1 /* 2 * The file intends to implement PE based on the information from 3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 4 * All the PEs should be organized as hierarchy tree. The first level 5 * of the tree will be associated to existing PHBs since the particular 6 * PE is only meaningful in one PHB domain. 7 * 8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/gfp.h> 28 #include <linux/kernel.h> 29 #include <linux/pci.h> 30 #include <linux/string.h> 31 32 #include <asm/pci-bridge.h> 33 #include <asm/ppc-pci.h> 34 35 static int eeh_pe_aux_size = 0; 36 static LIST_HEAD(eeh_phb_pe); 37 38 /** 39 * eeh_set_pe_aux_size - Set PE auxillary data size 40 * @size: PE auxillary data size 41 * 42 * Set PE auxillary data size 43 */ 44 void eeh_set_pe_aux_size(int size) 45 { 46 if (size < 0) 47 return; 48 49 eeh_pe_aux_size = size; 50 } 51 52 /** 53 * eeh_pe_alloc - Allocate PE 54 * @phb: PCI controller 55 * @type: PE type 56 * 57 * Allocate PE instance dynamically. 58 */ 59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 60 { 61 struct eeh_pe *pe; 62 size_t alloc_size; 63 64 alloc_size = sizeof(struct eeh_pe); 65 if (eeh_pe_aux_size) { 66 alloc_size = ALIGN(alloc_size, cache_line_size()); 67 alloc_size += eeh_pe_aux_size; 68 } 69 70 /* Allocate PHB PE */ 71 pe = kzalloc(alloc_size, GFP_KERNEL); 72 if (!pe) return NULL; 73 74 /* Initialize PHB PE */ 75 pe->type = type; 76 pe->phb = phb; 77 INIT_LIST_HEAD(&pe->child_list); 78 INIT_LIST_HEAD(&pe->child); 79 INIT_LIST_HEAD(&pe->edevs); 80 81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), 82 cache_line_size()); 83 return pe; 84 } 85 86 /** 87 * eeh_phb_pe_create - Create PHB PE 88 * @phb: PCI controller 89 * 90 * The function should be called while the PHB is detected during 91 * system boot or PCI hotplug in order to create PHB PE. 92 */ 93 int eeh_phb_pe_create(struct pci_controller *phb) 94 { 95 struct eeh_pe *pe; 96 97 /* Allocate PHB PE */ 98 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 99 if (!pe) { 100 pr_err("%s: out of memory!\n", __func__); 101 return -ENOMEM; 102 } 103 104 /* Put it into the list */ 105 list_add_tail(&pe->child, &eeh_phb_pe); 106 107 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); 108 109 return 0; 110 } 111 112 /** 113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 114 * @phb: PCI controller 115 * 116 * The overall PEs form hierarchy tree. The first layer of the 117 * hierarchy tree is composed of PHB PEs. The function is used 118 * to retrieve the corresponding PHB PE according to the given PHB. 119 */ 120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 121 { 122 struct eeh_pe *pe; 123 124 list_for_each_entry(pe, &eeh_phb_pe, child) { 125 /* 126 * Actually, we needn't check the type since 127 * the PE for PHB has been determined when that 128 * was created. 129 */ 130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 131 return pe; 132 } 133 134 return NULL; 135 } 136 137 /** 138 * eeh_pe_next - Retrieve the next PE in the tree 139 * @pe: current PE 140 * @root: root PE 141 * 142 * The function is used to retrieve the next PE in the 143 * hierarchy PE tree. 144 */ 145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, 146 struct eeh_pe *root) 147 { 148 struct list_head *next = pe->child_list.next; 149 150 if (next == &pe->child_list) { 151 while (1) { 152 if (pe == root) 153 return NULL; 154 next = pe->child.next; 155 if (next != &pe->parent->child_list) 156 break; 157 pe = pe->parent; 158 } 159 } 160 161 return list_entry(next, struct eeh_pe, child); 162 } 163 164 /** 165 * eeh_pe_traverse - Traverse PEs in the specified PHB 166 * @root: root PE 167 * @fn: callback 168 * @flag: extra parameter to callback 169 * 170 * The function is used to traverse the specified PE and its 171 * child PEs. The traversing is to be terminated once the 172 * callback returns something other than NULL, or no more PEs 173 * to be traversed. 174 */ 175 void *eeh_pe_traverse(struct eeh_pe *root, 176 eeh_traverse_func fn, void *flag) 177 { 178 struct eeh_pe *pe; 179 void *ret; 180 181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 182 ret = fn(pe, flag); 183 if (ret) return ret; 184 } 185 186 return NULL; 187 } 188 189 /** 190 * eeh_pe_dev_traverse - Traverse the devices from the PE 191 * @root: EEH PE 192 * @fn: function callback 193 * @flag: extra parameter to callback 194 * 195 * The function is used to traverse the devices of the specified 196 * PE and its child PEs. 197 */ 198 void *eeh_pe_dev_traverse(struct eeh_pe *root, 199 eeh_traverse_func fn, void *flag) 200 { 201 struct eeh_pe *pe; 202 struct eeh_dev *edev, *tmp; 203 void *ret; 204 205 if (!root) { 206 pr_warn("%s: Invalid PE %p\n", 207 __func__, root); 208 return NULL; 209 } 210 211 /* Traverse root PE */ 212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 213 eeh_pe_for_each_dev(pe, edev, tmp) { 214 ret = fn(edev, flag); 215 if (ret) 216 return ret; 217 } 218 } 219 220 return NULL; 221 } 222 223 /** 224 * __eeh_pe_get - Check the PE address 225 * @data: EEH PE 226 * @flag: EEH device 227 * 228 * For one particular PE, it can be identified by PE address 229 * or tranditional BDF address. BDF address is composed of 230 * Bus/Device/Function number. The extra data referred by flag 231 * indicates which type of address should be used. 232 */ 233 static void *__eeh_pe_get(void *data, void *flag) 234 { 235 struct eeh_pe *pe = (struct eeh_pe *)data; 236 struct eeh_dev *edev = (struct eeh_dev *)flag; 237 238 /* Unexpected PHB PE */ 239 if (pe->type & EEH_PE_PHB) 240 return NULL; 241 242 /* We prefer PE address */ 243 if (edev->pe_config_addr && 244 (edev->pe_config_addr == pe->addr)) 245 return pe; 246 247 /* Try BDF address */ 248 if (edev->config_addr && 249 (edev->config_addr == pe->config_addr)) 250 return pe; 251 252 return NULL; 253 } 254 255 /** 256 * eeh_pe_get - Search PE based on the given address 257 * @edev: EEH device 258 * 259 * Search the corresponding PE based on the specified address which 260 * is included in the eeh device. The function is used to check if 261 * the associated PE has been created against the PE address. It's 262 * notable that the PE address has 2 format: traditional PE address 263 * which is composed of PCI bus/device/function number, or unified 264 * PE address. 265 */ 266 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) 267 { 268 struct eeh_pe *root = eeh_phb_pe_get(edev->phb); 269 struct eeh_pe *pe; 270 271 pe = eeh_pe_traverse(root, __eeh_pe_get, edev); 272 273 return pe; 274 } 275 276 /** 277 * eeh_pe_get_parent - Retrieve the parent PE 278 * @edev: EEH device 279 * 280 * The whole PEs existing in the system are organized as hierarchy 281 * tree. The function is used to retrieve the parent PE according 282 * to the parent EEH device. 283 */ 284 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) 285 { 286 struct device_node *dn; 287 struct eeh_dev *parent; 288 289 /* 290 * It might have the case for the indirect parent 291 * EEH device already having associated PE, but 292 * the direct parent EEH device doesn't have yet. 293 */ 294 dn = edev->dn->parent; 295 while (dn) { 296 /* We're poking out of PCI territory */ 297 if (!PCI_DN(dn)) return NULL; 298 299 parent = of_node_to_eeh_dev(dn); 300 /* We're poking out of PCI territory */ 301 if (!parent) return NULL; 302 303 if (parent->pe) 304 return parent->pe; 305 306 dn = dn->parent; 307 } 308 309 return NULL; 310 } 311 312 /** 313 * eeh_add_to_parent_pe - Add EEH device to parent PE 314 * @edev: EEH device 315 * 316 * Add EEH device to the parent PE. If the parent PE already 317 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, 318 * we have to create new PE to hold the EEH device and the new 319 * PE will be linked to its parent PE as well. 320 */ 321 int eeh_add_to_parent_pe(struct eeh_dev *edev) 322 { 323 struct eeh_pe *pe, *parent; 324 325 /* 326 * Search the PE has been existing or not according 327 * to the PE address. If that has been existing, the 328 * PE should be composed of PCI bus and its subordinate 329 * components. 330 */ 331 pe = eeh_pe_get(edev); 332 if (pe && !(pe->type & EEH_PE_INVALID)) { 333 if (!edev->pe_config_addr) { 334 pr_err("%s: PE with addr 0x%x already exists\n", 335 __func__, edev->config_addr); 336 return -EEXIST; 337 } 338 339 /* Mark the PE as type of PCI bus */ 340 pe->type = EEH_PE_BUS; 341 edev->pe = pe; 342 343 /* Put the edev to PE */ 344 list_add_tail(&edev->list, &pe->edevs); 345 pr_debug("EEH: Add %s to Bus PE#%x\n", 346 edev->dn->full_name, pe->addr); 347 348 return 0; 349 } else if (pe && (pe->type & EEH_PE_INVALID)) { 350 list_add_tail(&edev->list, &pe->edevs); 351 edev->pe = pe; 352 /* 353 * We're running to here because of PCI hotplug caused by 354 * EEH recovery. We need clear EEH_PE_INVALID until the top. 355 */ 356 parent = pe; 357 while (parent) { 358 if (!(parent->type & EEH_PE_INVALID)) 359 break; 360 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP); 361 parent = parent->parent; 362 } 363 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", 364 edev->dn->full_name, pe->addr, pe->parent->addr); 365 366 return 0; 367 } 368 369 /* Create a new EEH PE */ 370 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE); 371 if (!pe) { 372 pr_err("%s: out of memory!\n", __func__); 373 return -ENOMEM; 374 } 375 pe->addr = edev->pe_config_addr; 376 pe->config_addr = edev->config_addr; 377 378 /* 379 * Put the new EEH PE into hierarchy tree. If the parent 380 * can't be found, the newly created PE will be attached 381 * to PHB directly. Otherwise, we have to associate the 382 * PE with its parent. 383 */ 384 parent = eeh_pe_get_parent(edev); 385 if (!parent) { 386 parent = eeh_phb_pe_get(edev->phb); 387 if (!parent) { 388 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 389 __func__, edev->phb->global_number); 390 edev->pe = NULL; 391 kfree(pe); 392 return -EEXIST; 393 } 394 } 395 pe->parent = parent; 396 397 /* 398 * Put the newly created PE into the child list and 399 * link the EEH device accordingly. 400 */ 401 list_add_tail(&pe->child, &parent->child_list); 402 list_add_tail(&edev->list, &pe->edevs); 403 edev->pe = pe; 404 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", 405 edev->dn->full_name, pe->addr, pe->parent->addr); 406 407 return 0; 408 } 409 410 /** 411 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE 412 * @edev: EEH device 413 * 414 * The PE hierarchy tree might be changed when doing PCI hotplug. 415 * Also, the PCI devices or buses could be removed from the system 416 * during EEH recovery. So we have to call the function remove the 417 * corresponding PE accordingly if necessary. 418 */ 419 int eeh_rmv_from_parent_pe(struct eeh_dev *edev) 420 { 421 struct eeh_pe *pe, *parent, *child; 422 int cnt; 423 424 if (!edev->pe) { 425 pr_debug("%s: No PE found for EEH device %s\n", 426 __func__, edev->dn->full_name); 427 return -EEXIST; 428 } 429 430 /* Remove the EEH device */ 431 pe = edev->pe; 432 edev->pe = NULL; 433 list_del(&edev->list); 434 435 /* 436 * Check if the parent PE includes any EEH devices. 437 * If not, we should delete that. Also, we should 438 * delete the parent PE if it doesn't have associated 439 * child PEs and EEH devices. 440 */ 441 while (1) { 442 parent = pe->parent; 443 if (pe->type & EEH_PE_PHB) 444 break; 445 446 if (!(pe->state & EEH_PE_KEEP)) { 447 if (list_empty(&pe->edevs) && 448 list_empty(&pe->child_list)) { 449 list_del(&pe->child); 450 kfree(pe); 451 } else { 452 break; 453 } 454 } else { 455 if (list_empty(&pe->edevs)) { 456 cnt = 0; 457 list_for_each_entry(child, &pe->child_list, child) { 458 if (!(child->type & EEH_PE_INVALID)) { 459 cnt++; 460 break; 461 } 462 } 463 464 if (!cnt) 465 pe->type |= EEH_PE_INVALID; 466 else 467 break; 468 } 469 } 470 471 pe = parent; 472 } 473 474 return 0; 475 } 476 477 /** 478 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 479 * @pe: EEH PE 480 * 481 * We have time stamp for each PE to trace its time of getting 482 * frozen in last hour. The function should be called to update 483 * the time stamp on first error of the specific PE. On the other 484 * handle, we needn't account for errors happened in last hour. 485 */ 486 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 487 { 488 struct timeval tstamp; 489 490 if (!pe) return; 491 492 if (pe->freeze_count <= 0) { 493 pe->freeze_count = 0; 494 do_gettimeofday(&pe->tstamp); 495 } else { 496 do_gettimeofday(&tstamp); 497 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) { 498 pe->tstamp = tstamp; 499 pe->freeze_count = 0; 500 } 501 } 502 } 503 504 /** 505 * __eeh_pe_state_mark - Mark the state for the PE 506 * @data: EEH PE 507 * @flag: state 508 * 509 * The function is used to mark the indicated state for the given 510 * PE. Also, the associated PCI devices will be put into IO frozen 511 * state as well. 512 */ 513 static void *__eeh_pe_state_mark(void *data, void *flag) 514 { 515 struct eeh_pe *pe = (struct eeh_pe *)data; 516 int state = *((int *)flag); 517 struct eeh_dev *edev, *tmp; 518 struct pci_dev *pdev; 519 520 /* Keep the state of permanently removed PE intact */ 521 if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) && 522 (state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING))) 523 return NULL; 524 525 pe->state |= state; 526 527 /* Offline PCI devices if applicable */ 528 if (state != EEH_PE_ISOLATED) 529 return NULL; 530 531 eeh_pe_for_each_dev(pe, edev, tmp) { 532 pdev = eeh_dev_to_pci_dev(edev); 533 if (pdev) 534 pdev->error_state = pci_channel_io_frozen; 535 } 536 537 return NULL; 538 } 539 540 /** 541 * eeh_pe_state_mark - Mark specified state for PE and its associated device 542 * @pe: EEH PE 543 * 544 * EEH error affects the current PE and its child PEs. The function 545 * is used to mark appropriate state for the affected PEs and the 546 * associated devices. 547 */ 548 void eeh_pe_state_mark(struct eeh_pe *pe, int state) 549 { 550 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 551 } 552 553 static void *__eeh_pe_dev_mode_mark(void *data, void *flag) 554 { 555 struct eeh_dev *edev = data; 556 int mode = *((int *)flag); 557 558 edev->mode |= mode; 559 560 return NULL; 561 } 562 563 /** 564 * eeh_pe_dev_state_mark - Mark state for all device under the PE 565 * @pe: EEH PE 566 * 567 * Mark specific state for all child devices of the PE. 568 */ 569 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) 570 { 571 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); 572 } 573 574 /** 575 * __eeh_pe_state_clear - Clear state for the PE 576 * @data: EEH PE 577 * @flag: state 578 * 579 * The function is used to clear the indicated state from the 580 * given PE. Besides, we also clear the check count of the PE 581 * as well. 582 */ 583 static void *__eeh_pe_state_clear(void *data, void *flag) 584 { 585 struct eeh_pe *pe = (struct eeh_pe *)data; 586 int state = *((int *)flag); 587 588 /* Keep the state of permanently removed PE intact */ 589 if ((pe->freeze_count > EEH_MAX_ALLOWED_FREEZES) && 590 (state & EEH_PE_ISOLATED)) 591 return NULL; 592 593 pe->state &= ~state; 594 595 /* Clear check count since last isolation */ 596 if (state & EEH_PE_ISOLATED) 597 pe->check_count = 0; 598 599 return NULL; 600 } 601 602 /** 603 * eeh_pe_state_clear - Clear state for the PE and its children 604 * @pe: PE 605 * @state: state to be cleared 606 * 607 * When the PE and its children has been recovered from error, 608 * we need clear the error state for that. The function is used 609 * for the purpose. 610 */ 611 void eeh_pe_state_clear(struct eeh_pe *pe, int state) 612 { 613 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 614 } 615 616 /* 617 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 618 * buses assigned explicitly by firmware, and we probably have 619 * lost that after reset. So we have to delay the check until 620 * the PCI-CFG registers have been restored for the parent 621 * bridge. 622 * 623 * Don't use normal PCI-CFG accessors, which probably has been 624 * blocked on normal path during the stage. So we need utilize 625 * eeh operations, which is always permitted. 626 */ 627 static void eeh_bridge_check_link(struct eeh_dev *edev, 628 struct device_node *dn) 629 { 630 int cap; 631 uint32_t val; 632 int timeout = 0; 633 634 /* 635 * We only check root port and downstream ports of 636 * PCIe switches 637 */ 638 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 639 return; 640 641 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n", 642 __func__, edev->phb->global_number, 643 edev->config_addr >> 8, 644 PCI_SLOT(edev->config_addr & 0xFF), 645 PCI_FUNC(edev->config_addr & 0xFF)); 646 647 /* Check slot status */ 648 cap = edev->pcie_cap; 649 eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val); 650 if (!(val & PCI_EXP_SLTSTA_PDS)) { 651 pr_debug(" No card in the slot (0x%04x) !\n", val); 652 return; 653 } 654 655 /* Check power status if we have the capability */ 656 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val); 657 if (val & PCI_EXP_SLTCAP_PCP) { 658 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val); 659 if (val & PCI_EXP_SLTCTL_PCC) { 660 pr_debug(" In power-off state, power it on ...\n"); 661 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 662 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 663 eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val); 664 msleep(2 * 1000); 665 } 666 } 667 668 /* Enable link */ 669 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val); 670 val &= ~PCI_EXP_LNKCTL_LD; 671 eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val); 672 673 /* Check link */ 674 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val); 675 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 676 pr_debug(" No link reporting capability (0x%08x) \n", val); 677 msleep(1000); 678 return; 679 } 680 681 /* Wait the link is up until timeout (5s) */ 682 timeout = 0; 683 while (timeout < 5000) { 684 msleep(20); 685 timeout += 20; 686 687 eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val); 688 if (val & PCI_EXP_LNKSTA_DLLLA) 689 break; 690 } 691 692 if (val & PCI_EXP_LNKSTA_DLLLA) 693 pr_debug(" Link up (%s)\n", 694 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 695 else 696 pr_debug(" Link not ready (0x%04x)\n", val); 697 } 698 699 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 700 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 701 702 static void eeh_restore_bridge_bars(struct eeh_dev *edev, 703 struct device_node *dn) 704 { 705 int i; 706 707 /* 708 * Device BARs: 0x10 - 0x18 709 * Bus numbers and windows: 0x18 - 0x30 710 */ 711 for (i = 4; i < 13; i++) 712 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); 713 /* Rom: 0x38 */ 714 eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]); 715 716 /* Cache line & Latency timer: 0xC 0xD */ 717 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, 718 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 719 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, 720 SAVED_BYTE(PCI_LATENCY_TIMER)); 721 /* Max latency, min grant, interrupt ping and line: 0x3C */ 722 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); 723 724 /* PCI Command: 0x4 */ 725 eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]); 726 727 /* Check the PCIe link is ready */ 728 eeh_bridge_check_link(edev, dn); 729 } 730 731 static void eeh_restore_device_bars(struct eeh_dev *edev, 732 struct device_node *dn) 733 { 734 int i; 735 u32 cmd; 736 737 for (i = 4; i < 10; i++) 738 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); 739 /* 12 == Expansion ROM Address */ 740 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]); 741 742 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, 743 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 744 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, 745 SAVED_BYTE(PCI_LATENCY_TIMER)); 746 747 /* max latency, min grant, interrupt pin and line */ 748 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); 749 750 /* 751 * Restore PERR & SERR bits, some devices require it, 752 * don't touch the other command bits 753 */ 754 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd); 755 if (edev->config_space[1] & PCI_COMMAND_PARITY) 756 cmd |= PCI_COMMAND_PARITY; 757 else 758 cmd &= ~PCI_COMMAND_PARITY; 759 if (edev->config_space[1] & PCI_COMMAND_SERR) 760 cmd |= PCI_COMMAND_SERR; 761 else 762 cmd &= ~PCI_COMMAND_SERR; 763 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd); 764 } 765 766 /** 767 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 768 * @data: EEH device 769 * @flag: Unused 770 * 771 * Loads the PCI configuration space base address registers, 772 * the expansion ROM base address, the latency timer, and etc. 773 * from the saved values in the device node. 774 */ 775 static void *eeh_restore_one_device_bars(void *data, void *flag) 776 { 777 struct eeh_dev *edev = (struct eeh_dev *)data; 778 struct device_node *dn = eeh_dev_to_of_node(edev); 779 780 /* Do special restore for bridges */ 781 if (edev->mode & EEH_DEV_BRIDGE) 782 eeh_restore_bridge_bars(edev, dn); 783 else 784 eeh_restore_device_bars(edev, dn); 785 786 if (eeh_ops->restore_config) 787 eeh_ops->restore_config(dn); 788 789 return NULL; 790 } 791 792 /** 793 * eeh_pe_restore_bars - Restore the PCI config space info 794 * @pe: EEH PE 795 * 796 * This routine performs a recursive walk to the children 797 * of this device as well. 798 */ 799 void eeh_pe_restore_bars(struct eeh_pe *pe) 800 { 801 /* 802 * We needn't take the EEH lock since eeh_pe_dev_traverse() 803 * will take that. 804 */ 805 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 806 } 807 808 /** 809 * eeh_pe_loc_get - Retrieve location code binding to the given PE 810 * @pe: EEH PE 811 * 812 * Retrieve the location code of the given PE. If the primary PE bus 813 * is root bus, we will grab location code from PHB device tree node 814 * or root port. Otherwise, the upstream bridge's device tree node 815 * of the primary PE bus will be checked for the location code. 816 */ 817 const char *eeh_pe_loc_get(struct eeh_pe *pe) 818 { 819 struct pci_bus *bus = eeh_pe_bus_get(pe); 820 struct device_node *dn = pci_bus_to_OF_node(bus); 821 const char *loc = NULL; 822 823 if (!dn) 824 goto out; 825 826 /* PHB PE or root PE ? */ 827 if (pci_is_root_bus(bus)) { 828 loc = of_get_property(dn, "ibm,loc-code", NULL); 829 if (!loc) 830 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); 831 if (loc) 832 goto out; 833 834 /* Check the root port */ 835 dn = dn->child; 836 if (!dn) 837 goto out; 838 } 839 840 loc = of_get_property(dn, "ibm,loc-code", NULL); 841 if (!loc) 842 loc = of_get_property(dn, "ibm,slot-location-code", NULL); 843 844 out: 845 return loc ? loc : "N/A"; 846 } 847 848 /** 849 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 850 * @pe: EEH PE 851 * 852 * Retrieve the PCI bus according to the given PE. Basically, 853 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 854 * primary PCI bus will be retrieved. The parent bus will be 855 * returned for BUS PE. However, we don't have associated PCI 856 * bus for DEVICE PE. 857 */ 858 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 859 { 860 struct pci_bus *bus = NULL; 861 struct eeh_dev *edev; 862 struct pci_dev *pdev; 863 864 if (pe->type & EEH_PE_PHB) { 865 bus = pe->phb->bus; 866 } else if (pe->type & EEH_PE_BUS || 867 pe->type & EEH_PE_DEVICE) { 868 if (pe->bus) { 869 bus = pe->bus; 870 goto out; 871 } 872 873 edev = list_first_entry(&pe->edevs, struct eeh_dev, list); 874 pdev = eeh_dev_to_pci_dev(edev); 875 if (pdev) 876 bus = pdev->bus; 877 } 878 879 out: 880 return bus; 881 } 882