xref: /linux/arch/powerpc/kernel/eeh_pe.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * The file intends to implement PE based on the information from
3  * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4  * All the PEs should be organized as hierarchy tree. The first level
5  * of the tree will be associated to existing PHBs since the particular
6  * PE is only meaningful in one PHB domain.
7  *
8  * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31 
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34 
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37 
38 /**
39  * eeh_set_pe_aux_size - Set PE auxillary data size
40  * @size: PE auxillary data size
41  *
42  * Set PE auxillary data size
43  */
44 void eeh_set_pe_aux_size(int size)
45 {
46 	if (size < 0)
47 		return;
48 
49 	eeh_pe_aux_size = size;
50 }
51 
52 /**
53  * eeh_pe_alloc - Allocate PE
54  * @phb: PCI controller
55  * @type: PE type
56  *
57  * Allocate PE instance dynamically.
58  */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 	struct eeh_pe *pe;
62 	size_t alloc_size;
63 
64 	alloc_size = sizeof(struct eeh_pe);
65 	if (eeh_pe_aux_size) {
66 		alloc_size = ALIGN(alloc_size, cache_line_size());
67 		alloc_size += eeh_pe_aux_size;
68 	}
69 
70 	/* Allocate PHB PE */
71 	pe = kzalloc(alloc_size, GFP_KERNEL);
72 	if (!pe) return NULL;
73 
74 	/* Initialize PHB PE */
75 	pe->type = type;
76 	pe->phb = phb;
77 	INIT_LIST_HEAD(&pe->child_list);
78 	INIT_LIST_HEAD(&pe->child);
79 	INIT_LIST_HEAD(&pe->edevs);
80 
81 	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 				      cache_line_size());
83 	return pe;
84 }
85 
86 /**
87  * eeh_phb_pe_create - Create PHB PE
88  * @phb: PCI controller
89  *
90  * The function should be called while the PHB is detected during
91  * system boot or PCI hotplug in order to create PHB PE.
92  */
93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 	struct eeh_pe *pe;
96 
97 	/* Allocate PHB PE */
98 	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 	if (!pe) {
100 		pr_err("%s: out of memory!\n", __func__);
101 		return -ENOMEM;
102 	}
103 
104 	/* Put it into the list */
105 	list_add_tail(&pe->child, &eeh_phb_pe);
106 
107 	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108 
109 	return 0;
110 }
111 
112 /**
113  * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114  * @phb: PCI controller
115  *
116  * The overall PEs form hierarchy tree. The first layer of the
117  * hierarchy tree is composed of PHB PEs. The function is used
118  * to retrieve the corresponding PHB PE according to the given PHB.
119  */
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 	struct eeh_pe *pe;
123 
124 	list_for_each_entry(pe, &eeh_phb_pe, child) {
125 		/*
126 		 * Actually, we needn't check the type since
127 		 * the PE for PHB has been determined when that
128 		 * was created.
129 		 */
130 		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 			return pe;
132 	}
133 
134 	return NULL;
135 }
136 
137 /**
138  * eeh_pe_next - Retrieve the next PE in the tree
139  * @pe: current PE
140  * @root: root PE
141  *
142  * The function is used to retrieve the next PE in the
143  * hierarchy PE tree.
144  */
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 				  struct eeh_pe *root)
147 {
148 	struct list_head *next = pe->child_list.next;
149 
150 	if (next == &pe->child_list) {
151 		while (1) {
152 			if (pe == root)
153 				return NULL;
154 			next = pe->child.next;
155 			if (next != &pe->parent->child_list)
156 				break;
157 			pe = pe->parent;
158 		}
159 	}
160 
161 	return list_entry(next, struct eeh_pe, child);
162 }
163 
164 /**
165  * eeh_pe_traverse - Traverse PEs in the specified PHB
166  * @root: root PE
167  * @fn: callback
168  * @flag: extra parameter to callback
169  *
170  * The function is used to traverse the specified PE and its
171  * child PEs. The traversing is to be terminated once the
172  * callback returns something other than NULL, or no more PEs
173  * to be traversed.
174  */
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 		      eeh_traverse_func fn, void *flag)
177 {
178 	struct eeh_pe *pe;
179 	void *ret;
180 
181 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 		ret = fn(pe, flag);
183 		if (ret) return ret;
184 	}
185 
186 	return NULL;
187 }
188 
189 /**
190  * eeh_pe_dev_traverse - Traverse the devices from the PE
191  * @root: EEH PE
192  * @fn: function callback
193  * @flag: extra parameter to callback
194  *
195  * The function is used to traverse the devices of the specified
196  * PE and its child PEs.
197  */
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 		eeh_traverse_func fn, void *flag)
200 {
201 	struct eeh_pe *pe;
202 	struct eeh_dev *edev, *tmp;
203 	void *ret;
204 
205 	if (!root) {
206 		pr_warn("%s: Invalid PE %p\n",
207 			__func__, root);
208 		return NULL;
209 	}
210 
211 	/* Traverse root PE */
212 	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 		eeh_pe_for_each_dev(pe, edev, tmp) {
214 			ret = fn(edev, flag);
215 			if (ret)
216 				return ret;
217 		}
218 	}
219 
220 	return NULL;
221 }
222 
223 /**
224  * __eeh_pe_get - Check the PE address
225  * @data: EEH PE
226  * @flag: EEH device
227  *
228  * For one particular PE, it can be identified by PE address
229  * or tranditional BDF address. BDF address is composed of
230  * Bus/Device/Function number. The extra data referred by flag
231  * indicates which type of address should be used.
232  */
233 static void *__eeh_pe_get(void *data, void *flag)
234 {
235 	struct eeh_pe *pe = (struct eeh_pe *)data;
236 	struct eeh_dev *edev = (struct eeh_dev *)flag;
237 
238 	/* Unexpected PHB PE */
239 	if (pe->type & EEH_PE_PHB)
240 		return NULL;
241 
242 	/*
243 	 * We prefer PE address. For most cases, we should
244 	 * have non-zero PE address
245 	 */
246 	if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247 		if (edev->pe_config_addr == pe->addr)
248 			return pe;
249 	} else {
250 		if (edev->pe_config_addr &&
251 		    (edev->pe_config_addr == pe->addr))
252 		return pe;
253 	}
254 
255 	/* Try BDF address */
256 	if (edev->config_addr &&
257 	   (edev->config_addr == pe->config_addr))
258 		return pe;
259 
260 	return NULL;
261 }
262 
263 /**
264  * eeh_pe_get - Search PE based on the given address
265  * @edev: EEH device
266  *
267  * Search the corresponding PE based on the specified address which
268  * is included in the eeh device. The function is used to check if
269  * the associated PE has been created against the PE address. It's
270  * notable that the PE address has 2 format: traditional PE address
271  * which is composed of PCI bus/device/function number, or unified
272  * PE address.
273  */
274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
275 {
276 	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277 	struct eeh_pe *pe;
278 
279 	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
280 
281 	return pe;
282 }
283 
284 /**
285  * eeh_pe_get_parent - Retrieve the parent PE
286  * @edev: EEH device
287  *
288  * The whole PEs existing in the system are organized as hierarchy
289  * tree. The function is used to retrieve the parent PE according
290  * to the parent EEH device.
291  */
292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
293 {
294 	struct eeh_dev *parent;
295 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
296 
297 	/*
298 	 * It might have the case for the indirect parent
299 	 * EEH device already having associated PE, but
300 	 * the direct parent EEH device doesn't have yet.
301 	 */
302 	pdn = pdn ? pdn->parent : NULL;
303 	while (pdn) {
304 		/* We're poking out of PCI territory */
305 		parent = pdn_to_eeh_dev(pdn);
306 		if (!parent)
307 			return NULL;
308 
309 		if (parent->pe)
310 			return parent->pe;
311 
312 		pdn = pdn->parent;
313 	}
314 
315 	return NULL;
316 }
317 
318 /**
319  * eeh_add_to_parent_pe - Add EEH device to parent PE
320  * @edev: EEH device
321  *
322  * Add EEH device to the parent PE. If the parent PE already
323  * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
324  * we have to create new PE to hold the EEH device and the new
325  * PE will be linked to its parent PE as well.
326  */
327 int eeh_add_to_parent_pe(struct eeh_dev *edev)
328 {
329 	struct eeh_pe *pe, *parent;
330 
331 	/* Check if the PE number is valid */
332 	if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
333 		pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%d\n",
334 		       __func__, edev->config_addr, edev->phb->global_number);
335 		return -EINVAL;
336 	}
337 
338 	/*
339 	 * Search the PE has been existing or not according
340 	 * to the PE address. If that has been existing, the
341 	 * PE should be composed of PCI bus and its subordinate
342 	 * components.
343 	 */
344 	pe = eeh_pe_get(edev);
345 	if (pe && !(pe->type & EEH_PE_INVALID)) {
346 		/* Mark the PE as type of PCI bus */
347 		pe->type = EEH_PE_BUS;
348 		edev->pe = pe;
349 
350 		/* Put the edev to PE */
351 		list_add_tail(&edev->list, &pe->edevs);
352 		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
353 			edev->phb->global_number,
354 			edev->config_addr >> 8,
355 			PCI_SLOT(edev->config_addr & 0xFF),
356 			PCI_FUNC(edev->config_addr & 0xFF),
357 			pe->addr);
358 		return 0;
359 	} else if (pe && (pe->type & EEH_PE_INVALID)) {
360 		list_add_tail(&edev->list, &pe->edevs);
361 		edev->pe = pe;
362 		/*
363 		 * We're running to here because of PCI hotplug caused by
364 		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
365 		 */
366 		parent = pe;
367 		while (parent) {
368 			if (!(parent->type & EEH_PE_INVALID))
369 				break;
370 			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
371 			parent = parent->parent;
372 		}
373 
374 		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
375 			 "PE#%x, Parent PE#%x\n",
376 			edev->phb->global_number,
377 			edev->config_addr >> 8,
378                         PCI_SLOT(edev->config_addr & 0xFF),
379                         PCI_FUNC(edev->config_addr & 0xFF),
380 			pe->addr, pe->parent->addr);
381 		return 0;
382 	}
383 
384 	/* Create a new EEH PE */
385 	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
386 	if (!pe) {
387 		pr_err("%s: out of memory!\n", __func__);
388 		return -ENOMEM;
389 	}
390 	pe->addr	= edev->pe_config_addr;
391 	pe->config_addr	= edev->config_addr;
392 
393 	/*
394 	 * Put the new EEH PE into hierarchy tree. If the parent
395 	 * can't be found, the newly created PE will be attached
396 	 * to PHB directly. Otherwise, we have to associate the
397 	 * PE with its parent.
398 	 */
399 	parent = eeh_pe_get_parent(edev);
400 	if (!parent) {
401 		parent = eeh_phb_pe_get(edev->phb);
402 		if (!parent) {
403 			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
404 				__func__, edev->phb->global_number);
405 			edev->pe = NULL;
406 			kfree(pe);
407 			return -EEXIST;
408 		}
409 	}
410 	pe->parent = parent;
411 
412 	/*
413 	 * Put the newly created PE into the child list and
414 	 * link the EEH device accordingly.
415 	 */
416 	list_add_tail(&pe->child, &parent->child_list);
417 	list_add_tail(&edev->list, &pe->edevs);
418 	edev->pe = pe;
419 	pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
420 		 "Device PE#%x, Parent PE#%x\n",
421 		 edev->phb->global_number,
422 		 edev->config_addr >> 8,
423 		 PCI_SLOT(edev->config_addr & 0xFF),
424 		 PCI_FUNC(edev->config_addr & 0xFF),
425 		 pe->addr, pe->parent->addr);
426 
427 	return 0;
428 }
429 
430 /**
431  * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
432  * @edev: EEH device
433  *
434  * The PE hierarchy tree might be changed when doing PCI hotplug.
435  * Also, the PCI devices or buses could be removed from the system
436  * during EEH recovery. So we have to call the function remove the
437  * corresponding PE accordingly if necessary.
438  */
439 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
440 {
441 	struct eeh_pe *pe, *parent, *child;
442 	int cnt;
443 
444 	if (!edev->pe) {
445 		pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
446 			 __func__,  edev->phb->global_number,
447 			 edev->config_addr >> 8,
448 			 PCI_SLOT(edev->config_addr & 0xFF),
449 			 PCI_FUNC(edev->config_addr & 0xFF));
450 		return -EEXIST;
451 	}
452 
453 	/* Remove the EEH device */
454 	pe = eeh_dev_to_pe(edev);
455 	edev->pe = NULL;
456 	list_del(&edev->list);
457 
458 	/*
459 	 * Check if the parent PE includes any EEH devices.
460 	 * If not, we should delete that. Also, we should
461 	 * delete the parent PE if it doesn't have associated
462 	 * child PEs and EEH devices.
463 	 */
464 	while (1) {
465 		parent = pe->parent;
466 		if (pe->type & EEH_PE_PHB)
467 			break;
468 
469 		if (!(pe->state & EEH_PE_KEEP)) {
470 			if (list_empty(&pe->edevs) &&
471 			    list_empty(&pe->child_list)) {
472 				list_del(&pe->child);
473 				kfree(pe);
474 			} else {
475 				break;
476 			}
477 		} else {
478 			if (list_empty(&pe->edevs)) {
479 				cnt = 0;
480 				list_for_each_entry(child, &pe->child_list, child) {
481 					if (!(child->type & EEH_PE_INVALID)) {
482 						cnt++;
483 						break;
484 					}
485 				}
486 
487 				if (!cnt)
488 					pe->type |= EEH_PE_INVALID;
489 				else
490 					break;
491 			}
492 		}
493 
494 		pe = parent;
495 	}
496 
497 	return 0;
498 }
499 
500 /**
501  * eeh_pe_update_time_stamp - Update PE's frozen time stamp
502  * @pe: EEH PE
503  *
504  * We have time stamp for each PE to trace its time of getting
505  * frozen in last hour. The function should be called to update
506  * the time stamp on first error of the specific PE. On the other
507  * handle, we needn't account for errors happened in last hour.
508  */
509 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
510 {
511 	struct timeval tstamp;
512 
513 	if (!pe) return;
514 
515 	if (pe->freeze_count <= 0) {
516 		pe->freeze_count = 0;
517 		do_gettimeofday(&pe->tstamp);
518 	} else {
519 		do_gettimeofday(&tstamp);
520 		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
521 			pe->tstamp = tstamp;
522 			pe->freeze_count = 0;
523 		}
524 	}
525 }
526 
527 /**
528  * __eeh_pe_state_mark - Mark the state for the PE
529  * @data: EEH PE
530  * @flag: state
531  *
532  * The function is used to mark the indicated state for the given
533  * PE. Also, the associated PCI devices will be put into IO frozen
534  * state as well.
535  */
536 static void *__eeh_pe_state_mark(void *data, void *flag)
537 {
538 	struct eeh_pe *pe = (struct eeh_pe *)data;
539 	int state = *((int *)flag);
540 	struct eeh_dev *edev, *tmp;
541 	struct pci_dev *pdev;
542 
543 	/* Keep the state of permanently removed PE intact */
544 	if (pe->state & EEH_PE_REMOVED)
545 		return NULL;
546 
547 	pe->state |= state;
548 
549 	/* Offline PCI devices if applicable */
550 	if (!(state & EEH_PE_ISOLATED))
551 		return NULL;
552 
553 	eeh_pe_for_each_dev(pe, edev, tmp) {
554 		pdev = eeh_dev_to_pci_dev(edev);
555 		if (pdev)
556 			pdev->error_state = pci_channel_io_frozen;
557 	}
558 
559 	/* Block PCI config access if required */
560 	if (pe->state & EEH_PE_CFG_RESTRICTED)
561 		pe->state |= EEH_PE_CFG_BLOCKED;
562 
563 	return NULL;
564 }
565 
566 /**
567  * eeh_pe_state_mark - Mark specified state for PE and its associated device
568  * @pe: EEH PE
569  *
570  * EEH error affects the current PE and its child PEs. The function
571  * is used to mark appropriate state for the affected PEs and the
572  * associated devices.
573  */
574 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
575 {
576 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
577 }
578 
579 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
580 {
581 	struct eeh_dev *edev = data;
582 	int mode = *((int *)flag);
583 
584 	edev->mode |= mode;
585 
586 	return NULL;
587 }
588 
589 /**
590  * eeh_pe_dev_state_mark - Mark state for all device under the PE
591  * @pe: EEH PE
592  *
593  * Mark specific state for all child devices of the PE.
594  */
595 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
596 {
597 	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
598 }
599 
600 /**
601  * __eeh_pe_state_clear - Clear state for the PE
602  * @data: EEH PE
603  * @flag: state
604  *
605  * The function is used to clear the indicated state from the
606  * given PE. Besides, we also clear the check count of the PE
607  * as well.
608  */
609 static void *__eeh_pe_state_clear(void *data, void *flag)
610 {
611 	struct eeh_pe *pe = (struct eeh_pe *)data;
612 	int state = *((int *)flag);
613 	struct eeh_dev *edev, *tmp;
614 	struct pci_dev *pdev;
615 
616 	/* Keep the state of permanently removed PE intact */
617 	if (pe->state & EEH_PE_REMOVED)
618 		return NULL;
619 
620 	pe->state &= ~state;
621 
622 	/*
623 	 * Special treatment on clearing isolated state. Clear
624 	 * check count since last isolation and put all affected
625 	 * devices to normal state.
626 	 */
627 	if (!(state & EEH_PE_ISOLATED))
628 		return NULL;
629 
630 	pe->check_count = 0;
631 	eeh_pe_for_each_dev(pe, edev, tmp) {
632 		pdev = eeh_dev_to_pci_dev(edev);
633 		if (!pdev)
634 			continue;
635 
636 		pdev->error_state = pci_channel_io_normal;
637 	}
638 
639 	/* Unblock PCI config access if required */
640 	if (pe->state & EEH_PE_CFG_RESTRICTED)
641 		pe->state &= ~EEH_PE_CFG_BLOCKED;
642 
643 	return NULL;
644 }
645 
646 /**
647  * eeh_pe_state_clear - Clear state for the PE and its children
648  * @pe: PE
649  * @state: state to be cleared
650  *
651  * When the PE and its children has been recovered from error,
652  * we need clear the error state for that. The function is used
653  * for the purpose.
654  */
655 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
656 {
657 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
658 }
659 
660 /**
661  * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
662  * @pe: PE
663  * @state: PE state to be set
664  *
665  * Set specified flag to PE and its child PEs. The PCI config space
666  * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
667  * which isn't needed in some situations. The function allows to set
668  * the specified flag to indicated PEs without blocking their PCI
669  * config space.
670  */
671 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
672 {
673 	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
674 	if (!(state & EEH_PE_ISOLATED))
675 		return;
676 
677 	/* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
678 	state = EEH_PE_CFG_BLOCKED;
679 	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
680 }
681 
682 /*
683  * Some PCI bridges (e.g. PLX bridges) have primary/secondary
684  * buses assigned explicitly by firmware, and we probably have
685  * lost that after reset. So we have to delay the check until
686  * the PCI-CFG registers have been restored for the parent
687  * bridge.
688  *
689  * Don't use normal PCI-CFG accessors, which probably has been
690  * blocked on normal path during the stage. So we need utilize
691  * eeh operations, which is always permitted.
692  */
693 static void eeh_bridge_check_link(struct eeh_dev *edev)
694 {
695 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
696 	int cap;
697 	uint32_t val;
698 	int timeout = 0;
699 
700 	/*
701 	 * We only check root port and downstream ports of
702 	 * PCIe switches
703 	 */
704 	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
705 		return;
706 
707 	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
708 		 __func__, edev->phb->global_number,
709 		 edev->config_addr >> 8,
710 		 PCI_SLOT(edev->config_addr & 0xFF),
711 		 PCI_FUNC(edev->config_addr & 0xFF));
712 
713 	/* Check slot status */
714 	cap = edev->pcie_cap;
715 	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
716 	if (!(val & PCI_EXP_SLTSTA_PDS)) {
717 		pr_debug("  No card in the slot (0x%04x) !\n", val);
718 		return;
719 	}
720 
721 	/* Check power status if we have the capability */
722 	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
723 	if (val & PCI_EXP_SLTCAP_PCP) {
724 		eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
725 		if (val & PCI_EXP_SLTCTL_PCC) {
726 			pr_debug("  In power-off state, power it on ...\n");
727 			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
728 			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
729 			eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
730 			msleep(2 * 1000);
731 		}
732 	}
733 
734 	/* Enable link */
735 	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
736 	val &= ~PCI_EXP_LNKCTL_LD;
737 	eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
738 
739 	/* Check link */
740 	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
741 	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
742 		pr_debug("  No link reporting capability (0x%08x) \n", val);
743 		msleep(1000);
744 		return;
745 	}
746 
747 	/* Wait the link is up until timeout (5s) */
748 	timeout = 0;
749 	while (timeout < 5000) {
750 		msleep(20);
751 		timeout += 20;
752 
753 		eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
754 		if (val & PCI_EXP_LNKSTA_DLLLA)
755 			break;
756 	}
757 
758 	if (val & PCI_EXP_LNKSTA_DLLLA)
759 		pr_debug("  Link up (%s)\n",
760 			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
761 	else
762 		pr_debug("  Link not ready (0x%04x)\n", val);
763 }
764 
765 #define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
766 #define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
767 
768 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
769 {
770 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
771 	int i;
772 
773 	/*
774 	 * Device BARs: 0x10 - 0x18
775 	 * Bus numbers and windows: 0x18 - 0x30
776 	 */
777 	for (i = 4; i < 13; i++)
778 		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
779 	/* Rom: 0x38 */
780 	eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
781 
782 	/* Cache line & Latency timer: 0xC 0xD */
783 	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
784                 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
785         eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
786                 SAVED_BYTE(PCI_LATENCY_TIMER));
787 	/* Max latency, min grant, interrupt ping and line: 0x3C */
788 	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
789 
790 	/* PCI Command: 0x4 */
791 	eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
792 
793 	/* Check the PCIe link is ready */
794 	eeh_bridge_check_link(edev);
795 }
796 
797 static void eeh_restore_device_bars(struct eeh_dev *edev)
798 {
799 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
800 	int i;
801 	u32 cmd;
802 
803 	for (i = 4; i < 10; i++)
804 		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
805 	/* 12 == Expansion ROM Address */
806 	eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
807 
808 	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
809 		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
810 	eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
811 		SAVED_BYTE(PCI_LATENCY_TIMER));
812 
813 	/* max latency, min grant, interrupt pin and line */
814 	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
815 
816 	/*
817 	 * Restore PERR & SERR bits, some devices require it,
818 	 * don't touch the other command bits
819 	 */
820 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
821 	if (edev->config_space[1] & PCI_COMMAND_PARITY)
822 		cmd |= PCI_COMMAND_PARITY;
823 	else
824 		cmd &= ~PCI_COMMAND_PARITY;
825 	if (edev->config_space[1] & PCI_COMMAND_SERR)
826 		cmd |= PCI_COMMAND_SERR;
827 	else
828 		cmd &= ~PCI_COMMAND_SERR;
829 	eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
830 }
831 
832 /**
833  * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
834  * @data: EEH device
835  * @flag: Unused
836  *
837  * Loads the PCI configuration space base address registers,
838  * the expansion ROM base address, the latency timer, and etc.
839  * from the saved values in the device node.
840  */
841 static void *eeh_restore_one_device_bars(void *data, void *flag)
842 {
843 	struct eeh_dev *edev = (struct eeh_dev *)data;
844 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
845 
846 	/* Do special restore for bridges */
847 	if (edev->mode & EEH_DEV_BRIDGE)
848 		eeh_restore_bridge_bars(edev);
849 	else
850 		eeh_restore_device_bars(edev);
851 
852 	if (eeh_ops->restore_config && pdn)
853 		eeh_ops->restore_config(pdn);
854 
855 	return NULL;
856 }
857 
858 /**
859  * eeh_pe_restore_bars - Restore the PCI config space info
860  * @pe: EEH PE
861  *
862  * This routine performs a recursive walk to the children
863  * of this device as well.
864  */
865 void eeh_pe_restore_bars(struct eeh_pe *pe)
866 {
867 	/*
868 	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
869 	 * will take that.
870 	 */
871 	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
872 }
873 
874 /**
875  * eeh_pe_loc_get - Retrieve location code binding to the given PE
876  * @pe: EEH PE
877  *
878  * Retrieve the location code of the given PE. If the primary PE bus
879  * is root bus, we will grab location code from PHB device tree node
880  * or root port. Otherwise, the upstream bridge's device tree node
881  * of the primary PE bus will be checked for the location code.
882  */
883 const char *eeh_pe_loc_get(struct eeh_pe *pe)
884 {
885 	struct pci_bus *bus = eeh_pe_bus_get(pe);
886 	struct device_node *dn = pci_bus_to_OF_node(bus);
887 	const char *loc = NULL;
888 
889 	if (!dn)
890 		goto out;
891 
892 	/* PHB PE or root PE ? */
893 	if (pci_is_root_bus(bus)) {
894 		loc = of_get_property(dn, "ibm,loc-code", NULL);
895 		if (!loc)
896 			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
897 		if (loc)
898 			goto out;
899 
900 		/* Check the root port */
901 		dn = dn->child;
902 		if (!dn)
903 			goto out;
904 	}
905 
906 	loc = of_get_property(dn, "ibm,loc-code", NULL);
907 	if (!loc)
908 		loc = of_get_property(dn, "ibm,slot-location-code", NULL);
909 
910 out:
911 	return loc ? loc : "N/A";
912 }
913 
914 /**
915  * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
916  * @pe: EEH PE
917  *
918  * Retrieve the PCI bus according to the given PE. Basically,
919  * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
920  * primary PCI bus will be retrieved. The parent bus will be
921  * returned for BUS PE. However, we don't have associated PCI
922  * bus for DEVICE PE.
923  */
924 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
925 {
926 	struct pci_bus *bus = NULL;
927 	struct eeh_dev *edev;
928 	struct pci_dev *pdev;
929 
930 	if (pe->type & EEH_PE_PHB) {
931 		bus = pe->phb->bus;
932 	} else if (pe->type & EEH_PE_BUS ||
933 		   pe->type & EEH_PE_DEVICE) {
934 		if (pe->bus) {
935 			bus = pe->bus;
936 			goto out;
937 		}
938 
939 		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
940 		pdev = eeh_dev_to_pci_dev(edev);
941 		if (pdev)
942 			bus = pdev->bus;
943 	}
944 
945 out:
946 	return bus;
947 }
948