1 /* 2 * The file intends to implement PE based on the information from 3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device. 4 * All the PEs should be organized as hierarchy tree. The first level 5 * of the tree will be associated to existing PHBs since the particular 6 * PE is only meaningful in one PHB domain. 7 * 8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/gfp.h> 28 #include <linux/kernel.h> 29 #include <linux/pci.h> 30 #include <linux/string.h> 31 32 #include <asm/pci-bridge.h> 33 #include <asm/ppc-pci.h> 34 35 static int eeh_pe_aux_size = 0; 36 static LIST_HEAD(eeh_phb_pe); 37 38 /** 39 * eeh_set_pe_aux_size - Set PE auxillary data size 40 * @size: PE auxillary data size 41 * 42 * Set PE auxillary data size 43 */ 44 void eeh_set_pe_aux_size(int size) 45 { 46 if (size < 0) 47 return; 48 49 eeh_pe_aux_size = size; 50 } 51 52 /** 53 * eeh_pe_alloc - Allocate PE 54 * @phb: PCI controller 55 * @type: PE type 56 * 57 * Allocate PE instance dynamically. 58 */ 59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type) 60 { 61 struct eeh_pe *pe; 62 size_t alloc_size; 63 64 alloc_size = sizeof(struct eeh_pe); 65 if (eeh_pe_aux_size) { 66 alloc_size = ALIGN(alloc_size, cache_line_size()); 67 alloc_size += eeh_pe_aux_size; 68 } 69 70 /* Allocate PHB PE */ 71 pe = kzalloc(alloc_size, GFP_KERNEL); 72 if (!pe) return NULL; 73 74 /* Initialize PHB PE */ 75 pe->type = type; 76 pe->phb = phb; 77 INIT_LIST_HEAD(&pe->child_list); 78 INIT_LIST_HEAD(&pe->child); 79 INIT_LIST_HEAD(&pe->edevs); 80 81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe), 82 cache_line_size()); 83 return pe; 84 } 85 86 /** 87 * eeh_phb_pe_create - Create PHB PE 88 * @phb: PCI controller 89 * 90 * The function should be called while the PHB is detected during 91 * system boot or PCI hotplug in order to create PHB PE. 92 */ 93 int eeh_phb_pe_create(struct pci_controller *phb) 94 { 95 struct eeh_pe *pe; 96 97 /* Allocate PHB PE */ 98 pe = eeh_pe_alloc(phb, EEH_PE_PHB); 99 if (!pe) { 100 pr_err("%s: out of memory!\n", __func__); 101 return -ENOMEM; 102 } 103 104 /* Put it into the list */ 105 list_add_tail(&pe->child, &eeh_phb_pe); 106 107 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number); 108 109 return 0; 110 } 111 112 /** 113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB 114 * @phb: PCI controller 115 * 116 * The overall PEs form hierarchy tree. The first layer of the 117 * hierarchy tree is composed of PHB PEs. The function is used 118 * to retrieve the corresponding PHB PE according to the given PHB. 119 */ 120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb) 121 { 122 struct eeh_pe *pe; 123 124 list_for_each_entry(pe, &eeh_phb_pe, child) { 125 /* 126 * Actually, we needn't check the type since 127 * the PE for PHB has been determined when that 128 * was created. 129 */ 130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb) 131 return pe; 132 } 133 134 return NULL; 135 } 136 137 /** 138 * eeh_pe_next - Retrieve the next PE in the tree 139 * @pe: current PE 140 * @root: root PE 141 * 142 * The function is used to retrieve the next PE in the 143 * hierarchy PE tree. 144 */ 145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, 146 struct eeh_pe *root) 147 { 148 struct list_head *next = pe->child_list.next; 149 150 if (next == &pe->child_list) { 151 while (1) { 152 if (pe == root) 153 return NULL; 154 next = pe->child.next; 155 if (next != &pe->parent->child_list) 156 break; 157 pe = pe->parent; 158 } 159 } 160 161 return list_entry(next, struct eeh_pe, child); 162 } 163 164 /** 165 * eeh_pe_traverse - Traverse PEs in the specified PHB 166 * @root: root PE 167 * @fn: callback 168 * @flag: extra parameter to callback 169 * 170 * The function is used to traverse the specified PE and its 171 * child PEs. The traversing is to be terminated once the 172 * callback returns something other than NULL, or no more PEs 173 * to be traversed. 174 */ 175 void *eeh_pe_traverse(struct eeh_pe *root, 176 eeh_traverse_func fn, void *flag) 177 { 178 struct eeh_pe *pe; 179 void *ret; 180 181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 182 ret = fn(pe, flag); 183 if (ret) return ret; 184 } 185 186 return NULL; 187 } 188 189 /** 190 * eeh_pe_dev_traverse - Traverse the devices from the PE 191 * @root: EEH PE 192 * @fn: function callback 193 * @flag: extra parameter to callback 194 * 195 * The function is used to traverse the devices of the specified 196 * PE and its child PEs. 197 */ 198 void *eeh_pe_dev_traverse(struct eeh_pe *root, 199 eeh_traverse_func fn, void *flag) 200 { 201 struct eeh_pe *pe; 202 struct eeh_dev *edev, *tmp; 203 void *ret; 204 205 if (!root) { 206 pr_warn("%s: Invalid PE %p\n", 207 __func__, root); 208 return NULL; 209 } 210 211 /* Traverse root PE */ 212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) { 213 eeh_pe_for_each_dev(pe, edev, tmp) { 214 ret = fn(edev, flag); 215 if (ret) 216 return ret; 217 } 218 } 219 220 return NULL; 221 } 222 223 /** 224 * __eeh_pe_get - Check the PE address 225 * @data: EEH PE 226 * @flag: EEH device 227 * 228 * For one particular PE, it can be identified by PE address 229 * or tranditional BDF address. BDF address is composed of 230 * Bus/Device/Function number. The extra data referred by flag 231 * indicates which type of address should be used. 232 */ 233 static void *__eeh_pe_get(void *data, void *flag) 234 { 235 struct eeh_pe *pe = (struct eeh_pe *)data; 236 struct eeh_dev *edev = (struct eeh_dev *)flag; 237 238 /* Unexpected PHB PE */ 239 if (pe->type & EEH_PE_PHB) 240 return NULL; 241 242 /* 243 * We prefer PE address. For most cases, we should 244 * have non-zero PE address 245 */ 246 if (eeh_has_flag(EEH_VALID_PE_ZERO)) { 247 if (edev->pe_config_addr == pe->addr) 248 return pe; 249 } else { 250 if (edev->pe_config_addr && 251 (edev->pe_config_addr == pe->addr)) 252 return pe; 253 } 254 255 /* Try BDF address */ 256 if (edev->config_addr && 257 (edev->config_addr == pe->config_addr)) 258 return pe; 259 260 return NULL; 261 } 262 263 /** 264 * eeh_pe_get - Search PE based on the given address 265 * @edev: EEH device 266 * 267 * Search the corresponding PE based on the specified address which 268 * is included in the eeh device. The function is used to check if 269 * the associated PE has been created against the PE address. It's 270 * notable that the PE address has 2 format: traditional PE address 271 * which is composed of PCI bus/device/function number, or unified 272 * PE address. 273 */ 274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev) 275 { 276 struct eeh_pe *root = eeh_phb_pe_get(edev->phb); 277 struct eeh_pe *pe; 278 279 pe = eeh_pe_traverse(root, __eeh_pe_get, edev); 280 281 return pe; 282 } 283 284 /** 285 * eeh_pe_get_parent - Retrieve the parent PE 286 * @edev: EEH device 287 * 288 * The whole PEs existing in the system are organized as hierarchy 289 * tree. The function is used to retrieve the parent PE according 290 * to the parent EEH device. 291 */ 292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev) 293 { 294 struct device_node *dn; 295 struct eeh_dev *parent; 296 297 /* 298 * It might have the case for the indirect parent 299 * EEH device already having associated PE, but 300 * the direct parent EEH device doesn't have yet. 301 */ 302 dn = edev->dn->parent; 303 while (dn) { 304 /* We're poking out of PCI territory */ 305 if (!PCI_DN(dn)) return NULL; 306 307 parent = of_node_to_eeh_dev(dn); 308 /* We're poking out of PCI territory */ 309 if (!parent) return NULL; 310 311 if (parent->pe) 312 return parent->pe; 313 314 dn = dn->parent; 315 } 316 317 return NULL; 318 } 319 320 /** 321 * eeh_add_to_parent_pe - Add EEH device to parent PE 322 * @edev: EEH device 323 * 324 * Add EEH device to the parent PE. If the parent PE already 325 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise, 326 * we have to create new PE to hold the EEH device and the new 327 * PE will be linked to its parent PE as well. 328 */ 329 int eeh_add_to_parent_pe(struct eeh_dev *edev) 330 { 331 struct eeh_pe *pe, *parent; 332 333 /* 334 * Search the PE has been existing or not according 335 * to the PE address. If that has been existing, the 336 * PE should be composed of PCI bus and its subordinate 337 * components. 338 */ 339 pe = eeh_pe_get(edev); 340 if (pe && !(pe->type & EEH_PE_INVALID)) { 341 if (!edev->pe_config_addr) { 342 pr_err("%s: PE with addr 0x%x already exists\n", 343 __func__, edev->config_addr); 344 return -EEXIST; 345 } 346 347 /* Mark the PE as type of PCI bus */ 348 pe->type = EEH_PE_BUS; 349 edev->pe = pe; 350 351 /* Put the edev to PE */ 352 list_add_tail(&edev->list, &pe->edevs); 353 pr_debug("EEH: Add %s to Bus PE#%x\n", 354 edev->dn->full_name, pe->addr); 355 356 return 0; 357 } else if (pe && (pe->type & EEH_PE_INVALID)) { 358 list_add_tail(&edev->list, &pe->edevs); 359 edev->pe = pe; 360 /* 361 * We're running to here because of PCI hotplug caused by 362 * EEH recovery. We need clear EEH_PE_INVALID until the top. 363 */ 364 parent = pe; 365 while (parent) { 366 if (!(parent->type & EEH_PE_INVALID)) 367 break; 368 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP); 369 parent = parent->parent; 370 } 371 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", 372 edev->dn->full_name, pe->addr, pe->parent->addr); 373 374 return 0; 375 } 376 377 /* Create a new EEH PE */ 378 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE); 379 if (!pe) { 380 pr_err("%s: out of memory!\n", __func__); 381 return -ENOMEM; 382 } 383 pe->addr = edev->pe_config_addr; 384 pe->config_addr = edev->config_addr; 385 386 /* 387 * Put the new EEH PE into hierarchy tree. If the parent 388 * can't be found, the newly created PE will be attached 389 * to PHB directly. Otherwise, we have to associate the 390 * PE with its parent. 391 */ 392 parent = eeh_pe_get_parent(edev); 393 if (!parent) { 394 parent = eeh_phb_pe_get(edev->phb); 395 if (!parent) { 396 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n", 397 __func__, edev->phb->global_number); 398 edev->pe = NULL; 399 kfree(pe); 400 return -EEXIST; 401 } 402 } 403 pe->parent = parent; 404 405 /* 406 * Put the newly created PE into the child list and 407 * link the EEH device accordingly. 408 */ 409 list_add_tail(&pe->child, &parent->child_list); 410 list_add_tail(&edev->list, &pe->edevs); 411 edev->pe = pe; 412 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n", 413 edev->dn->full_name, pe->addr, pe->parent->addr); 414 415 return 0; 416 } 417 418 /** 419 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE 420 * @edev: EEH device 421 * 422 * The PE hierarchy tree might be changed when doing PCI hotplug. 423 * Also, the PCI devices or buses could be removed from the system 424 * during EEH recovery. So we have to call the function remove the 425 * corresponding PE accordingly if necessary. 426 */ 427 int eeh_rmv_from_parent_pe(struct eeh_dev *edev) 428 { 429 struct eeh_pe *pe, *parent, *child; 430 int cnt; 431 432 if (!edev->pe) { 433 pr_debug("%s: No PE found for EEH device %s\n", 434 __func__, edev->dn->full_name); 435 return -EEXIST; 436 } 437 438 /* Remove the EEH device */ 439 pe = eeh_dev_to_pe(edev); 440 edev->pe = NULL; 441 list_del(&edev->list); 442 443 /* 444 * Check if the parent PE includes any EEH devices. 445 * If not, we should delete that. Also, we should 446 * delete the parent PE if it doesn't have associated 447 * child PEs and EEH devices. 448 */ 449 while (1) { 450 parent = pe->parent; 451 if (pe->type & EEH_PE_PHB) 452 break; 453 454 if (!(pe->state & EEH_PE_KEEP)) { 455 if (list_empty(&pe->edevs) && 456 list_empty(&pe->child_list)) { 457 list_del(&pe->child); 458 kfree(pe); 459 } else { 460 break; 461 } 462 } else { 463 if (list_empty(&pe->edevs)) { 464 cnt = 0; 465 list_for_each_entry(child, &pe->child_list, child) { 466 if (!(child->type & EEH_PE_INVALID)) { 467 cnt++; 468 break; 469 } 470 } 471 472 if (!cnt) 473 pe->type |= EEH_PE_INVALID; 474 else 475 break; 476 } 477 } 478 479 pe = parent; 480 } 481 482 return 0; 483 } 484 485 /** 486 * eeh_pe_update_time_stamp - Update PE's frozen time stamp 487 * @pe: EEH PE 488 * 489 * We have time stamp for each PE to trace its time of getting 490 * frozen in last hour. The function should be called to update 491 * the time stamp on first error of the specific PE. On the other 492 * handle, we needn't account for errors happened in last hour. 493 */ 494 void eeh_pe_update_time_stamp(struct eeh_pe *pe) 495 { 496 struct timeval tstamp; 497 498 if (!pe) return; 499 500 if (pe->freeze_count <= 0) { 501 pe->freeze_count = 0; 502 do_gettimeofday(&pe->tstamp); 503 } else { 504 do_gettimeofday(&tstamp); 505 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) { 506 pe->tstamp = tstamp; 507 pe->freeze_count = 0; 508 } 509 } 510 } 511 512 /** 513 * __eeh_pe_state_mark - Mark the state for the PE 514 * @data: EEH PE 515 * @flag: state 516 * 517 * The function is used to mark the indicated state for the given 518 * PE. Also, the associated PCI devices will be put into IO frozen 519 * state as well. 520 */ 521 static void *__eeh_pe_state_mark(void *data, void *flag) 522 { 523 struct eeh_pe *pe = (struct eeh_pe *)data; 524 int state = *((int *)flag); 525 struct eeh_dev *edev, *tmp; 526 struct pci_dev *pdev; 527 528 /* Keep the state of permanently removed PE intact */ 529 if (pe->state & EEH_PE_REMOVED) 530 return NULL; 531 532 pe->state |= state; 533 534 /* Offline PCI devices if applicable */ 535 if (!(state & EEH_PE_ISOLATED)) 536 return NULL; 537 538 eeh_pe_for_each_dev(pe, edev, tmp) { 539 pdev = eeh_dev_to_pci_dev(edev); 540 if (pdev) 541 pdev->error_state = pci_channel_io_frozen; 542 } 543 544 /* Block PCI config access if required */ 545 if (pe->state & EEH_PE_CFG_RESTRICTED) 546 pe->state |= EEH_PE_CFG_BLOCKED; 547 548 return NULL; 549 } 550 551 /** 552 * eeh_pe_state_mark - Mark specified state for PE and its associated device 553 * @pe: EEH PE 554 * 555 * EEH error affects the current PE and its child PEs. The function 556 * is used to mark appropriate state for the affected PEs and the 557 * associated devices. 558 */ 559 void eeh_pe_state_mark(struct eeh_pe *pe, int state) 560 { 561 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state); 562 } 563 564 static void *__eeh_pe_dev_mode_mark(void *data, void *flag) 565 { 566 struct eeh_dev *edev = data; 567 int mode = *((int *)flag); 568 569 edev->mode |= mode; 570 571 return NULL; 572 } 573 574 /** 575 * eeh_pe_dev_state_mark - Mark state for all device under the PE 576 * @pe: EEH PE 577 * 578 * Mark specific state for all child devices of the PE. 579 */ 580 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode) 581 { 582 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode); 583 } 584 585 /** 586 * __eeh_pe_state_clear - Clear state for the PE 587 * @data: EEH PE 588 * @flag: state 589 * 590 * The function is used to clear the indicated state from the 591 * given PE. Besides, we also clear the check count of the PE 592 * as well. 593 */ 594 static void *__eeh_pe_state_clear(void *data, void *flag) 595 { 596 struct eeh_pe *pe = (struct eeh_pe *)data; 597 int state = *((int *)flag); 598 struct eeh_dev *edev, *tmp; 599 struct pci_dev *pdev; 600 601 /* Keep the state of permanently removed PE intact */ 602 if (pe->state & EEH_PE_REMOVED) 603 return NULL; 604 605 pe->state &= ~state; 606 607 /* 608 * Special treatment on clearing isolated state. Clear 609 * check count since last isolation and put all affected 610 * devices to normal state. 611 */ 612 if (!(state & EEH_PE_ISOLATED)) 613 return NULL; 614 615 pe->check_count = 0; 616 eeh_pe_for_each_dev(pe, edev, tmp) { 617 pdev = eeh_dev_to_pci_dev(edev); 618 if (!pdev) 619 continue; 620 621 pdev->error_state = pci_channel_io_normal; 622 } 623 624 /* Unblock PCI config access if required */ 625 if (pe->state & EEH_PE_CFG_RESTRICTED) 626 pe->state &= ~EEH_PE_CFG_BLOCKED; 627 628 return NULL; 629 } 630 631 /** 632 * eeh_pe_state_clear - Clear state for the PE and its children 633 * @pe: PE 634 * @state: state to be cleared 635 * 636 * When the PE and its children has been recovered from error, 637 * we need clear the error state for that. The function is used 638 * for the purpose. 639 */ 640 void eeh_pe_state_clear(struct eeh_pe *pe, int state) 641 { 642 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state); 643 } 644 645 /* 646 * Some PCI bridges (e.g. PLX bridges) have primary/secondary 647 * buses assigned explicitly by firmware, and we probably have 648 * lost that after reset. So we have to delay the check until 649 * the PCI-CFG registers have been restored for the parent 650 * bridge. 651 * 652 * Don't use normal PCI-CFG accessors, which probably has been 653 * blocked on normal path during the stage. So we need utilize 654 * eeh operations, which is always permitted. 655 */ 656 static void eeh_bridge_check_link(struct eeh_dev *edev, 657 struct device_node *dn) 658 { 659 int cap; 660 uint32_t val; 661 int timeout = 0; 662 663 /* 664 * We only check root port and downstream ports of 665 * PCIe switches 666 */ 667 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT))) 668 return; 669 670 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n", 671 __func__, edev->phb->global_number, 672 edev->config_addr >> 8, 673 PCI_SLOT(edev->config_addr & 0xFF), 674 PCI_FUNC(edev->config_addr & 0xFF)); 675 676 /* Check slot status */ 677 cap = edev->pcie_cap; 678 eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val); 679 if (!(val & PCI_EXP_SLTSTA_PDS)) { 680 pr_debug(" No card in the slot (0x%04x) !\n", val); 681 return; 682 } 683 684 /* Check power status if we have the capability */ 685 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val); 686 if (val & PCI_EXP_SLTCAP_PCP) { 687 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val); 688 if (val & PCI_EXP_SLTCTL_PCC) { 689 pr_debug(" In power-off state, power it on ...\n"); 690 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC); 691 val |= (0x0100 & PCI_EXP_SLTCTL_PIC); 692 eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val); 693 msleep(2 * 1000); 694 } 695 } 696 697 /* Enable link */ 698 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val); 699 val &= ~PCI_EXP_LNKCTL_LD; 700 eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val); 701 702 /* Check link */ 703 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val); 704 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) { 705 pr_debug(" No link reporting capability (0x%08x) \n", val); 706 msleep(1000); 707 return; 708 } 709 710 /* Wait the link is up until timeout (5s) */ 711 timeout = 0; 712 while (timeout < 5000) { 713 msleep(20); 714 timeout += 20; 715 716 eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val); 717 if (val & PCI_EXP_LNKSTA_DLLLA) 718 break; 719 } 720 721 if (val & PCI_EXP_LNKSTA_DLLLA) 722 pr_debug(" Link up (%s)\n", 723 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB"); 724 else 725 pr_debug(" Link not ready (0x%04x)\n", val); 726 } 727 728 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF)) 729 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)]) 730 731 static void eeh_restore_bridge_bars(struct eeh_dev *edev, 732 struct device_node *dn) 733 { 734 int i; 735 736 /* 737 * Device BARs: 0x10 - 0x18 738 * Bus numbers and windows: 0x18 - 0x30 739 */ 740 for (i = 4; i < 13; i++) 741 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); 742 /* Rom: 0x38 */ 743 eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]); 744 745 /* Cache line & Latency timer: 0xC 0xD */ 746 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, 747 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 748 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, 749 SAVED_BYTE(PCI_LATENCY_TIMER)); 750 /* Max latency, min grant, interrupt ping and line: 0x3C */ 751 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); 752 753 /* PCI Command: 0x4 */ 754 eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]); 755 756 /* Check the PCIe link is ready */ 757 eeh_bridge_check_link(edev, dn); 758 } 759 760 static void eeh_restore_device_bars(struct eeh_dev *edev, 761 struct device_node *dn) 762 { 763 int i; 764 u32 cmd; 765 766 for (i = 4; i < 10; i++) 767 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]); 768 /* 12 == Expansion ROM Address */ 769 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]); 770 771 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1, 772 SAVED_BYTE(PCI_CACHE_LINE_SIZE)); 773 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1, 774 SAVED_BYTE(PCI_LATENCY_TIMER)); 775 776 /* max latency, min grant, interrupt pin and line */ 777 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]); 778 779 /* 780 * Restore PERR & SERR bits, some devices require it, 781 * don't touch the other command bits 782 */ 783 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd); 784 if (edev->config_space[1] & PCI_COMMAND_PARITY) 785 cmd |= PCI_COMMAND_PARITY; 786 else 787 cmd &= ~PCI_COMMAND_PARITY; 788 if (edev->config_space[1] & PCI_COMMAND_SERR) 789 cmd |= PCI_COMMAND_SERR; 790 else 791 cmd &= ~PCI_COMMAND_SERR; 792 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd); 793 } 794 795 /** 796 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device 797 * @data: EEH device 798 * @flag: Unused 799 * 800 * Loads the PCI configuration space base address registers, 801 * the expansion ROM base address, the latency timer, and etc. 802 * from the saved values in the device node. 803 */ 804 static void *eeh_restore_one_device_bars(void *data, void *flag) 805 { 806 struct eeh_dev *edev = (struct eeh_dev *)data; 807 struct device_node *dn = eeh_dev_to_of_node(edev); 808 809 /* Do special restore for bridges */ 810 if (edev->mode & EEH_DEV_BRIDGE) 811 eeh_restore_bridge_bars(edev, dn); 812 else 813 eeh_restore_device_bars(edev, dn); 814 815 if (eeh_ops->restore_config) 816 eeh_ops->restore_config(dn); 817 818 return NULL; 819 } 820 821 /** 822 * eeh_pe_restore_bars - Restore the PCI config space info 823 * @pe: EEH PE 824 * 825 * This routine performs a recursive walk to the children 826 * of this device as well. 827 */ 828 void eeh_pe_restore_bars(struct eeh_pe *pe) 829 { 830 /* 831 * We needn't take the EEH lock since eeh_pe_dev_traverse() 832 * will take that. 833 */ 834 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL); 835 } 836 837 /** 838 * eeh_pe_loc_get - Retrieve location code binding to the given PE 839 * @pe: EEH PE 840 * 841 * Retrieve the location code of the given PE. If the primary PE bus 842 * is root bus, we will grab location code from PHB device tree node 843 * or root port. Otherwise, the upstream bridge's device tree node 844 * of the primary PE bus will be checked for the location code. 845 */ 846 const char *eeh_pe_loc_get(struct eeh_pe *pe) 847 { 848 struct pci_bus *bus = eeh_pe_bus_get(pe); 849 struct device_node *dn = pci_bus_to_OF_node(bus); 850 const char *loc = NULL; 851 852 if (!dn) 853 goto out; 854 855 /* PHB PE or root PE ? */ 856 if (pci_is_root_bus(bus)) { 857 loc = of_get_property(dn, "ibm,loc-code", NULL); 858 if (!loc) 859 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL); 860 if (loc) 861 goto out; 862 863 /* Check the root port */ 864 dn = dn->child; 865 if (!dn) 866 goto out; 867 } 868 869 loc = of_get_property(dn, "ibm,loc-code", NULL); 870 if (!loc) 871 loc = of_get_property(dn, "ibm,slot-location-code", NULL); 872 873 out: 874 return loc ? loc : "N/A"; 875 } 876 877 /** 878 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE 879 * @pe: EEH PE 880 * 881 * Retrieve the PCI bus according to the given PE. Basically, 882 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the 883 * primary PCI bus will be retrieved. The parent bus will be 884 * returned for BUS PE. However, we don't have associated PCI 885 * bus for DEVICE PE. 886 */ 887 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe) 888 { 889 struct pci_bus *bus = NULL; 890 struct eeh_dev *edev; 891 struct pci_dev *pdev; 892 893 if (pe->type & EEH_PE_PHB) { 894 bus = pe->phb->bus; 895 } else if (pe->type & EEH_PE_BUS || 896 pe->type & EEH_PE_DEVICE) { 897 if (pe->bus) { 898 bus = pe->bus; 899 goto out; 900 } 901 902 edev = list_first_entry(&pe->edevs, struct eeh_dev, list); 903 pdev = eeh_dev_to_pci_dev(edev); 904 if (pdev) 905 bus = pdev->bus; 906 } 907 908 out: 909 return bus; 910 } 911