xref: /linux/arch/powerpc/kernel/eeh_cache.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  * PCI address cache; allows the lookup of PCI devices based on I/O address
3  *
4  * Copyright IBM Corporation 2004
5  * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  */
21 
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/rbtree.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/debugfs.h>
30 #include <asm/ppc-pci.h>
31 
32 
33 /**
34  * The pci address cache subsystem.  This subsystem places
35  * PCI device address resources into a red-black tree, sorted
36  * according to the address range, so that given only an i/o
37  * address, the corresponding PCI device can be **quickly**
38  * found. It is safe to perform an address lookup in an interrupt
39  * context; this ability is an important feature.
40  *
41  * Currently, the only customer of this code is the EEH subsystem;
42  * thus, this code has been somewhat tailored to suit EEH better.
43  * In particular, the cache does *not* hold the addresses of devices
44  * for which EEH is not enabled.
45  *
46  * (Implementation Note: The RB tree seems to be better/faster
47  * than any hash algo I could think of for this problem, even
48  * with the penalty of slow pointer chases for d-cache misses).
49  */
50 struct pci_io_addr_range {
51 	struct rb_node rb_node;
52 	resource_size_t addr_lo;
53 	resource_size_t addr_hi;
54 	struct eeh_dev *edev;
55 	struct pci_dev *pcidev;
56 	unsigned long flags;
57 };
58 
59 static struct pci_io_addr_cache {
60 	struct rb_root rb_root;
61 	spinlock_t piar_lock;
62 } pci_io_addr_cache_root;
63 
64 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
65 {
66 	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
67 
68 	while (n) {
69 		struct pci_io_addr_range *piar;
70 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
71 
72 		if (addr < piar->addr_lo)
73 			n = n->rb_left;
74 		else if (addr > piar->addr_hi)
75 			n = n->rb_right;
76 		else
77 			return piar->edev;
78 	}
79 
80 	return NULL;
81 }
82 
83 /**
84  * eeh_addr_cache_get_dev - Get device, given only address
85  * @addr: mmio (PIO) phys address or i/o port number
86  *
87  * Given an mmio phys address, or a port number, find a pci device
88  * that implements this address.  I/O port numbers are assumed to be offset
89  * from zero (that is, they do *not* have pci_io_addr added in).
90  * It is safe to call this function within an interrupt.
91  */
92 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
93 {
94 	struct eeh_dev *edev;
95 	unsigned long flags;
96 
97 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
98 	edev = __eeh_addr_cache_get_device(addr);
99 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
100 	return edev;
101 }
102 
103 #ifdef DEBUG
104 /*
105  * Handy-dandy debug print routine, does nothing more
106  * than print out the contents of our addr cache.
107  */
108 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
109 {
110 	struct rb_node *n;
111 	int cnt = 0;
112 
113 	n = rb_first(&cache->rb_root);
114 	while (n) {
115 		struct pci_io_addr_range *piar;
116 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
117 		pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
118 		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
119 		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
120 		cnt++;
121 		n = rb_next(n);
122 	}
123 }
124 #endif
125 
126 /* Insert address range into the rb tree. */
127 static struct pci_io_addr_range *
128 eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
129 		      resource_size_t ahi, unsigned long flags)
130 {
131 	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
132 	struct rb_node *parent = NULL;
133 	struct pci_io_addr_range *piar;
134 
135 	/* Walk tree, find a place to insert into tree */
136 	while (*p) {
137 		parent = *p;
138 		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
139 		if (ahi < piar->addr_lo) {
140 			p = &parent->rb_left;
141 		} else if (alo > piar->addr_hi) {
142 			p = &parent->rb_right;
143 		} else {
144 			if (dev != piar->pcidev ||
145 			    alo != piar->addr_lo || ahi != piar->addr_hi) {
146 				pr_warn("PIAR: overlapping address range\n");
147 			}
148 			return piar;
149 		}
150 	}
151 	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
152 	if (!piar)
153 		return NULL;
154 
155 	piar->addr_lo = alo;
156 	piar->addr_hi = ahi;
157 	piar->edev = pci_dev_to_eeh_dev(dev);
158 	piar->pcidev = dev;
159 	piar->flags = flags;
160 
161 	pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n",
162 		 &alo, &ahi, pci_name(dev));
163 
164 	rb_link_node(&piar->rb_node, parent, p);
165 	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
166 
167 	return piar;
168 }
169 
170 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
171 {
172 	struct pci_dn *pdn;
173 	struct eeh_dev *edev;
174 	int i;
175 
176 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
177 	if (!pdn) {
178 		pr_warn("PCI: no pci dn found for dev=%s\n",
179 			pci_name(dev));
180 		return;
181 	}
182 
183 	edev = pdn_to_eeh_dev(pdn);
184 	if (!edev) {
185 		pr_warn("PCI: no EEH dev found for %s\n",
186 			pci_name(dev));
187 		return;
188 	}
189 
190 	/* Skip any devices for which EEH is not enabled. */
191 	if (!edev->pe) {
192 		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
193 		return;
194 	}
195 
196 	/*
197 	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
198 	 * ROM BAR) into the tree.
199 	 */
200 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
201 		resource_size_t start = pci_resource_start(dev,i);
202 		resource_size_t end = pci_resource_end(dev,i);
203 		unsigned long flags = pci_resource_flags(dev,i);
204 
205 		/* We are interested only bus addresses, not dma or other stuff */
206 		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
207 			continue;
208 		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
209 			 continue;
210 		eeh_addr_cache_insert(dev, start, end, flags);
211 	}
212 }
213 
214 /**
215  * eeh_addr_cache_insert_dev - Add a device to the address cache
216  * @dev: PCI device whose I/O addresses we are interested in.
217  *
218  * In order to support the fast lookup of devices based on addresses,
219  * we maintain a cache of devices that can be quickly searched.
220  * This routine adds a device to that cache.
221  */
222 void eeh_addr_cache_insert_dev(struct pci_dev *dev)
223 {
224 	unsigned long flags;
225 
226 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
227 	__eeh_addr_cache_insert_dev(dev);
228 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
229 }
230 
231 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
232 {
233 	struct rb_node *n;
234 
235 restart:
236 	n = rb_first(&pci_io_addr_cache_root.rb_root);
237 	while (n) {
238 		struct pci_io_addr_range *piar;
239 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
240 
241 		if (piar->pcidev == dev) {
242 			pr_debug("PIAR: remove range=[%pap:%pap] dev=%s\n",
243 				 &piar->addr_lo, &piar->addr_hi, pci_name(dev));
244 			rb_erase(n, &pci_io_addr_cache_root.rb_root);
245 			kfree(piar);
246 			goto restart;
247 		}
248 		n = rb_next(n);
249 	}
250 }
251 
252 /**
253  * eeh_addr_cache_rmv_dev - remove pci device from addr cache
254  * @dev: device to remove
255  *
256  * Remove a device from the addr-cache tree.
257  * This is potentially expensive, since it will walk
258  * the tree multiple times (once per resource).
259  * But so what; device removal doesn't need to be that fast.
260  */
261 void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
262 {
263 	unsigned long flags;
264 
265 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
266 	__eeh_addr_cache_rmv_dev(dev);
267 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
268 }
269 
270 /**
271  * eeh_addr_cache_build - Build a cache of I/O addresses
272  *
273  * Build a cache of pci i/o addresses.  This cache will be used to
274  * find the pci device that corresponds to a given address.
275  * This routine scans all pci busses to build the cache.
276  * Must be run late in boot process, after the pci controllers
277  * have been scanned for devices (after all device resources are known).
278  */
279 void eeh_addr_cache_build(void)
280 {
281 	struct pci_dn *pdn;
282 	struct eeh_dev *edev;
283 	struct pci_dev *dev = NULL;
284 
285 	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
286 
287 	for_each_pci_dev(dev) {
288 		pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
289 		if (!pdn)
290 			continue;
291 
292 		edev = pdn_to_eeh_dev(pdn);
293 		if (!edev)
294 			continue;
295 
296 		dev->dev.archdata.edev = edev;
297 		edev->pdev = dev;
298 
299 		eeh_addr_cache_insert_dev(dev);
300 		eeh_sysfs_add_device(dev);
301 	}
302 }
303 
304 static int eeh_addr_cache_show(struct seq_file *s, void *v)
305 {
306 	struct pci_io_addr_range *piar;
307 	struct rb_node *n;
308 
309 	spin_lock(&pci_io_addr_cache_root.piar_lock);
310 	for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
311 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
312 
313 		seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
314 		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
315 		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
316 	}
317 	spin_unlock(&pci_io_addr_cache_root.piar_lock);
318 
319 	return 0;
320 }
321 DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
322 
323 void eeh_cache_debugfs_init(void)
324 {
325 	debugfs_create_file_unsafe("eeh_address_cache", 0400,
326 			powerpc_debugfs_root, NULL,
327 			&eeh_addr_cache_fops);
328 }
329