_trampolines
761	.globl end_virt_trampolines
762#endif
763
764#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
765/*
766 * Data area reserved for FWNMI option.
767 * This address (0x7000) is fixed by the RPA.
768 * pseries and powernv need to keep the whole page from
769 * 0x7000 to 0x8000 free for use by the firmware
770 */
771ZERO_FIXED_SECTION(fwnmi_page,          0x7000, 0x8000)
772OPEN_TEXT_SECTION(0x8000)
773#else
774OPEN_TEXT_SECTION(0x7000)
775#endif
776
777USE_FIXED_SECTION(real_vectors)
778
779/*
780 * This is the start of the interrupt handlers for pSeries
781 * This code runs with relocation off.
782 * Code from here to __end_interrupts gets copied down to real
783 * address 0x100 when we are running a relocatable kernel.
784 * Therefore any relative branches in this section must only
785 * branch to labels in this section.
786 */
787	.globl __start_interrupts
788__start_interrupts:
789
790/**
791 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
792 * This is a synchronous interrupt invoked with the "scv" instruction. The
793 * system call does not alter the HV bit, so it is directed to the OS.
794 *
795 * Handling:
796 * scv instructions enter the kernel without changing EE, RI, ME, or HV.
797 * In particular, this means we can take a maskable interrupt at any point
798 * in the scv handler, which is unlike any other interrupt. This is solved
799 * by treating the instruction addresses in the handler as being soft-masked,
800 * by adding a SOFT_MASK_TABLE entry for them.
801 *
802 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
803 * ensure scv is never executed with relocation off, which means AIL-0
804 * should never happen.
805 *
806 * Before leaving the following inside-__end_soft_masked text, at least of the
807 * following must be true:
808 * - MSR[PR]=1 (i.e., return to userspace)
809 * - MSR_EE|MSR_RI is clear (no reentrant exceptions)
810 * - Standard kernel environment is set up (stack, paca, etc)
811 *
812 * KVM:
813 * These interrupts do not elevate HV 0->1, so HV is not involved. PR KVM
814 * ensures that FSCR[SCV] is disabled whenever it has to force AIL off.
815 *
816 * Call convention:
817 *
818 * syscall register convention is in Documentation/powerpc/syscall64-abi.rst
819 */
820EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
821	/* SCV 0 */
822	mr	r9,r13
823	GET_PACA(r13)
824	mflr	r11
825	mfctr	r12
826	li	r10,IRQS_ALL_DISABLED
827	stb	r10,PACAIRQSOFTMASK(r13)
828#ifdef CONFIG_RELOCATABLE
829	b	system_call_vectored_tramp
830#else
831	b	system_call_vectored_common
832#endif
833	nop
834
835	/* SCV 1 - 127 */
836	.rept	127
837	mr	r9,r13
838	GET_PACA(r13)
839	mflr	r11
840	mfctr	r12
841	li	r10,IRQS_ALL_DISABLED
842	stb	r10,PACAIRQSOFTMASK(r13)
843	li	r0,-1 /* cause failure */
844#ifdef CONFIG_RELOCATABLE
845	b	system_call_vectored_sigill_tramp
846#else
847	b	system_call_vectored_sigill
848#endif
849	.endr
850EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
851
852// Treat scv vectors as soft-masked, see comment above.
853// Use absolute values rather than labels here, so they don't get relocated,
854// because this code runs unrelocated.
855SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000)
856
857#ifdef CONFIG_RELOCATABLE
858TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
859	__LOAD_HANDLER(r10, system_call_vectored_common, virt_trampolines)
860	mtctr	r10
861	bctr
862
863TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
864	__LOAD_HANDLER(r10, system_call_vectored_sigill, virt_trampolines)
865	mtctr	r10
866	bctr
867#endif
868
869
870/* No virt vectors corresponding with 0x0..0x100 */
871EXC_VIRT_NONE(0x4000, 0x100)
872
873
874/**
875 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
876 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
877 * It is caused by:
878 * - Wake from power-saving state, on powernv.
879 * - An NMI from another CPU, triggered by firmware or hypercall.
880 * - As crash/debug signal injected from BMC, firmware or hypervisor.
881 *
882 * Handling:
883 * Power-save wakeup is the only performance critical path, so this is
884 * determined quickly as possible first. In this case volatile registers
885 * can be discarded and SPRs like CFAR don't need to be read.
886 *
887 * If not a powersave wakeup, then it's run as a regular interrupt, however
888 * it uses its own stack and PACA save area to preserve the regular kernel
889 * environment for debugging.
890 *
891 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
892 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
893 * correct to switch to virtual mode to run the regular interrupt handler
894 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
895 * is clear).
896 *
897 * FWNMI:
898 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
899 * entry point with a different register set up. Some hypervisors will
900 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
901 *
902 * KVM:
903 * Unlike most SRR interrupts, this may be taken by the host while executing
904 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
905 * mode and then raise the sreset.
906 */
907INT_DEFINE_BEGIN(system_reset)
908	IVEC=0x100
909	IAREA=PACA_EXNMI
910	IVIRT=0 /* no virt entry point */
911	ISTACK=0
912	IKVM_REAL=1
913INT_DEFINE_END(system_reset)
914
915EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
916#ifdef CONFIG_PPC_P7_NAP
917	/*
918	 * If running native on arch 2.06 or later, check if we are waking up
919	 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
920	 * bits 46:47. A non-0 value indicates that we are coming from a power
921	 * saving state. The idle wakeup handler initially runs in real mode,
922	 * but we branch to the 0xc000... address so we can turn on relocation
923	 * with mtmsrd later, after SPRs are restored.
924	 *
925	 * Careful to minimise cost for the fast path (idle wakeup) while
926	 * also avoiding clobbering CFAR for the debug path (non-idle).
927	 *
928	 * For the idle wake case volatile registers can be clobbered, which
929	 * is why we use those initially. If it turns out to not be an idle
930	 * wake, carefully put everything back the way it was, so we can use
931	 * common exception macros to handle it.
932	 */
933BEGIN_FTR_SECTION
934	SET_SCRATCH0(r13)
935	GET_PACA(r13)
936	std	r3,PACA_EXNMI+0*8(r13)
937	std	r4,PACA_EXNMI+1*8(r13)
938	std	r5,PACA_EXNMI+2*8(r13)
939	mfspr	r3,SPRN_SRR1
940	mfocrf	r4,0x80
941	rlwinm.	r5,r3,47-31,30,31
942	bne+	system_reset_idle_wake
943	/* Not powersave wakeup. Restore regs for regular interrupt handler. */
944	mtocrf	0x80,r4
945	ld	r3,PACA_EXNMI+0*8(r13)
946	ld	r4,PACA_EXNMI+1*8(r13)
947	ld	r5,PACA_EXNMI+2*8(r13)
948	GET_SCRATCH0(r13)
949END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
950#endif
951
952	GEN_INT_ENTRY system_reset, virt=0
953	/*
954	 * In theory, we should not enable relocation here if it was disabled
955	 * in SRR1, because the MMU may not be configured to support it (e.g.,
956	 * SLB may have been cleared). In practice, there should only be a few
957	 * small windows where that's the case, and sreset is considered to
958	 * be dangerous anyway.
959	 */
960EXC_REAL_END(system_reset, 0x100, 0x100)
961EXC_VIRT_NONE(0x4100, 0x100)
962
963#ifdef CONFIG_PPC_P7_NAP
964TRAMP_REAL_BEGIN(system_reset_idle_wake)
965	/* We are waking up from idle, so may clobber any volatile register */
966	cmpwi	cr1,r5,2
967	bltlr	cr1	/* no state loss, return to idle caller with r3=SRR1 */
968	__LOAD_FAR_HANDLER(r12, DOTSYM(idle_return_gpr_loss), real_trampolines)
969	mtctr	r12
970	bctr
971#endif
972
973#ifdef CONFIG_PPC_PSERIES
974/*
975 * Vectors for the FWNMI option.  Share common code.
976 */
977TRAMP_REAL_BEGIN(system_reset_fwnmi)
978	GEN_INT_ENTRY system_reset, virt=0
979
980#endif /* CONFIG_PPC_PSERIES */
981
982EXC_COMMON_BEGIN(system_reset_common)
983	__GEN_COMMON_ENTRY system_reset
984	/*
985	 * Increment paca->in_nmi. When the interrupt entry wrapper later
986	 * enable MSR_RI, then SLB or MCE will be able to recover, but a nested
987	 * NMI will notice in_nmi and not recover because of the use of the NMI
988	 * stack. in_nmi reentrancy is tested in system_reset_exception.
989	 */
990	lhz	r10,PACA_IN_NMI(r13)
991	addi	r10,r10,1
992	sth	r10,PACA_IN_NMI(r13)
993
994	mr	r10,r1
995	ld	r1,PACA_NMI_EMERG_SP(r13)
996	subi	r1,r1,INT_FRAME_SIZE
997	__GEN_COMMON_BODY system_reset
998
999	addi	r3,r1,STACK_FRAME_OVERHEAD
1000	bl	system_reset_exception
1001
1002	/* Clear MSR_RI before setting SRR0 and SRR1. */
1003	li	r9,0
1004	mtmsrd	r9,1
1005
1006	/*
1007	 * MSR_RI is clear, now we can decrement paca->in_nmi.
1008	 */
1009	lhz	r10,PACA_IN_NMI(r13)
1010	subi	r10,r10,1
1011	sth	r10,PACA_IN_NMI(r13)
1012
1013	kuap_kernel_restore r9, r10
1014	EXCEPTION_RESTORE_REGS
1015	RFI_TO_USER_OR_KERNEL
1016
1017
1018/**
1019 * Interrupt 0x200 - Machine Check Interrupt (MCE).
1020 * This is a non-maskable interrupt always taken in real-mode. It can be
1021 * synchronous or asynchronous, caused by hardware or software, and it may be
1022 * taken in a power-saving state.
1023 *
1024 * Handling:
1025 * Similarly to system reset, this uses its own stack and PACA save area,
1026 * the difference is re-entrancy is allowed on the machine check stack.
1027 *
1028 * machine_check_early is run in real mode, and carefully decodes the
1029 * machine check and tries to handle it (e.g., flush the SLB if there was an
1030 * error detected there), determines if it was recoverable and logs the
1031 * event.
1032 *
1033 * This early code does not "reconcile" irq soft-mask state like SRESET or
1034 * regular interrupts do, so irqs_disabled() among other things may not work
1035 * properly (irq disable/enable already doesn't work because irq tracing can
1036 * not work in real mode).
1037 *
1038 * Then, depending on the execution context when the interrupt is taken, there
1039 * are 3 main actions:
1040 * - Executing in kernel mode. The event is queued with irq_work, which means
1041 *   it is handled when it is next safe to do so (i.e., the kernel has enabled
1042 *   interrupts), which could be immediately when the interrupt returns. This
1043 *   avoids nasty issues like switching to virtual mode when the MMU is in a
1044 *   bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1045 *   but it has different priorities). Check to see if the CPU was in power
1046 *   save, and return via the wake up code if it was.
1047 *
1048 * - Executing in user mode. machine_check_exception is run like a normal
1049 *   interrupt handler, which processes the data generated by the early handler.
1050 *
1051 * - Executing in guest mode. The interrupt is run with its KVM test, and
1052 *   branches to KVM to deal with. KVM may queue the event for the host
1053 *   to report later.
1054 *
1055 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1056 * or SCRATCH0 is in use, it may cause a crash.
1057 *
1058 * KVM:
1059 * See SRESET.
1060 */
1061INT_DEFINE_BEGIN(machine_check_early)
1062	IVEC=0x200
1063	IAREA=PACA_EXMC
1064	IVIRT=0 /* no virt entry point */
1065	IREALMODE_COMMON=1
1066	ISTACK=0
1067	IDAR=1
1068	IDSISR=1
1069	IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1070INT_DEFINE_END(machine_check_early)
1071
1072INT_DEFINE_BEGIN(machine_check)
1073	IVEC=0x200
1074	IAREA=PACA_EXMC
1075	IVIRT=0 /* no virt entry point */
1076	IDAR=1
1077	IDSISR=1
1078	IKVM_REAL=1
1079INT_DEFINE_END(machine_check)
1080
1081EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1082	GEN_INT_ENTRY machine_check_early, virt=0
1083EXC_REAL_END(machine_check, 0x200, 0x100)
1084EXC_VIRT_NONE(0x4200, 0x100)
1085
1086#ifdef CONFIG_PPC_PSERIES
1087TRAMP_REAL_BEGIN(machine_check_fwnmi)
1088	/* See comment at machine_check exception, don't turn on RI */
1089	GEN_INT_ENTRY machine_check_early, virt=0
1090#endif
1091
1092#define MACHINE_CHECK_HANDLER_WINDUP			\
1093	/* Clear MSR_RI before setting SRR0 and SRR1. */\
1094	li	r9,0;					\
1095	mtmsrd	r9,1;		/* Clear MSR_RI */	\
1096	/* Decrement paca->in_mce now RI is clear. */	\
1097	lhz	r12,PACA_IN_MCE(r13);			\
1098	subi	r12,r12,1;				\
1099	sth	r12,PACA_IN_MCE(r13);			\
1100	EXCEPTION_RESTORE_REGS
1101
1102EXC_COMMON_BEGIN(machine_check_early_common)
1103	__GEN_REALMODE_COMMON_ENTRY machine_check_early
1104
1105	/*
1106	 * Switch to mc_emergency stack and handle re-entrancy (we limit
1107	 * the nested MCE upto level 4 to avoid stack overflow).
1108	 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1109	 *
1110	 * We use paca->in_mce to check whether this is the first entry or
1111	 * nested machine check. We increment paca->in_mce to track nested
1112	 * machine checks.
1113	 *
1114	 * If this is the first entry then set stack pointer to
1115	 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1116	 * stack frame on mc_emergency stack.
1117	 *
1118	 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1119	 * checkstop if we get another machine check exception before we do
1120	 * rfid with MSR_ME=1.
1121	 *
1122	 * This interrupt can wake directly from idle. If that is the case,
1123	 * the machine check is handled then the idle wakeup code is called
1124	 * to restore state.
1125	 */
1126	lhz	r10,PACA_IN_MCE(r13)
1127	cmpwi	r10,0			/* Are we in nested machine check */
1128	cmpwi	cr1,r10,MAX_MCE_DEPTH	/* Are we at maximum nesting */
1129	addi	r10,r10,1		/* increment paca->in_mce */
1130	sth	r10,PACA_IN_MCE(r13)
1131
1132	mr	r10,r1			/* Save r1 */
1133	bne	1f
1134	/* First machine check entry */
1135	ld	r1,PACAMCEMERGSP(r13)	/* Use MC emergency stack */
11361:	/* Limit nested MCE to level 4 to avoid stack overflow */
1137	bgt	cr1,unrecoverable_mce	/* Check if we hit limit of 4 */
1138	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame */
1139
1140	__GEN_COMMON_BODY machine_check_early
1141
1142BEGIN_FTR_SECTION
1143	bl	enable_machine_check
1144END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1145	addi	r3,r1,STACK_FRAME_OVERHEAD
1146	bl	machine_check_early
1147	std	r3,RESULT(r1)	/* Save result */
1148	ld	r12,_MSR(r1)
1149
1150#ifdef CONFIG_PPC_P7_NAP
1151	/*
1152	 * Check if thread was in power saving mode. We come here when any
1153	 * of the following is true:
1154	 * a. thread wasn't in power saving mode
1155	 * b. thread was in power saving mode with no state loss,
1156	 *    supervisor state loss or hypervisor state loss.
1157	 *
1158	 * Go back to nap/sleep/winkle mode again if (b) is true.
1159	 */
1160BEGIN_FTR_SECTION
1161	rlwinm.	r11,r12,47-31,30,31
1162	bne	machine_check_idle_common
1163END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1164#endif
1165
1166#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1167	/*
1168	 * Check if we are coming from guest. If yes, then run the normal
1169	 * exception handler which will take the
1170	 * machine_check_kvm->kvm_interrupt branch to deliver the MC event
1171	 * to guest.
1172	 */
1173	lbz	r11,HSTATE_IN_GUEST(r13)
1174	cmpwi	r11,0			/* Check if coming from guest */
1175	bne	mce_deliver		/* continue if we are. */
1176#endif
1177
1178	/*
1179	 * Check if we are coming from userspace. If yes, then run the normal
1180	 * exception handler which will deliver the MC event to this kernel.
1181	 */
1182	andi.	r11,r12,MSR_PR		/* See if coming from user. */
1183	bne	mce_deliver		/* continue in V mode if we are. */
1184
1185	/*
1186	 * At this point we are coming from kernel context.
1187	 * Queue up the MCE event and return from the interrupt.
1188	 * But before that, check if this is an un-recoverable exception.
1189	 * If yes, then stay on emergency stack and panic.
1190	 */
1191	andi.	r11,r12,MSR_RI
1192	beq	unrecoverable_mce
1193
1194	/*
1195	 * Check if we have successfully handled/recovered from error, if not
1196	 * then stay on emergency stack and panic.
1197	 */
1198	ld	r3,RESULT(r1)	/* Load result */
1199	cmpdi	r3,0		/* see if we handled MCE successfully */
1200	beq	unrecoverable_mce /* if !handled then panic */
1201
1202	/*
1203	 * Return from MC interrupt.
1204	 * Queue up the MCE event so that we can log it later, while
1205	 * returning from kernel or opal call.
1206	 */
1207	bl	machine_check_queue_event
1208	MACHINE_CHECK_HANDLER_WINDUP
1209	RFI_TO_KERNEL
1210
1211mce_deliver:
1212	/*
1213	 * This is a host user or guest MCE. Restore all registers, then
1214	 * run the "late" handler. For host user, this will run the
1215	 * machine_check_exception handler in virtual mode like a normal
1216	 * interrupt handler. For guest, this will trigger the KVM test
1217	 * and branch to the KVM interrupt similarly to other interrupts.
1218	 */
1219BEGIN_FTR_SECTION
1220	ld	r10,ORIG_GPR3(r1)
1221	mtspr	SPRN_CFAR,r10
1222END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1223	MACHINE_CHECK_HANDLER_WINDUP
1224	GEN_INT_ENTRY machine_check, virt=0
1225
1226EXC_COMMON_BEGIN(machine_check_common)
1227	/*
1228	 * Machine check is different because we use a different
1229	 * save area: PACA_EXMC instead of PACA_EXGEN.
1230	 */
1231	GEN_COMMON machine_check
1232	addi	r3,r1,STACK_FRAME_OVERHEAD
1233	bl	machine_check_exception_async
1234	b	interrupt_return_srr
1235
1236
1237#ifdef CONFIG_PPC_P7_NAP
1238/*
1239 * This is an idle wakeup. Low level machine check has already been
1240 * done. Queue the event then call the idle code to do the wake up.
1241 */
1242EXC_COMMON_BEGIN(machine_check_idle_common)
1243	bl	machine_check_queue_event
1244
1245	/*
1246	 * GPR-loss wakeups are relatively straightforward, because the
1247	 * idle sleep code has saved all non-volatile registers on its
1248	 * own stack, and r1 in PACAR1.
1249	 *
1250	 * For no-loss wakeups the r1 and lr registers used by the
1251	 * early machine check handler have to be restored first. r2 is
1252	 * the kernel TOC, so no need to restore it.
1253	 *
1254	 * Then decrement MCE nesting after finishing with the stack.
1255	 */
1256	ld	r3,_MSR(r1)
1257	ld	r4,_LINK(r1)
1258	ld	r1,GPR1(r1)
1259
1260	lhz	r11,PACA_IN_MCE(r13)
1261	subi	r11,r11,1
1262	sth	r11,PACA_IN_MCE(r13)
1263
1264	mtlr	r4
1265	rlwinm	r10,r3,47-31,30,31
1266	cmpwi	cr1,r10,2
1267	bltlr	cr1	/* no state loss, return to idle caller with r3=SRR1 */
1268	b	idle_return_gpr_loss
1269#endif
1270
1271EXC_COMMON_BEGIN(unrecoverable_mce)
1272	/*
1273	 * We are going down. But there are chances that we might get hit by
1274	 * another MCE during panic path and we may run into unstable state
1275	 * with no way out. Hence, turn ME bit off while going down, so that
1276	 * when another MCE is hit during panic path, system will checkstop
1277	 * and hypervisor will get restarted cleanly by SP.
1278	 */
1279BEGIN_FTR_SECTION
1280	li	r10,0 /* clear MSR_RI */
1281	mtmsrd	r10,1
1282	bl	disable_machine_check
1283END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1284	ld	r10,PACAKMSR(r13)
1285	li	r3,MSR_ME
1286	andc	r10,r10,r3
1287	mtmsrd	r10
1288
1289	lhz	r12,PACA_IN_MCE(r13)
1290	subi	r12,r12,1
1291	sth	r12,PACA_IN_MCE(r13)
1292
1293	/*
1294	 * Invoke machine_check_exception to print MCE event and panic.
1295	 * This is the NMI version of the handler because we are called from
1296	 * the early handler which is a true NMI.
1297	 */
1298	addi	r3,r1,STACK_FRAME_OVERHEAD
1299	bl	machine_check_exception
1300
1301	/*
1302	 * We will not reach here. Even if we did, there is no way out.
1303	 * Call unrecoverable_exception and die.
1304	 */
1305	addi	r3,r1,STACK_FRAME_OVERHEAD
1306	bl	unrecoverable_exception
1307	b	.
1308
1309
1310/**
1311 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1312 * This is a synchronous interrupt generated due to a data access exception,
1313 * e.g., a load orstore which does not have a valid page table entry with
1314 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1315 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1316 *
1317 * Handling:
1318 * - Hash MMU
1319 *   Go to do_hash_fault, which attempts to fill the HPT from an entry in the
1320 *   Linux page table. Hash faults can hit in kernel mode in a fairly
1321 *   arbitrary state (e.g., interrupts disabled, locks held) when accessing
1322 *   "non-bolted" regions, e.g., vmalloc space. However these should always be
1323 *   backed by Linux page table entries.
1324 *
1325 *   If no entry is found the Linux page fault handler is invoked (by
1326 *   do_hash_fault). Linux page faults can happen in kernel mode due to user
1327 *   copy operations of course.
1328 *
1329 *   KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest
1330 *   MMU context, which may cause a DSI in the host, which must go to the
1331 *   KVM handler. MSR[IR] is not enabled, so the real-mode handler will
1332 *   always be used regardless of AIL setting.
1333 *
1334 * - Radix MMU
1335 *   The hardware loads from the Linux page table directly, so a fault goes
1336 *   immediately to Linux page fault.
1337 *
1338 * Conditions like DAWR match are handled on the way in to Linux page fault.
1339 */
1340INT_DEFINE_BEGIN(data_access)
1341	IVEC=0x300
1342	IDAR=1
1343	IDSISR=1
1344	IKVM_REAL=1
1345INT_DEFINE_END(data_access)
1346
1347EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1348	GEN_INT_ENTRY data_access, virt=0
1349EXC_REAL_END(data_access, 0x300, 0x80)
1350EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1351	GEN_INT_ENTRY data_access, virt=1
1352EXC_VIRT_END(data_access, 0x4300, 0x80)
1353EXC_COMMON_BEGIN(data_access_common)
1354	GEN_COMMON data_access
1355	ld	r4,_DSISR(r1)
1356	addi	r3,r1,STACK_FRAME_OVERHEAD
1357	andis.	r0,r4,DSISR_DABRMATCH@h
1358	bne-	1f
1359#ifdef CONFIG_PPC_64S_HASH_MMU
1360BEGIN_MMU_FTR_SECTION
1361	bl	do_hash_fault
1362MMU_FTR_SECTION_ELSE
1363	bl	do_page_fault
1364ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1365#else
1366	bl	do_page_fault
1367#endif
1368	b	interrupt_return_srr
1369
13701:	bl	do_break
1371	/*
1372	 * do_break() may have changed the NV GPRS while handling a breakpoint.
1373	 * If so, we need to restore them with their updated values.
1374	 */
1375	REST_NVGPRS(r1)
1376	b	interrupt_return_srr
1377
1378
1379/**
1380 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1381 * This is a synchronous interrupt in response to an MMU fault missing SLB
1382 * entry for HPT, or an address outside RPT translation range.
1383 *
1384 * Handling:
1385 * - HPT:
1386 *   This refills the SLB, or reports an access fault similarly to a bad page
1387 *   fault. When coming from user-mode, the SLB handler may access any kernel
1388 *   data, though it may itself take a DSLB. When coming from kernel mode,
1389 *   recursive faults must be avoided so access is restricted to the kernel
1390 *   image text/data, kernel stack, and any data allocated below
1391 *   ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1392 *   on user-handler data structures.
1393 *
1394 *   KVM: Same as 0x300, DSLB must test for KVM guest.
1395 */
1396INT_DEFINE_BEGIN(data_access_slb)
1397	IVEC=0x380
1398	IDAR=1
1399	IKVM_REAL=1
1400INT_DEFINE_END(data_access_slb)
1401
1402EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1403	GEN_INT_ENTRY data_access_slb, virt=0
1404EXC_REAL_END(data_access_slb, 0x380, 0x80)
1405EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1406	GEN_INT_ENTRY data_access_slb, virt=1
1407EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1408EXC_COMMON_BEGIN(data_access_slb_common)
1409	GEN_COMMON data_access_slb
1410#ifdef CONFIG_PPC_64S_HASH_MMU
1411BEGIN_MMU_FTR_SECTION
1412	/* HPT case, do SLB fault */
1413	addi	r3,r1,STACK_FRAME_OVERHEAD
1414	bl	do_slb_fault
1415	cmpdi	r3,0
1416	bne-	1f
1417	b	fast_interrupt_return_srr
14181:	/* Error case */
1419MMU_FTR_SECTION_ELSE
1420	/* Radix case, access is outside page table range */
1421	li	r3,-EFAULT
1422ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1423#else
1424	li	r3,-EFAULT
1425#endif
1426	std	r3,RESULT(r1)
1427	addi	r3,r1,STACK_FRAME_OVERHEAD
1428	bl	do_bad_segment_interrupt
1429	b	interrupt_return_srr
1430
1431
1432/**
1433 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1434 * This is a synchronous interrupt in response to an MMU fault due to an
1435 * instruction fetch.
1436 *
1437 * Handling:
1438 * Similar to DSI, though in response to fetch. The faulting address is found
1439 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1440 */
1441INT_DEFINE_BEGIN(instruction_access)
1442	IVEC=0x400
1443	IISIDE=1
1444	IDAR=1
1445	IDSISR=1
1446#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1447	IKVM_REAL=1
1448#endif
1449INT_DEFINE_END(instruction_access)
1450
1451EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1452	GEN_INT_ENTRY instruction_access, virt=0
1453EXC_REAL_END(instruction_access, 0x400, 0x80)
1454EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1455	GEN_INT_ENTRY instruction_access, virt=1
1456EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1457EXC_COMMON_BEGIN(instruction_access_common)
1458	GEN_COMMON instruction_access
1459	addi	r3,r1,STACK_FRAME_OVERHEAD
1460#ifdef CONFIG_PPC_64S_HASH_MMU
1461BEGIN_MMU_FTR_SECTION
1462	bl	do_hash_fault
1463MMU_FTR_SECTION_ELSE
1464	bl	do_page_fault
1465ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1466#else
1467	bl	do_page_fault
1468#endif
1469	b	interrupt_return_srr
1470
1471
1472/**
1473 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1474 * This is a synchronous interrupt in response to an MMU fault due to an
1475 * instruction fetch.
1476 *
1477 * Handling:
1478 * Similar to DSLB, though in response to fetch. The faulting address is found
1479 * in SRR0 (rather than DAR).
1480 */
1481INT_DEFINE_BEGIN(instruction_access_slb)
1482	IVEC=0x480
1483	IISIDE=1
1484	IDAR=1
1485#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1486	IKVM_REAL=1
1487#endif
1488INT_DEFINE_END(instruction_access_slb)
1489
1490EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1491	GEN_INT_ENTRY instruction_access_slb, virt=0
1492EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1493EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1494	GEN_INT_ENTRY instruction_access_slb, virt=1
1495EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1496EXC_COMMON_BEGIN(instruction_access_slb_common)
1497	GEN_COMMON instruction_access_slb
1498#ifdef CONFIG_PPC_64S_HASH_MMU
1499BEGIN_MMU_FTR_SECTION
1500	/* HPT case, do SLB fault */
1501	addi	r3,r1,STACK_FRAME_OVERHEAD
1502	bl	do_slb_fault
1503	cmpdi	r3,0
1504	bne-	1f
1505	b	fast_interrupt_return_srr
15061:	/* Error case */
1507MMU_FTR_SECTION_ELSE
1508	/* Radix case, access is outside page table range */
1509	li	r3,-EFAULT
1510ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1511#else
1512	li	r3,-EFAULT
1513#endif
1514	std	r3,RESULT(r1)
1515	addi	r3,r1,STACK_FRAME_OVERHEAD
1516	bl	do_bad_segment_interrupt
1517	b	interrupt_return_srr
1518
1519
1520/**
1521 * Interrupt 0x500 - External Interrupt.
1522 * This is an asynchronous maskable interrupt in response to an "external
1523 * exception" from the interrupt controller or hypervisor (e.g., device
1524 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1525 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1526 *
1527 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1528 * interrupts are delivered with HSRR registers, guests use SRRs, which
1529 * reqiures IHSRR_IF_HVMODE.
1530 *
1531 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1532 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1533 * rather than External Interrupts.
1534 *
1535 * Handling:
1536 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1537 * because registers at the time of the interrupt are not so important as it is
1538 * asynchronous.
1539 *
1540 * If soft masked, the masked handler will note the pending interrupt for
1541 * replay, and clear MSR[EE] in the interrupted context.
1542 *
1543 * CFAR is not required because this is an asynchronous interrupt that in
1544 * general won't have much bearing on the state of the CPU, with the possible
1545 * exception of crash/debug IPIs, but those are generally moving to use SRESET
1546 * IPIs. Unless this is an HV interrupt and KVM HV is possible, in which case
1547 * it may be exiting the guest and need CFAR to be saved.
1548 */
1549INT_DEFINE_BEGIN(hardware_interrupt)
1550	IVEC=0x500
1551	IHSRR_IF_HVMODE=1
1552	IMASK=IRQS_DISABLED
1553	IKVM_REAL=1
1554	IKVM_VIRT=1
1555	ICFAR=0
1556#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1557	ICFAR_IF_HVMODE=1
1558#endif
1559INT_DEFINE_END(hardware_interrupt)
1560
1561EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1562	GEN_INT_ENTRY hardware_interrupt, virt=0
1563EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1564EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1565	GEN_INT_ENTRY hardware_interrupt, virt=1
1566EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1567EXC_COMMON_BEGIN(hardware_interrupt_common)
1568	GEN_COMMON hardware_interrupt
1569	addi	r3,r1,STACK_FRAME_OVERHEAD
1570	bl	do_IRQ
1571	BEGIN_FTR_SECTION
1572	b	interrupt_return_hsrr
1573	FTR_SECTION_ELSE
1574	b	interrupt_return_srr
1575	ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1576
1577
1578/**
1579 * Interrupt 0x600 - Alignment Interrupt
1580 * This is a synchronous interrupt in response to data alignment fault.
1581 */
1582INT_DEFINE_BEGIN(alignment)
1583	IVEC=0x600
1584	IDAR=1
1585	IDSISR=1
1586#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1587	IKVM_REAL=1
1588#endif
1589INT_DEFINE_END(alignment)
1590
1591EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1592	GEN_INT_ENTRY alignment, virt=0
1593EXC_REAL_END(alignment, 0x600, 0x100)
1594EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1595	GEN_INT_ENTRY alignment, virt=1
1596EXC_VIRT_END(alignment, 0x4600, 0x100)
1597EXC_COMMON_BEGIN(alignment_common)
1598	GEN_COMMON alignment
1599	addi	r3,r1,STACK_FRAME_OVERHEAD
1600	bl	alignment_exception
1601	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1602	b	interrupt_return_srr
1603
1604
1605/**
1606 * Interrupt 0x700 - Program Interrupt (program check).
1607 * This is a synchronous interrupt in response to various instruction faults:
1608 * traps, privilege errors, TM errors, floating point exceptions.
1609 *
1610 * Handling:
1611 * This interrupt may use the "emergency stack" in some cases when being taken
1612 * from kernel context, which complicates handling.
1613 */
1614INT_DEFINE_BEGIN(program_check)
1615	IVEC=0x700
1616#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1617	IKVM_REAL=1
1618#endif
1619INT_DEFINE_END(program_check)
1620
1621EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1622
1623#ifdef CONFIG_CPU_LITTLE_ENDIAN
1624	/*
1625	 * There's a short window during boot where although the kernel is
1626	 * running little endian, any exceptions will cause the CPU to switch
1627	 * back to big endian. For example a WARN() boils down to a trap
1628	 * instruction, which will cause a program check, and we end up here but
1629	 * with the CPU in big endian mode. The first instruction of the program
1630	 * check handler (in GEN_INT_ENTRY below) is an mtsprg, which when
1631	 * executed in the wrong endian is an lhzu with a ~3GB displacement from
1632	 * r3. The content of r3 is random, so that is a load from some random
1633	 * location, and depending on the system can easily lead to a checkstop,
1634	 * or an infinitely recursive page fault.
1635	 *
1636	 * So to handle that case we have a trampoline here that can detect we
1637	 * are in the wrong endian and flip us back to the correct endian. We
1638	 * can't flip MSR[LE] using mtmsr, so we have to use rfid. That requires
1639	 * backing up SRR0/1 as well as a GPR. To do that we use SPRG0/2/3, as
1640	 * SPRG1 is already used for the paca. SPRG3 is user readable, but this
1641	 * trampoline is only active very early in boot, and SPRG3 will be
1642	 * reinitialised in vdso_getcpu_init() before userspace starts.
1643	 */
1644BEGIN_FTR_SECTION
1645	tdi   0,0,0x48    // Trap never, or in reverse endian: b . + 8
1646	b     1f          // Skip trampoline if endian is correct
1647	.long 0xa643707d  // mtsprg  0, r11      Backup r11
1648	.long 0xa6027a7d  // mfsrr0  r11
1649	.long 0xa643727d  // mtsprg  2, r11      Backup SRR0 in SPRG2
1650	.long 0xa6027b7d  // mfsrr1  r11
1651	.long 0xa643737d  // mtsprg  3, r11      Backup SRR1 in SPRG3
1652	.long 0xa600607d  // mfmsr   r11
1653	.long 0x01006b69  // xori    r11, r11, 1 Invert MSR[LE]
1654	.long 0xa6037b7d  // mtsrr1  r11
1655	.long 0x34076039  // li      r11, 0x734
1656	.long 0xa6037a7d  // mtsrr0  r11
1657	.long 0x2400004c  // rfid
1658	mfsprg r11, 3
1659	mtsrr1 r11        // Restore SRR1
1660	mfsprg r11, 2
1661	mtsrr0 r11        // Restore SRR0
1662	mfsprg r11, 0     // Restore r11
16631:
1664END_FTR_SECTION(0, 1)     // nop out after boot
1665#endif /* CONFIG_CPU_LITTLE_ENDIAN */
1666
1667	GEN_INT_ENTRY program_check, virt=0
1668EXC_REAL_END(program_check, 0x700, 0x100)
1669EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1670	GEN_INT_ENTRY program_check, virt=1
1671EXC_VIRT_END(program_check, 0x4700, 0x100)
1672EXC_COMMON_BEGIN(program_check_common)
1673	__GEN_COMMON_ENTRY program_check
1674
1675	/*
1676	 * It's possible to receive a TM Bad Thing type program check with
1677	 * userspace register values (in particular r1), but with SRR1 reporting
1678	 * that we came from the kernel. Normally that would confuse the bad
1679	 * stack logic, and we would report a bad kernel stack pointer. Instead
1680	 * we switch to the emergency stack if we're taking a TM Bad Thing from
1681	 * the kernel.
1682	 */
1683
1684	andi.	r10,r12,MSR_PR
1685	bne	.Lnormal_stack		/* If userspace, go normal path */
1686
1687	andis.	r10,r12,(SRR1_PROGTM)@h
1688	bne	.Lemergency_stack	/* If TM, emergency		*/
1689
1690	cmpdi	r1,-INT_FRAME_SIZE	/* check if r1 is in userspace	*/
1691	blt	.Lnormal_stack		/* normal path if not		*/
1692
1693	/* Use the emergency stack					*/
1694.Lemergency_stack:
1695	andi.	r10,r12,MSR_PR		/* Set CR0 correctly for label	*/
1696					/* 3 in EXCEPTION_PROLOG_COMMON	*/
1697	mr	r10,r1			/* Save r1			*/
1698	ld	r1,PACAEMERGSP(r13)	/* Use emergency stack		*/
1699	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame		*/
1700	__ISTACK(program_check)=0
1701	__GEN_COMMON_BODY program_check
1702	b .Ldo_program_check
1703
1704.Lnormal_stack:
1705	__ISTACK(program_check)=1
1706	__GEN_COMMON_BODY program_check
1707
1708.Ldo_program_check:
1709	addi	r3,r1,STACK_FRAME_OVERHEAD
1710	bl	program_check_exception
1711	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1712	b	interrupt_return_srr
1713
1714
1715/*
1716 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1717 * This is a synchronous interrupt in response to executing an fp instruction
1718 * with MSR[FP]=0.
1719 *
1720 * Handling:
1721 * This will load FP registers and enable the FP bit if coming from userspace,
1722 * otherwise report a bad kernel use of FP.
1723 */
1724INT_DEFINE_BEGIN(fp_unavailable)
1725	IVEC=0x800
1726#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1727	IKVM_REAL=1
1728#endif
1729INT_DEFINE_END(fp_unavailable)
1730
1731EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1732	GEN_INT_ENTRY fp_unavailable, virt=0
1733EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1734EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1735	GEN_INT_ENTRY fp_unavailable, virt=1
1736EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1737EXC_COMMON_BEGIN(fp_unavailable_common)
1738	GEN_COMMON fp_unavailable
1739	bne	1f			/* if from user, just load it up */
1740	addi	r3,r1,STACK_FRAME_OVERHEAD
1741	bl	kernel_fp_unavailable_exception
17420:	trap
1743	EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
17441:
1745#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1746BEGIN_FTR_SECTION
1747	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
1748	 * transaction), go do TM stuff
1749	 */
1750	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
1751	bne-	2f
1752END_FTR_SECTION_IFSET(CPU_FTR_TM)
1753#endif
1754	bl	load_up_fpu
1755	b	fast_interrupt_return_srr
1756#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
17572:	/* User process was in a transaction */
1758	addi	r3,r1,STACK_FRAME_OVERHEAD
1759	bl	fp_unavailable_tm
1760	b	interrupt_return_srr
1761#endif
1762
1763
1764/**
1765 * Interrupt 0x900 - Decrementer Interrupt.
1766 * This is an asynchronous interrupt in response to a decrementer exception
1767 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1768 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1769 * local_irq_disable()).
1770 *
1771 * Handling:
1772 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1773 *
1774 * If soft masked, the masked handler will note the pending interrupt for
1775 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1776 * in the interrupted context.
1777 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1778 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1779 * on the emergency stack.
1780 *
1781 * CFAR is not required because this is asynchronous (see hardware_interrupt).
1782 * A watchdog interrupt may like to have CFAR, but usually the interesting
1783 * branch is long gone by that point (e.g., infinite loop).
1784 */
1785INT_DEFINE_BEGIN(decrementer)
1786	IVEC=0x900
1787	IMASK=IRQS_DISABLED
1788#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1789	IKVM_REAL=1
1790#endif
1791	ICFAR=0
1792INT_DEFINE_END(decrementer)
1793
1794EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1795	GEN_INT_ENTRY decrementer, virt=0
1796EXC_REAL_END(decrementer, 0x900, 0x80)
1797EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1798	GEN_INT_ENTRY decrementer, virt=1
1799EXC_VIRT_END(decrementer, 0x4900, 0x80)
1800EXC_COMMON_BEGIN(decrementer_common)
1801	GEN_COMMON decrementer
1802	addi	r3,r1,STACK_FRAME_OVERHEAD
1803	bl	timer_interrupt
1804	b	interrupt_return_srr
1805
1806
1807/**
1808 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1809 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1810 * register.
1811 *
1812 * Handling:
1813 * Linux does not use this outside KVM where it's used to keep a host timer
1814 * while the guest is given control of DEC. It should normally be caught by
1815 * the KVM test and routed there.
1816 */
1817INT_DEFINE_BEGIN(hdecrementer)
1818	IVEC=0x980
1819	IHSRR=1
1820	ISTACK=0
1821	IKVM_REAL=1
1822	IKVM_VIRT=1
1823INT_DEFINE_END(hdecrementer)
1824
1825EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1826	GEN_INT_ENTRY hdecrementer, virt=0
1827EXC_REAL_END(hdecrementer, 0x980, 0x80)
1828EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1829	GEN_INT_ENTRY hdecrementer, virt=1
1830EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1831EXC_COMMON_BEGIN(hdecrementer_common)
1832	__GEN_COMMON_ENTRY hdecrementer
1833	/*
1834	 * Hypervisor decrementer interrupts not caught by the KVM test
1835	 * shouldn't occur but are sometimes left pending on exit from a KVM
1836	 * guest.  We don't need to do anything to clear them, as they are
1837	 * edge-triggered.
1838	 *
1839	 * Be careful to avoid touching the kernel stack.
1840	 */
1841	li	r10,0
1842	stb	r10,PACAHSRR_VALID(r13)
1843	ld	r10,PACA_EXGEN+EX_CTR(r13)
1844	mtctr	r10
1845	mtcrf	0x80,r9
1846	ld	r9,PACA_EXGEN+EX_R9(r13)
1847	ld	r10,PACA_EXGEN+EX_R10(r13)
1848	ld	r11,PACA_EXGEN+EX_R11(r13)
1849	ld	r12,PACA_EXGEN+EX_R12(r13)
1850	ld	r13,PACA_EXGEN+EX_R13(r13)
1851	HRFI_TO_KERNEL
1852
1853
1854/**
1855 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1856 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1857 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1858 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1859 *
1860 * Handling:
1861 * Guests may use this for IPIs between threads in a core if the
1862 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1863 *
1864 * If soft masked, the masked handler will note the pending interrupt for
1865 * replay, leaving MSR[EE] enabled in the interrupted context because the
1866 * doorbells are edge triggered.
1867 *
1868 * CFAR is not required, similarly to hardware_interrupt.
1869 */
1870INT_DEFINE_BEGIN(doorbell_super)
1871	IVEC=0xa00
1872	IMASK=IRQS_DISABLED
1873#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1874	IKVM_REAL=1
1875#endif
1876	ICFAR=0
1877INT_DEFINE_END(doorbell_super)
1878
1879EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1880	GEN_INT_ENTRY doorbell_super, virt=0
1881EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1882EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1883	GEN_INT_ENTRY doorbell_super, virt=1
1884EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1885EXC_COMMON_BEGIN(doorbell_super_common)
1886	GEN_COMMON doorbell_super
1887	addi	r3,r1,STACK_FRAME_OVERHEAD
1888#ifdef CONFIG_PPC_DOORBELL
1889	bl	doorbell_exception
1890#else
1891	bl	unknown_async_exception
1892#endif
1893	b	interrupt_return_srr
1894
1895
1896EXC_REAL_NONE(0xb00, 0x100)
1897EXC_VIRT_NONE(0x4b00, 0x100)
1898
1899/**
1900 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1901 * This is a synchronous interrupt invoked with the "sc" instruction. The
1902 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1903 * is directed to the currently running OS. The hypercall is invoked with
1904 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1905 *
1906 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1907 * 0x4c00 virtual mode.
1908 *
1909 * Handling:
1910 * If the KVM test fires then it was due to a hypercall and is accordingly
1911 * routed to KVM. Otherwise this executes a normal Linux system call.
1912 *
1913 * Call convention:
1914 *
1915 * syscall and hypercalls register conventions are documented in
1916 * Documentation/powerpc/syscall64-abi.rst and
1917 * Documentation/powerpc/papr_hcalls.rst respectively.
1918 *
1919 * The intersection of volatile registers that don't contain possible
1920 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1921 * without saving, though xer is not a good idea to use, as hardware may
1922 * interpret some bits so it may be costly to change them.
1923 */
1924INT_DEFINE_BEGIN(system_call)
1925	IVEC=0xc00
1926	IKVM_REAL=1
1927	IKVM_VIRT=1
1928	ICFAR=0
1929INT_DEFINE_END(system_call)
1930
1931.macro SYSTEM_CALL virt
1932#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1933	/*
1934	 * There is a little bit of juggling to get syscall and hcall
1935	 * working well. Save r13 in ctr to avoid using SPRG scratch
1936	 * register.
1937	 *
1938	 * Userspace syscalls have already saved the PPR, hcalls must save
1939	 * it before setting HMT_MEDIUM.
1940	 */
1941	mtctr	r13
1942	GET_PACA(r13)
1943	std	r10,PACA_EXGEN+EX_R10(r13)
1944	INTERRUPT_TO_KERNEL
1945	KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */
1946	mfctr	r9
1947#else
1948	mr	r9,r13
1949	GET_PACA(r13)
1950	INTERRUPT_TO_KERNEL
1951#endif
1952
1953#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1954BEGIN_FTR_SECTION
1955	cmpdi	r0,0x1ebe
1956	beq-	1f
1957END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1958#endif
1959
1960	/* We reach here with PACA in r13, r13 in r9. */
1961	mfspr	r11,SPRN_SRR0
1962	mfspr	r12,SPRN_SRR1
1963
1964	HMT_MEDIUM
1965
1966	.if ! \virt
1967	__LOAD_HANDLER(r10, system_call_common_real, real_vectors)
1968	mtctr	r10
1969	bctr
1970	.else
1971#ifdef CONFIG_RELOCATABLE
1972	__LOAD_HANDLER(r10, system_call_common, virt_vectors)
1973	mtctr	r10
1974	bctr
1975#else
1976	b	system_call_common
1977#endif
1978	.endif
1979
1980#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1981	/* Fast LE/BE switch system call */
19821:	mfspr	r12,SPRN_SRR1
1983	xori	r12,r12,MSR_LE
1984	mtspr	SPRN_SRR1,r12
1985	mr	r13,r9
1986	RFI_TO_USER	/* return to userspace */
1987	b	.	/* prevent speculative execution */
1988#endif
1989.endm
1990
1991EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
1992	SYSTEM_CALL 0
1993EXC_REAL_END(system_call, 0xc00, 0x100)
1994EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
1995	SYSTEM_CALL 1
1996EXC_VIRT_END(system_call, 0x4c00, 0x100)
1997
1998#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1999TRAMP_REAL_BEGIN(kvm_hcall)
2000	std	r9,PACA_EXGEN+EX_R9(r13)
2001	std	r11,PACA_EXGEN+EX_R11(r13)
2002	std	r12,PACA_EXGEN+EX_R12(r13)
2003	mfcr	r9
2004	mfctr	r10
2005	std	r10,PACA_EXGEN+EX_R13(r13)
2006	li	r10,0
2007	std	r10,PACA_EXGEN+EX_CFAR(r13)
2008	std	r10,PACA_EXGEN+EX_CTR(r13)
2009	 /*
2010	  * Save the PPR (on systems that support it) before changing to
2011	  * HMT_MEDIUM. That allows the KVM code to save that value into the
2012	  * guest state (it is the guest's PPR value).
2013	  */
2014BEGIN_FTR_SECTION
2015	mfspr	r10,SPRN_PPR
2016	std	r10,PACA_EXGEN+EX_PPR(r13)
2017END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2018
2019	HMT_MEDIUM
2020
2021#ifdef CONFIG_RELOCATABLE
2022	/*
2023	 * Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives
2024	 * outside the head section.
2025	 */
2026	__LOAD_FAR_HANDLER(r10, kvmppc_hcall, real_trampolines)
2027	mtctr   r10
2028	bctr
2029#else
2030	b       kvmppc_hcall
2031#endif
2032#endif
2033
2034/**
2035 * Interrupt 0xd00 - Trace Interrupt.
2036 * This is a synchronous interrupt in response to instruction step or
2037 * breakpoint faults.
2038 */
2039INT_DEFINE_BEGIN(single_step)
2040	IVEC=0xd00
2041#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2042	IKVM_REAL=1
2043#endif
2044INT_DEFINE_END(single_step)
2045
2046EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
2047	GEN_INT_ENTRY single_step, virt=0
2048EXC_REAL_END(single_step, 0xd00, 0x100)
2049EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
2050	GEN_INT_ENTRY single_step, virt=1
2051EXC_VIRT_END(single_step, 0x4d00, 0x100)
2052EXC_COMMON_BEGIN(single_step_common)
2053	GEN_COMMON single_step
2054	addi	r3,r1,STACK_FRAME_OVERHEAD
2055	bl	single_step_exception
2056	b	interrupt_return_srr
2057
2058
2059/**
2060 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
2061 * This is a synchronous interrupt in response to an MMU fault caused by a
2062 * guest data access.
2063 *
2064 * Handling:
2065 * This should always get routed to KVM. In radix MMU mode, this is caused
2066 * by a guest nested radix access that can't be performed due to the
2067 * partition scope page table. In hash mode, this can be caused by guests
2068 * running with translation disabled (virtual real mode) or with VPM enabled.
2069 * KVM will update the page table structures or disallow the access.
2070 */
2071INT_DEFINE_BEGIN(h_data_storage)
2072	IVEC=0xe00
2073	IHSRR=1
2074	IDAR=1
2075	IDSISR=1
2076	IKVM_REAL=1
2077	IKVM_VIRT=1
2078INT_DEFINE_END(h_data_storage)
2079
2080EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2081	GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2082EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2083EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2084	GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2085EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2086EXC_COMMON_BEGIN(h_data_storage_common)
2087	GEN_COMMON h_data_storage
2088	addi    r3,r1,STACK_FRAME_OVERHEAD
2089BEGIN_MMU_FTR_SECTION
2090	bl      do_bad_page_fault_segv
2091MMU_FTR_SECTION_ELSE
2092	bl      unknown_exception
2093ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2094	b       interrupt_return_hsrr
2095
2096
2097/**
2098 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2099 * This is a synchronous interrupt in response to an MMU fault caused by a
2100 * guest instruction fetch, similar to HDSI.
2101 */
2102INT_DEFINE_BEGIN(h_instr_storage)
2103	IVEC=0xe20
2104	IHSRR=1
2105	IKVM_REAL=1
2106	IKVM_VIRT=1
2107INT_DEFINE_END(h_instr_storage)
2108
2109EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2110	GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2111EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2112EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2113	GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2114EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2115EXC_COMMON_BEGIN(h_instr_storage_common)
2116	GEN_COMMON h_instr_storage
2117	addi	r3,r1,STACK_FRAME_OVERHEAD
2118	bl	unknown_exception
2119	b	interrupt_return_hsrr
2120
2121
2122/**
2123 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2124 */
2125INT_DEFINE_BEGIN(emulation_assist)
2126	IVEC=0xe40
2127	IHSRR=1
2128	IKVM_REAL=1
2129	IKVM_VIRT=1
2130INT_DEFINE_END(emulation_assist)
2131
2132EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2133	GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2134EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2135EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2136	GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2137EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2138EXC_COMMON_BEGIN(emulation_assist_common)
2139	GEN_COMMON emulation_assist
2140	addi	r3,r1,STACK_FRAME_OVERHEAD
2141	bl	emulation_assist_interrupt
2142	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2143	b	interrupt_return_hsrr
2144
2145
2146/**
2147 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2148 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2149 * Exception. It is always taken in real mode but uses HSRR registers
2150 * unlike SRESET and MCE.
2151 *
2152 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2153 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2154 *
2155 * Handling:
2156 * This is a special case, this is handled similarly to machine checks, with an
2157 * initial real mode handler that is not soft-masked, which attempts to fix the
2158 * problem. Then a regular handler which is soft-maskable and reports the
2159 * problem.
2160 *
2161 * The emergency stack is used for the early real mode handler.
2162 *
2163 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2164 * either use soft-masking for the MCE, or use irq_work for the HMI.
2165 *
2166 * KVM:
2167 * Unlike MCE, this calls into KVM without calling the real mode handler
2168 * first.
2169 */
2170INT_DEFINE_BEGIN(hmi_exception_early)
2171	IVEC=0xe60
2172	IHSRR=1
2173	IREALMODE_COMMON=1
2174	ISTACK=0
2175	IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2176	IKVM_REAL=1
2177INT_DEFINE_END(hmi_exception_early)
2178
2179INT_DEFINE_BEGIN(hmi_exception)
2180	IVEC=0xe60
2181	IHSRR=1
2182	IMASK=IRQS_DISABLED
2183	IKVM_REAL=1
2184INT_DEFINE_END(hmi_exception)
2185
2186EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2187	GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2188EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2189EXC_VIRT_NONE(0x4e60, 0x20)
2190
2191EXC_COMMON_BEGIN(hmi_exception_early_common)
2192	__GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2193
2194	mr	r10,r1			/* Save r1 */
2195	ld	r1,PACAEMERGSP(r13)	/* Use emergency stack for realmode */
2196	subi	r1,r1,INT_FRAME_SIZE	/* alloc stack frame		*/
2197
2198	__GEN_COMMON_BODY hmi_exception_early
2199
2200	addi	r3,r1,STACK_FRAME_OVERHEAD
2201	bl	hmi_exception_realmode
2202	cmpdi	cr0,r3,0
2203	bne	1f
2204
2205	EXCEPTION_RESTORE_REGS hsrr=1
2206	HRFI_TO_USER_OR_KERNEL
2207
22081:
2209	/*
2210	 * Go to virtual mode and pull the HMI event information from
2211	 * firmware.
2212	 */
2213	EXCEPTION_RESTORE_REGS hsrr=1
2214	GEN_INT_ENTRY hmi_exception, virt=0
2215
2216EXC_COMMON_BEGIN(hmi_exception_common)
2217	GEN_COMMON hmi_exception
2218	addi	r3,r1,STACK_FRAME_OVERHEAD
2219	bl	handle_hmi_exception
2220	b	interrupt_return_hsrr
2221
2222
2223/**
2224 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2225 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2226 * Similar to the 0xa00 doorbell but for host rather than guest.
2227 *
2228 * CFAR is not required (similar to doorbell_interrupt), unless KVM HV
2229 * is enabled, in which case it may be a guest exit. Most PowerNV kernels
2230 * include KVM support so it would be nice if this could be dynamically
2231 * patched out if KVM was not currently running any guests.
2232 */
2233INT_DEFINE_BEGIN(h_doorbell)
2234	IVEC=0xe80
2235	IHSRR=1
2236	IMASK=IRQS_DISABLED
2237	IKVM_REAL=1
2238	IKVM_VIRT=1
2239#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2240	ICFAR=0
2241#endif
2242INT_DEFINE_END(h_doorbell)
2243
2244EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2245	GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2246EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2247EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2248	GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2249EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2250EXC_COMMON_BEGIN(h_doorbell_common)
2251	GEN_COMMON h_doorbell
2252	addi	r3,r1,STACK_FRAME_OVERHEAD
2253#ifdef CONFIG_PPC_DOORBELL
2254	bl	doorbell_exception
2255#else
2256	bl	unknown_async_exception
2257#endif
2258	b	interrupt_return_hsrr
2259
2260
2261/**
2262 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2263 * This is an asynchronous interrupt in response to an "external exception".
2264 * Similar to 0x500 but for host only.
2265 *
2266 * Like h_doorbell, CFAR is only required for KVM HV because this can be
2267 * a guest exit.
2268 */
2269INT_DEFINE_BEGIN(h_virt_irq)
2270	IVEC=0xea0
2271	IHSRR=1
2272	IMASK=IRQS_DISABLED
2273	IKVM_REAL=1
2274	IKVM_VIRT=1
2275#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE
2276	ICFAR=0
2277#endif
2278INT_DEFINE_END(h_virt_irq)
2279
2280EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2281	GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2282EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2283EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2284	GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2285EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2286EXC_COMMON_BEGIN(h_virt_irq_common)
2287	GEN_COMMON h_virt_irq
2288	addi	r3,r1,STACK_FRAME_OVERHEAD
2289	bl	do_IRQ
2290	b	interrupt_return_hsrr
2291
2292
2293EXC_REAL_NONE(0xec0, 0x20)
2294EXC_VIRT_NONE(0x4ec0, 0x20)
2295EXC_REAL_NONE(0xee0, 0x20)
2296EXC_VIRT_NONE(0x4ee0, 0x20)
2297
2298
2299/*
2300 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2301 * This is an asynchronous interrupt in response to a PMU exception.
2302 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2303 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2304 *
2305 * Handling:
2306 * This calls into the perf subsystem.
2307 *
2308 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2309 * runs under local_irq_disable. However it may be soft-masked in
2310 * powerpc-specific code.
2311 *
2312 * If soft masked, the masked handler will note the pending interrupt for
2313 * replay, and clear MSR[EE] in the interrupted context.
2314 *
2315 * CFAR is not used by perf interrupts so not required.
2316 */
2317INT_DEFINE_BEGIN(performance_monitor)
2318	IVEC=0xf00
2319	IMASK=IRQS_PMI_DISABLED
2320#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2321	IKVM_REAL=1
2322#endif
2323	ICFAR=0
2324INT_DEFINE_END(performance_monitor)
2325
2326EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2327	GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2328EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2329EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2330	GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2331EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2332EXC_COMMON_BEGIN(performance_monitor_common)
2333	GEN_COMMON performance_monitor
2334	addi	r3,r1,STACK_FRAME_OVERHEAD
2335	bl	performance_monitor_exception
2336	b	interrupt_return_srr
2337
2338
2339/**
2340 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2341 * This is a synchronous interrupt in response to
2342 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2343 * Similar to FP unavailable.
2344 */
2345INT_DEFINE_BEGIN(altivec_unavailable)
2346	IVEC=0xf20
2347#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2348	IKVM_REAL=1
2349#endif
2350INT_DEFINE_END(altivec_unavailable)
2351
2352EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2353	GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2354EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2355EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2356	GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2357EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2358EXC_COMMON_BEGIN(altivec_unavailable_common)
2359	GEN_COMMON altivec_unavailable
2360#ifdef CONFIG_ALTIVEC
2361BEGIN_FTR_SECTION
2362	beq	1f
2363#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2364  BEGIN_FTR_SECTION_NESTED(69)
2365	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
2366	 * transaction), go do TM stuff
2367	 */
2368	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
2369	bne-	2f
2370  END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2371#endif
2372	bl	load_up_altivec
2373	b	fast_interrupt_return_srr
2374#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
23752:	/* User process was in a transaction */
2376	addi	r3,r1,STACK_FRAME_OVERHEAD
2377	bl	altivec_unavailable_tm
2378	b	interrupt_return_srr
2379#endif
23801:
2381END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2382#endif
2383	addi	r3,r1,STACK_FRAME_OVERHEAD
2384	bl	altivec_unavailable_exception
2385	b	interrupt_return_srr
2386
2387
2388/**
2389 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2390 * This is a synchronous interrupt in response to
2391 * executing a VSX instruction with MSR[VSX]=0.
2392 * Similar to FP unavailable.
2393 */
2394INT_DEFINE_BEGIN(vsx_unavailable)
2395	IVEC=0xf40
2396#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2397	IKVM_REAL=1
2398#endif
2399INT_DEFINE_END(vsx_unavailable)
2400
2401EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2402	GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2403EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2404EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2405	GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2406EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2407EXC_COMMON_BEGIN(vsx_unavailable_common)
2408	GEN_COMMON vsx_unavailable
2409#ifdef CONFIG_VSX
2410BEGIN_FTR_SECTION
2411	beq	1f
2412#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2413  BEGIN_FTR_SECTION_NESTED(69)
2414	/* Test if 2 TM state bits are zero.  If non-zero (ie. userspace was in
2415	 * transaction), go do TM stuff
2416	 */
2417	rldicl.	r0, r12, (64-MSR_TS_LG), (64-2)
2418	bne-	2f
2419  END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2420#endif
2421	b	load_up_vsx
2422#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
24232:	/* User process was in a transaction */
2424	addi	r3,r1,STACK_FRAME_OVERHEAD
2425	bl	vsx_unavailable_tm
2426	b	interrupt_return_srr
2427#endif
24281:
2429END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2430#endif
2431	addi	r3,r1,STACK_FRAME_OVERHEAD
2432	bl	vsx_unavailable_exception
2433	b	interrupt_return_srr
2434
2435
2436/**
2437 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2438 * This is a synchronous interrupt in response to
2439 * executing an instruction without access to the facility that can be
2440 * resolved by the OS (e.g., FSCR, MSR).
2441 * Similar to FP unavailable.
2442 */
2443INT_DEFINE_BEGIN(facility_unavailable)
2444	IVEC=0xf60
2445#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2446	IKVM_REAL=1
2447#endif
2448INT_DEFINE_END(facility_unavailable)
2449
2450EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2451	GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2452EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2453EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2454	GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2455EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2456EXC_COMMON_BEGIN(facility_unavailable_common)
2457	GEN_COMMON facility_unavailable
2458	addi	r3,r1,STACK_FRAME_OVERHEAD
2459	bl	facility_unavailable_exception
2460	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2461	b	interrupt_return_srr
2462
2463
2464/**
2465 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2466 * This is a synchronous interrupt in response to
2467 * executing an instruction without access to the facility that can only
2468 * be resolved in HV mode (e.g., HFSCR).
2469 * Similar to FP unavailable.
2470 */
2471INT_DEFINE_BEGIN(h_facility_unavailable)
2472	IVEC=0xf80
2473	IHSRR=1
2474	IKVM_REAL=1
2475	IKVM_VIRT=1
2476INT_DEFINE_END(h_facility_unavailable)
2477
2478EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2479	GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2480EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2481EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2482	GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2483EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2484EXC_COMMON_BEGIN(h_facility_unavailable_common)
2485	GEN_COMMON h_facility_unavailable
2486	addi	r3,r1,STACK_FRAME_OVERHEAD
2487	bl	facility_unavailable_exception
2488	REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
2489	b	interrupt_return_hsrr
2490
2491
2492EXC_REAL_NONE(0xfa0, 0x20)
2493EXC_VIRT_NONE(0x4fa0, 0x20)
2494EXC_REAL_NONE(0xfc0, 0x20)
2495EXC_VIRT_NONE(0x4fc0, 0x20)
2496EXC_REAL_NONE(0xfe0, 0x20)
2497EXC_VIRT_NONE(0x4fe0, 0x20)
2498
2499EXC_REAL_NONE(0x1000, 0x100)
2500EXC_VIRT_NONE(0x5000, 0x100)
2501EXC_REAL_NONE(0x1100, 0x100)
2502EXC_VIRT_NONE(0x5100, 0x100)
2503
2504#ifdef CONFIG_CBE_RAS
2505INT_DEFINE_BEGIN(cbe_system_error)
2506	IVEC=0x1200
2507	IHSRR=1
2508INT_DEFINE_END(cbe_system_error)
2509
2510EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2511	GEN_INT_ENTRY cbe_system_error, virt=0
2512EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2513EXC_VIRT_NONE(0x5200, 0x100)
2514EXC_COMMON_BEGIN(cbe_system_error_common)
2515	GEN_COMMON cbe_system_error
2516	addi	r3,r1,STACK_FRAME_OVERHEAD
2517	bl	cbe_system_error_exception
2518	b	interrupt_return_hsrr
2519
2520#else /* CONFIG_CBE_RAS */
2521EXC_REAL_NONE(0x1200, 0x100)
2522EXC_VIRT_NONE(0x5200, 0x100)
2523#endif
2524
2525/**
2526 * Interrupt 0x1300 - Instruction Address Breakpoint Interrupt.
2527 * This has been removed from the ISA before 2.01, which is the earliest
2528 * 64-bit BookS ISA supported, however the G5 / 970 implements this
2529 * interrupt with a non-architected feature available through the support
2530 * processor interface.
2531 */
2532INT_DEFINE_BEGIN(instruction_breakpoint)
2533	IVEC=0x1300
2534#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2535	IKVM_REAL=1
2536#endif
2537INT_DEFINE_END(instruction_breakpoint)
2538
2539EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2540	GEN_INT_ENTRY instruction_breakpoint, virt=0
2541EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2542EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2543	GEN_INT_ENTRY instruction_breakpoint, virt=1
2544EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2545EXC_COMMON_BEGIN(instruction_breakpoint_common)
2546	GEN_COMMON instruction_breakpoint
2547	addi	r3,r1,STACK_FRAME_OVERHEAD
2548	bl	instruction_breakpoint_exception
2549	b	interrupt_return_srr
2550
2551
2552EXC_REAL_NONE(0x1400, 0x100)
2553EXC_VIRT_NONE(0x5400, 0x100)
2554
2555/**
2556 * Interrupt 0x1500 - Soft Patch Interrupt
2557 *
2558 * Handling:
2559 * This is an implementation specific interrupt which can be used for a
2560 * range of exceptions.
2561 *
2562 * This interrupt handler is unique in that it runs the denormal assist
2563 * code even for guests (and even in guest context) without going to KVM,
2564 * for speed. POWER9 does not raise denorm exceptions, so this special case
2565 * could be phased out in future to reduce special cases.
2566 */
2567INT_DEFINE_BEGIN(denorm_exception)
2568	IVEC=0x1500
2569	IHSRR=1
2570	IBRANCH_TO_COMMON=0
2571	IKVM_REAL=1
2572INT_DEFINE_END(denorm_exception)
2573
2574EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2575	GEN_INT_ENTRY denorm_exception, virt=0
2576#ifdef CONFIG_PPC_DENORMALISATION
2577	andis.	r10,r12,(HSRR1_DENORM)@h /* denorm? */
2578	bne+	denorm_assist
2579#endif
2580	GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2581EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2582#ifdef CONFIG_PPC_DENORMALISATION
2583EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2584	GEN_INT_ENTRY denorm_exception, virt=1
2585	andis.	r10,r12,(HSRR1_DENORM)@h /* denorm? */
2586	bne+	denorm_assist
2587	GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2588EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2589#else
2590EXC_VIRT_NONE(0x5500, 0x100)
2591#endif
2592
2593#ifdef CONFIG_PPC_DENORMALISATION
2594TRAMP_REAL_BEGIN(denorm_assist)
2595BEGIN_FTR_SECTION
2596/*
2597 * To denormalise we need to move a copy of the register to itself.
2598 * For POWER6 do that here for all FP regs.
2599 */
2600	mfmsr	r10
2601	ori	r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2602	xori	r10,r10,(MSR_FE0|MSR_FE1)
2603	mtmsrd	r10
2604	sync
2605
2606	.Lreg=0
2607	.rept 32
2608	fmr	.Lreg,.Lreg
2609	.Lreg=.Lreg+1
2610	.endr
2611
2612FTR_SECTION_ELSE
2613/*
2614 * To denormalise we need to move a copy of the register to itself.
2615 * For POWER7 do that here for the first 32 VSX registers only.
2616 */
2617	mfmsr	r10
2618	oris	r10,r10,MSR_VSX@h
2619	mtmsrd	r10
2620	sync
2621
2622	.Lreg=0
2623	.rept 32
2624	XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2625	.Lreg=.Lreg+1
2626	.endr
2627
2628ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2629
2630BEGIN_FTR_SECTION
2631	b	denorm_done
2632END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2633/*
2634 * To denormalise we need to move a copy of the register to itself.
2635 * For POWER8 we need to do that for all 64 VSX registers
2636 */
2637	.Lreg=32
2638	.rept 32
2639	XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2640	.Lreg=.Lreg+1
2641	.endr
2642
2643denorm_done:
2644	mfspr	r11,SPRN_HSRR0
2645	subi	r11,r11,4
2646	mtspr	SPRN_HSRR0,r11
2647	mtcrf	0x80,r9
2648	ld	r9,PACA_EXGEN+EX_R9(r13)
2649BEGIN_FTR_SECTION
2650	ld	r10,PACA_EXGEN+EX_PPR(r13)
2651	mtspr	SPRN_PPR,r10
2652END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2653BEGIN_FTR_SECTION
2654	ld	r10,PACA_EXGEN+EX_CFAR(r13)
2655	mtspr	SPRN_CFAR,r10
2656END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2657	li	r10,0
2658	stb	r10,PACAHSRR_VALID(r13)
2659	ld	r10,PACA_EXGEN+EX_R10(r13)
2660	ld	r11,PACA_EXGEN+EX_R11(r13)
2661	ld	r12,PACA_EXGEN+EX_R12(r13)
2662	ld	r13,PACA_EXGEN+EX_R13(r13)
2663	HRFI_TO_UNKNOWN
2664	b	.
2665#endif
2666
2667EXC_COMMON_BEGIN(denorm_exception_common)
2668	GEN_COMMON denorm_exception
2669	addi	r3,r1,STACK_FRAME_OVERHEAD
2670	bl	unknown_exception
2671	b	interrupt_return_hsrr
2672
2673
2674#ifdef CONFIG_CBE_RAS
2675INT_DEFINE_BEGIN(cbe_maintenance)
2676	IVEC=0x1600
2677	IHSRR=1
2678INT_DEFINE_END(cbe_maintenance)
2679
2680EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2681	GEN_INT_ENTRY cbe_maintenance, virt=0
2682EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2683EXC_VIRT_NONE(0x5600, 0x100)
2684EXC_COMMON_BEGIN(cbe_maintenance_common)
2685	GEN_COMMON cbe_maintenance
2686	addi	r3,r1,STACK_FRAME_OVERHEAD
2687	bl	cbe_maintenance_exception
2688	b	interrupt_return_hsrr
2689
2690#else /* CONFIG_CBE_RAS */
2691EXC_REAL_NONE(0x1600, 0x100)
2692EXC_VIRT_NONE(0x5600, 0x100)
2693#endif
2694
2695
2696INT_DEFINE_BEGIN(altivec_assist)
2697	IVEC=0x1700
2698#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2699	IKVM_REAL=1
2700#endif
2701INT_DEFINE_END(altivec_assist)
2702
2703EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2704	GEN_INT_ENTRY altivec_assist, virt=0
2705EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2706EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2707	GEN_INT_ENTRY altivec_assist, virt=1
2708EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2709EXC_COMMON_BEGIN(altivec_assist_common)
2710	GEN_COMMON altivec_assist
2711	addi	r3,r1,STACK_FRAME_OVERHEAD
2712#ifdef CONFIG_ALTIVEC
2713	bl	altivec_assist_exception
2714	REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2715#else
2716	bl	unknown_exception
2717#endif
2718	b	interrupt_return_srr
2719
2720
2721#ifdef CONFIG_CBE_RAS
2722INT_DEFINE_BEGIN(cbe_thermal)
2723	IVEC=0x1800
2724	IHSRR=1
2725INT_DEFINE_END(cbe_thermal)
2726
2727EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2728	GEN_INT_ENTRY cbe_thermal, virt=0
2729EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2730EXC_VIRT_NONE(0x5800, 0x100)
2731EXC_COMMON_BEGIN(cbe_thermal_common)
2732	GEN_COMMON cbe_thermal
2733	addi	r3,r1,STACK_FRAME_OVERHEAD
2734	bl	cbe_thermal_exception
2735	b	interrupt_return_hsrr
2736
2737#else /* CONFIG_CBE_RAS */
2738EXC_REAL_NONE(0x1800, 0x100)
2739EXC_VIRT_NONE(0x5800, 0x100)
2740#endif
2741
2742
2743#ifdef CONFIG_PPC_WATCHDOG
2744
2745INT_DEFINE_BEGIN(soft_nmi)
2746	IVEC=0x900
2747	ISTACK=0
2748	ICFAR=0
2749INT_DEFINE_END(soft_nmi)
2750
2751/*
2752 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2753 * stack is one that is usable by maskable interrupts so long as MSR_EE
2754 * remains off. It is used for recovery when something has corrupted the
2755 * normal kernel stack, for example. The "soft NMI" must not use the process
2756 * stack because we want irq disabled sections to avoid touching the stack
2757 * at all (other than PMU interrupts), so use the emergency stack for this,
2758 * and run it entirely with interrupts hard disabled.
2759 */
2760EXC_COMMON_BEGIN(soft_nmi_common)
2761	mr	r10,r1
2762	ld	r1,PACAEMERGSP(r13)
2763	subi	r1,r1,INT_FRAME_SIZE
2764	__GEN_COMMON_BODY soft_nmi
2765
2766	addi	r3,r1,STACK_FRAME_OVERHEAD
2767	bl	soft_nmi_interrupt
2768
2769	/* Clear MSR_RI before setting SRR0 and SRR1. */
2770	li	r9,0
2771	mtmsrd	r9,1
2772
2773	kuap_kernel_restore r9, r10
2774
2775	EXCEPTION_RESTORE_REGS hsrr=0
2776	RFI_TO_KERNEL
2777
2778#endif /* CONFIG_PPC_WATCHDOG */
2779
2780/*
2781 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2782 * - If it was a decrementer interrupt, we bump the dec to max and and return.
2783 * - If it was a doorbell we return immediately since doorbells are edge
2784 *   triggered and won't automatically refire.
2785 * - If it was a HMI we return immediately since we handled it in realmode
2786 *   and it won't refire.
2787 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2788 * This is called with r10 containing the value to OR to the paca field.
2789 */
2790.macro MASKED_INTERRUPT hsrr=0
2791	.if \hsrr
2792masked_Hinterrupt:
2793	.else
2794masked_interrupt:
2795	.endif
2796	stw	r9,PACA_EXGEN+EX_CCR(r13)
2797	lbz	r9,PACAIRQHAPPENED(r13)
2798	or	r9,r9,r10
2799	stb	r9,PACAIRQHAPPENED(r13)
2800
2801	.if ! \hsrr
2802	cmpwi	r10,PACA_IRQ_DEC
2803	bne	1f
2804	LOAD_REG_IMMEDIATE(r9, 0x7fffffff)
2805	mtspr	SPRN_DEC,r9
2806#ifdef CONFIG_PPC_WATCHDOG
2807	lwz	r9,PACA_EXGEN+EX_CCR(r13)
2808	b	soft_nmi_common
2809#else
2810	b	2f
2811#endif
2812	.endif
2813
28141:	andi.	r10,r10,PACA_IRQ_MUST_HARD_MASK
2815	beq	2f
2816	xori	r12,r12,MSR_EE	/* clear MSR_EE */
2817	.if \hsrr
2818	mtspr	SPRN_HSRR1,r12
2819	.else
2820	mtspr	SPRN_SRR1,r12
2821	.endif
2822	ori	r9,r9,PACA_IRQ_HARD_DIS
2823	stb	r9,PACAIRQHAPPENED(r13)
28242:	/* done */
2825	li	r9,0
2826	.if \hsrr
2827	stb	r9,PACAHSRR_VALID(r13)
2828	.else
2829	stb	r9,PACASRR_VALID(r13)
2830	.endif
2831
2832	SEARCH_RESTART_TABLE
2833	cmpdi	r12,0
2834	beq	3f
2835	.if \hsrr
2836	mtspr	SPRN_HSRR0,r12
2837	.else
2838	mtspr	SPRN_SRR0,r12
2839	.endif
28403:
2841
2842	ld	r9,PACA_EXGEN+EX_CTR(r13)
2843	mtctr	r9
2844	lwz	r9,PACA_EXGEN+EX_CCR(r13)
2845	mtcrf	0x80,r9
2846	std	r1,PACAR1(r13)
2847	ld	r9,PACA_EXGEN+EX_R9(r13)
2848	ld	r10,PACA_EXGEN+EX_R10(r13)
2849	ld	r11,PACA_EXGEN+EX_R11(r13)
2850	ld	r12,PACA_EXGEN+EX_R12(r13)
2851	ld	r13,PACA_EXGEN+EX_R13(r13)
2852	/* May return to masked low address where r13 is not set up */
2853	.if \hsrr
2854	HRFI_TO_KERNEL
2855	.else
2856	RFI_TO_KERNEL
2857	.endif
2858	b	.
2859.endm
2860
2861TRAMP_REAL_BEGIN(stf_barrier_fallback)
2862	std	r9,PACA_EXRFI+EX_R9(r13)
2863	std	r10,PACA_EXRFI+EX_R10(r13)
2864	sync
2865	ld	r9,PACA_EXRFI+EX_R9(r13)
2866	ld	r10,PACA_EXRFI+EX_R10(r13)
2867	ori	31,31,0
2868	.rept 14
2869	b	1f
28701:
2871	.endr
2872	blr
2873
2874/* Clobbers r10, r11, ctr */
2875.macro L1D_DISPLACEMENT_FLUSH
2876	ld	r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2877	ld	r11,PACA_L1D_FLUSH_SIZE(r13)
2878	srdi	r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2879	mtctr	r11
2880	DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2881
2882	/* order ld/st prior to dcbt stop all streams with flushing */
2883	sync
2884
2885	/*
2886	 * The load addresses are at staggered offsets within cachelines,
2887	 * which suits some pipelines better (on others it should not
2888	 * hurt).
2889	 */
28901:
2891	ld	r11,(0x80 + 8)*0(r10)
2892	ld	r11,(0x80 + 8)*1(r10)
2893	ld	r11,(0x80 + 8)*2(r10)
2894	ld	r11,(0x80 + 8)*3(r10)
2895	ld	r11,(0x80 + 8)*4(r10)
2896	ld	r11,(0x80 + 8)*5(r10)
2897	ld	r11,(0x80 + 8)*6(r10)
2898	ld	r11,(0x80 + 8)*7(r10)
2899	addi	r10,r10,0x80*8
2900	bdnz	1b
2901.endm
2902
2903TRAMP_REAL_BEGIN(entry_flush_fallback)
2904	std	r9,PACA_EXRFI+EX_R9(r13)
2905	std	r10,PACA_EXRFI+EX_R10(r13)
2906	std	r11,PACA_EXRFI+EX_R11(r13)
2907	mfctr	r9
2908	L1D_DISPLACEMENT_FLUSH
2909	mtctr	r9
2910	ld	r9,PACA_EXRFI+EX_R9(r13)
2911	ld	r10,PACA_EXRFI+EX_R10(r13)
2912	ld	r11,PACA_EXRFI+EX_R11(r13)
2913	blr
2914
2915/*
2916 * The SCV entry flush happens with interrupts enabled, so it must disable
2917 * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10
2918 * (containing LR) does not need to be preserved here because scv entry
2919 * puts 0 in the pt_regs, CTR can be clobbered for the same reason.
2920 */
2921TRAMP_REAL_BEGIN(scv_entry_flush_fallback)
2922	li	r10,0
2923	mtmsrd	r10,1
2924	lbz	r10,PACAIRQHAPPENED(r13)
2925	ori	r10,r10,PACA_IRQ_HARD_DIS
2926	stb	r10,PACAIRQHAPPENED(r13)
2927	std	r11,PACA_EXRFI+EX_R11(r13)
2928	L1D_DISPLACEMENT_FLUSH
2929	ld	r11,PACA_EXRFI+EX_R11(r13)
2930	li	r10,MSR_RI
2931	mtmsrd	r10,1
2932	blr
2933
2934TRAMP_REAL_BEGIN(rfi_flush_fallback)
2935	SET_SCRATCH0(r13);
2936	GET_PACA(r13);
2937	std	r1,PACA_EXRFI+EX_R12(r13)
2938	ld	r1,PACAKSAVE(r13)
2939	std	r9,PACA_EXRFI+EX_R9(r13)
2940	std	r10,PACA_EXRFI+EX_R10(r13)
2941	std	r11,PACA_EXRFI+EX_R11(r13)
2942	mfctr	r9
2943	L1D_DISPLACEMENT_FLUSH
2944	mtctr	r9
2945	ld	r9,PACA_EXRFI+EX_R9(r13)
2946	ld	r10,PACA_EXRFI+EX_R10(r13)
2947	ld	r11,PACA_EXRFI+EX_R11(r13)
2948	ld	r1,PACA_EXRFI+EX_R12(r13)
2949	GET_SCRATCH0(r13);
2950	rfid
2951
2952TRAMP_REAL_BEGIN(hrfi_flush_fallback)
2953	SET_SCRATCH0(r13);
2954	GET_PACA(r13);
2955	std	r1,PACA_EXRFI+EX_R12(r13)
2956	ld	r1,PACAKSAVE(r13)
2957	std	r9,PACA_EXRFI+EX_R9(r13)
2958	std	r10,PACA_EXRFI+EX_R10(r13)
2959	std	r11,PACA_EXRFI+EX_R11(r13)
2960	mfctr	r9
2961	L1D_DISPLACEMENT_FLUSH
2962	mtctr	r9
2963	ld	r9,PACA_EXRFI+EX_R9(r13)
2964	ld	r10,PACA_EXRFI+EX_R10(r13)
2965	ld	r11,PACA_EXRFI+EX_R11(r13)
2966	ld	r1,PACA_EXRFI+EX_R12(r13)
2967	GET_SCRATCH0(r13);
2968	hrfid
2969
2970TRAMP_REAL_BEGIN(rfscv_flush_fallback)
2971	/* system call volatile */
2972	mr	r7,r13
2973	GET_PACA(r13);
2974	mr	r8,r1
2975	ld	r1,PACAKSAVE(r13)
2976	mfctr	r9
2977	ld	r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2978	ld	r11,PACA_L1D_FLUSH_SIZE(r13)
2979	srdi	r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2980	mtctr	r11
2981	DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2982
2983	/* order ld/st prior to dcbt stop all streams with flushing */
2984	sync
2985
2986	/*
2987	 * The load adresses are at staggered offsets within cachelines,
2988	 * which suits some pipelines better (on others it should not
2989	 * hurt).
2990	 */
29911:
2992	ld	r11,(0x80 + 8)*0(r10)
2993	ld	r11,(0x80 + 8)*1(r10)
2994	ld	r11,(0x80 + 8)*2(r10)
2995	ld	r11,(0x80 + 8)*3(r10)
2996	ld	r11,(0x80 + 8)*4(r10)
2997	ld	r11,(0x80 + 8)*5(r10)
2998	ld	r11,(0x80 + 8)*6(r10)
2999	ld	r11,(0x80 + 8)*7(r10)
3000	addi	r10,r10,0x80*8
3001	bdnz	1b
3002
3003	mtctr	r9
3004	li	r9,0
3005	li	r10,0
3006	li	r11,0
3007	mr	r1,r8
3008	mr	r13,r7
3009	RFSCV
3010
3011USE_TEXT_SECTION()
3012
3013#ifdef CONFIG_KVM_BOOK3S_64_HANDLER
3014kvm_interrupt:
3015	/*
3016	 * The conditional branch in KVMTEST can't reach all the way,
3017	 * make a stub.
3018	 */
3019	b	kvmppc_interrupt
3020#endif
3021
3022_GLOBAL(do_uaccess_flush)
3023	UACCESS_FLUSH_FIXUP_SECTION
3024	nop
3025	nop
3026	nop
3027	blr
3028	L1D_DISPLACEMENT_FLUSH
3029	blr
3030_ASM_NOKPROBE_SYMBOL(do_uaccess_flush)
3031EXPORT_SYMBOL(do_uaccess_flush)
3032
3033
3034MASKED_INTERRUPT
3035MASKED_INTERRUPT hsrr=1
3036
3037	/*
3038	 * Relocation-on interrupts: A subset of the interrupts can be delivered
3039	 * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
3040	 * it.  Addresses are the same as the original interrupt addresses, but
3041	 * offset by 0xc000000000004000.
3042	 * It's impossible to receive interrupts below 0x300 via this mechanism.
3043	 * KVM: None of these traps are from the guest ; anything that escalated
3044	 * to HV=1 from HV=0 is delivered via real mode handlers.
3045	 */
3046
3047	/*
3048	 * This uses the standard macro, since the original 0x300 vector
3049	 * only has extra guff for STAB-based processors -- which never
3050	 * come here.
3051	 */
3052
3053USE_FIXED_SECTION(virt_trampolines)
3054	/*
3055	 * All code below __end_soft_masked is treated as soft-masked. If
3056	 * any code runs here with MSR[EE]=1, it must then cope with pending
3057	 * soft interrupt being raised (i.e., by ensuring it is replayed).
3058	 *
3059	 * The __end_interrupts marker must be past the out-of-line (OOL)
3060	 * handlers, so that they are copied to real address 0x100 when running
3061	 * a relocatable kernel. This ensures they can be reached from the short
3062	 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
3063	 * directly, without using LOAD_HANDLER().
3064	 */
3065	.align	7
3066	.globl	__end_interrupts
3067__end_interrupts:
3068DEFINE_FIXED_SYMBOL(__end_interrupts, virt_trampolines)
3069
3070CLOSE_FIXED_SECTION(real_vectors);
3071CLOSE_FIXED_SECTION(real_trampolines);
3072CLOSE_FIXED_SECTION(virt_vectors);
3073CLOSE_FIXED_SECTION(virt_trampolines);
3074
3075USE_TEXT_SECTION()
3076
3077/* MSR[RI] should be clear because this uses SRR[01] */
3078enable_machine_check:
3079	mflr	r0
3080	bcl	20,31,$+4
30810:	mflr	r3
3082	addi	r3,r3,(1f - 0b)
3083	mtspr	SPRN_SRR0,r3
3084	mfmsr	r3
3085	ori	r3,r3,MSR_ME
3086	mtspr	SPRN_SRR1,r3
3087	RFI_TO_KERNEL
30881:	mtlr	r0
3089	blr
3090
3091/* MSR[RI] should be clear because this uses SRR[01] */
3092disable_machine_check:
3093	mflr	r0
3094	bcl	20,31,$+4
30950:	mflr	r3
3096	addi	r3,r3,(1f - 0b)
3097	mtspr	SPRN_SRR0,r3
3098	mfmsr	r3
3099	li	r4,MSR_ME
3100	andc	r3,r3,r4
3101	mtspr	SPRN_SRR1,r3
3102	RFI_TO_KERNEL
31031:	mtlr	r0
3104	blr
3105