xref: /linux/arch/powerpc/kernel/eeh.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113 
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116 
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122 
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124  * not dynamically alloced, so that it ends up in RMO where RTAS
125  * can access it.
126  */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129 
130 /*
131  * The struct is used to maintain the EEH global statistic
132  * information. Besides, the EEH global statistics will be
133  * exported to user space through procfs
134  */
135 struct eeh_stats {
136 	u64 no_device;		/* PCI device not found		*/
137 	u64 no_dn;		/* OF node not found		*/
138 	u64 no_cfg_addr;	/* Config address not found	*/
139 	u64 ignored_check;	/* EEH check skipped		*/
140 	u64 total_mmio_ffs;	/* Total EEH checks		*/
141 	u64 false_positives;	/* Unnecessary EEH checks	*/
142 	u64 slot_resets;	/* PE reset			*/
143 };
144 
145 static struct eeh_stats eeh_stats;
146 
147 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
148 
149 static int __init eeh_setup(char *str)
150 {
151 	if (!strcmp(str, "off"))
152 		eeh_add_flag(EEH_FORCE_DISABLED);
153 	else if (!strcmp(str, "early_log"))
154 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
155 
156 	return 1;
157 }
158 __setup("eeh=", eeh_setup);
159 
160 /*
161  * This routine captures assorted PCI configuration space data
162  * for the indicated PCI device, and puts them into a buffer
163  * for RTAS error logging.
164  */
165 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
166 {
167 	struct device_node *dn = eeh_dev_to_of_node(edev);
168 	u32 cfg;
169 	int cap, i;
170 	int n = 0, l = 0;
171 	char buffer[128];
172 
173 	n += scnprintf(buf+n, len-n, "%s\n", dn->full_name);
174 	pr_warn("EEH: of node=%s\n", dn->full_name);
175 
176 	eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg);
177 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
178 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
179 
180 	eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg);
181 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
182 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
183 
184 	/* Gather bridge-specific registers */
185 	if (edev->mode & EEH_DEV_BRIDGE) {
186 		eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg);
187 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
188 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
189 
190 		eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg);
191 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
192 		pr_warn("EEH: Bridge control: %04x\n", cfg);
193 	}
194 
195 	/* Dump out the PCI-X command and status regs */
196 	cap = edev->pcix_cap;
197 	if (cap) {
198 		eeh_ops->read_config(dn, cap, 4, &cfg);
199 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
200 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
201 
202 		eeh_ops->read_config(dn, cap+4, 4, &cfg);
203 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
204 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
205 	}
206 
207 	/* If PCI-E capable, dump PCI-E cap 10 */
208 	cap = edev->pcie_cap;
209 	if (cap) {
210 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
211 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
212 
213 		for (i=0; i<=8; i++) {
214 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
215 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
216 
217 			if ((i % 4) == 0) {
218 				if (i != 0)
219 					pr_warn("%s\n", buffer);
220 
221 				l = scnprintf(buffer, sizeof(buffer),
222 					      "EEH: PCI-E %02x: %08x ",
223 					      4*i, cfg);
224 			} else {
225 				l += scnprintf(buffer+l, sizeof(buffer)-l,
226 					       "%08x ", cfg);
227 			}
228 
229 		}
230 
231 		pr_warn("%s\n", buffer);
232 	}
233 
234 	/* If AER capable, dump it */
235 	cap = edev->aer_cap;
236 	if (cap) {
237 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
238 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
239 
240 		for (i=0; i<=13; i++) {
241 			eeh_ops->read_config(dn, cap+4*i, 4, &cfg);
242 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
243 
244 			if ((i % 4) == 0) {
245 				if (i != 0)
246 					pr_warn("%s\n", buffer);
247 
248 				l = scnprintf(buffer, sizeof(buffer),
249 					      "EEH: PCI-E AER %02x: %08x ",
250 					      4*i, cfg);
251 			} else {
252 				l += scnprintf(buffer+l, sizeof(buffer)-l,
253 					       "%08x ", cfg);
254 			}
255 		}
256 
257 		pr_warn("%s\n", buffer);
258 	}
259 
260 	return n;
261 }
262 
263 static void *eeh_dump_pe_log(void *data, void *flag)
264 {
265 	struct eeh_pe *pe = data;
266 	struct eeh_dev *edev, *tmp;
267 	size_t *plen = flag;
268 
269 	/* If the PE's config space is blocked, 0xFF's will be
270 	 * returned. It's pointless to collect the log in this
271 	 * case.
272 	 */
273 	if (pe->state & EEH_PE_CFG_BLOCKED)
274 		return NULL;
275 
276 	eeh_pe_for_each_dev(pe, edev, tmp)
277 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
278 					  EEH_PCI_REGS_LOG_LEN - *plen);
279 
280 	return NULL;
281 }
282 
283 /**
284  * eeh_slot_error_detail - Generate combined log including driver log and error log
285  * @pe: EEH PE
286  * @severity: temporary or permanent error log
287  *
288  * This routine should be called to generate the combined log, which
289  * is comprised of driver log and error log. The driver log is figured
290  * out from the config space of the corresponding PCI device, while
291  * the error log is fetched through platform dependent function call.
292  */
293 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
294 {
295 	size_t loglen = 0;
296 
297 	/*
298 	 * When the PHB is fenced or dead, it's pointless to collect
299 	 * the data from PCI config space because it should return
300 	 * 0xFF's. For ER, we still retrieve the data from the PCI
301 	 * config space.
302 	 *
303 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
304 	 * 0xFF's is always returned from PCI config space.
305 	 */
306 	if (!(pe->type & EEH_PE_PHB)) {
307 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
308 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
309 		eeh_ops->configure_bridge(pe);
310 		eeh_pe_restore_bars(pe);
311 
312 		pci_regs_buf[0] = 0;
313 		eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
314 	}
315 
316 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
317 }
318 
319 /**
320  * eeh_token_to_phys - Convert EEH address token to phys address
321  * @token: I/O token, should be address in the form 0xA....
322  *
323  * This routine should be called to convert virtual I/O address
324  * to physical one.
325  */
326 static inline unsigned long eeh_token_to_phys(unsigned long token)
327 {
328 	pte_t *ptep;
329 	unsigned long pa;
330 	int hugepage_shift;
331 
332 	/*
333 	 * We won't find hugepages here, iomem
334 	 */
335 	ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
336 	if (!ptep)
337 		return token;
338 	WARN_ON(hugepage_shift);
339 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
340 
341 	return pa | (token & (PAGE_SIZE-1));
342 }
343 
344 /*
345  * On PowerNV platform, we might already have fenced PHB there.
346  * For that case, it's meaningless to recover frozen PE. Intead,
347  * We have to handle fenced PHB firstly.
348  */
349 static int eeh_phb_check_failure(struct eeh_pe *pe)
350 {
351 	struct eeh_pe *phb_pe;
352 	unsigned long flags;
353 	int ret;
354 
355 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
356 		return -EPERM;
357 
358 	/* Find the PHB PE */
359 	phb_pe = eeh_phb_pe_get(pe->phb);
360 	if (!phb_pe) {
361 		pr_warn("%s Can't find PE for PHB#%d\n",
362 			__func__, pe->phb->global_number);
363 		return -EEXIST;
364 	}
365 
366 	/* If the PHB has been in problematic state */
367 	eeh_serialize_lock(&flags);
368 	if (phb_pe->state & EEH_PE_ISOLATED) {
369 		ret = 0;
370 		goto out;
371 	}
372 
373 	/* Check PHB state */
374 	ret = eeh_ops->get_state(phb_pe, NULL);
375 	if ((ret < 0) ||
376 	    (ret == EEH_STATE_NOT_SUPPORT) ||
377 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
378 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
379 		ret = 0;
380 		goto out;
381 	}
382 
383 	/* Isolate the PHB and send event */
384 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
385 	eeh_serialize_unlock(flags);
386 
387 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
388 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
389 	dump_stack();
390 	eeh_send_failure_event(phb_pe);
391 
392 	return 1;
393 out:
394 	eeh_serialize_unlock(flags);
395 	return ret;
396 }
397 
398 /**
399  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
400  * @edev: eeh device
401  *
402  * Check for an EEH failure for the given device node.  Call this
403  * routine if the result of a read was all 0xff's and you want to
404  * find out if this is due to an EEH slot freeze.  This routine
405  * will query firmware for the EEH status.
406  *
407  * Returns 0 if there has not been an EEH error; otherwise returns
408  * a non-zero value and queues up a slot isolation event notification.
409  *
410  * It is safe to call this routine in an interrupt context.
411  */
412 int eeh_dev_check_failure(struct eeh_dev *edev)
413 {
414 	int ret;
415 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
416 	unsigned long flags;
417 	struct device_node *dn;
418 	struct pci_dev *dev;
419 	struct eeh_pe *pe, *parent_pe, *phb_pe;
420 	int rc = 0;
421 	const char *location;
422 
423 	eeh_stats.total_mmio_ffs++;
424 
425 	if (!eeh_enabled())
426 		return 0;
427 
428 	if (!edev) {
429 		eeh_stats.no_dn++;
430 		return 0;
431 	}
432 	dn = eeh_dev_to_of_node(edev);
433 	dev = eeh_dev_to_pci_dev(edev);
434 	pe = eeh_dev_to_pe(edev);
435 
436 	/* Access to IO BARs might get this far and still not want checking. */
437 	if (!pe) {
438 		eeh_stats.ignored_check++;
439 		pr_debug("EEH: Ignored check for %s %s\n",
440 			eeh_pci_name(dev), dn->full_name);
441 		return 0;
442 	}
443 
444 	if (!pe->addr && !pe->config_addr) {
445 		eeh_stats.no_cfg_addr++;
446 		return 0;
447 	}
448 
449 	/*
450 	 * On PowerNV platform, we might already have fenced PHB
451 	 * there and we need take care of that firstly.
452 	 */
453 	ret = eeh_phb_check_failure(pe);
454 	if (ret > 0)
455 		return ret;
456 
457 	/*
458 	 * If the PE isn't owned by us, we shouldn't check the
459 	 * state. Instead, let the owner handle it if the PE has
460 	 * been frozen.
461 	 */
462 	if (eeh_pe_passed(pe))
463 		return 0;
464 
465 	/* If we already have a pending isolation event for this
466 	 * slot, we know it's bad already, we don't need to check.
467 	 * Do this checking under a lock; as multiple PCI devices
468 	 * in one slot might report errors simultaneously, and we
469 	 * only want one error recovery routine running.
470 	 */
471 	eeh_serialize_lock(&flags);
472 	rc = 1;
473 	if (pe->state & EEH_PE_ISOLATED) {
474 		pe->check_count++;
475 		if (pe->check_count % EEH_MAX_FAILS == 0) {
476 			location = of_get_property(dn, "ibm,loc-code", NULL);
477 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
478 				"location=%s driver=%s pci addr=%s\n",
479 				pe->check_count, location,
480 				eeh_driver_name(dev), eeh_pci_name(dev));
481 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
482 				eeh_driver_name(dev));
483 			dump_stack();
484 		}
485 		goto dn_unlock;
486 	}
487 
488 	/*
489 	 * Now test for an EEH failure.  This is VERY expensive.
490 	 * Note that the eeh_config_addr may be a parent device
491 	 * in the case of a device behind a bridge, or it may be
492 	 * function zero of a multi-function device.
493 	 * In any case they must share a common PHB.
494 	 */
495 	ret = eeh_ops->get_state(pe, NULL);
496 
497 	/* Note that config-io to empty slots may fail;
498 	 * they are empty when they don't have children.
499 	 * We will punt with the following conditions: Failure to get
500 	 * PE's state, EEH not support and Permanently unavailable
501 	 * state, PE is in good state.
502 	 */
503 	if ((ret < 0) ||
504 	    (ret == EEH_STATE_NOT_SUPPORT) ||
505 	    ((ret & active_flags) == active_flags)) {
506 		eeh_stats.false_positives++;
507 		pe->false_positives++;
508 		rc = 0;
509 		goto dn_unlock;
510 	}
511 
512 	/*
513 	 * It should be corner case that the parent PE has been
514 	 * put into frozen state as well. We should take care
515 	 * that at first.
516 	 */
517 	parent_pe = pe->parent;
518 	while (parent_pe) {
519 		/* Hit the ceiling ? */
520 		if (parent_pe->type & EEH_PE_PHB)
521 			break;
522 
523 		/* Frozen parent PE ? */
524 		ret = eeh_ops->get_state(parent_pe, NULL);
525 		if (ret > 0 &&
526 		    (ret & active_flags) != active_flags)
527 			pe = parent_pe;
528 
529 		/* Next parent level */
530 		parent_pe = parent_pe->parent;
531 	}
532 
533 	eeh_stats.slot_resets++;
534 
535 	/* Avoid repeated reports of this failure, including problems
536 	 * with other functions on this device, and functions under
537 	 * bridges.
538 	 */
539 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
540 	eeh_serialize_unlock(flags);
541 
542 	/* Most EEH events are due to device driver bugs.  Having
543 	 * a stack trace will help the device-driver authors figure
544 	 * out what happened.  So print that out.
545 	 */
546 	phb_pe = eeh_phb_pe_get(pe->phb);
547 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
548 	       pe->phb->global_number, pe->addr);
549 	pr_err("EEH: PE location: %s, PHB location: %s\n",
550 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
551 	dump_stack();
552 
553 	eeh_send_failure_event(pe);
554 
555 	return 1;
556 
557 dn_unlock:
558 	eeh_serialize_unlock(flags);
559 	return rc;
560 }
561 
562 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
563 
564 /**
565  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
566  * @token: I/O address
567  *
568  * Check for an EEH failure at the given I/O address. Call this
569  * routine if the result of a read was all 0xff's and you want to
570  * find out if this is due to an EEH slot freeze event. This routine
571  * will query firmware for the EEH status.
572  *
573  * Note this routine is safe to call in an interrupt context.
574  */
575 int eeh_check_failure(const volatile void __iomem *token)
576 {
577 	unsigned long addr;
578 	struct eeh_dev *edev;
579 
580 	/* Finding the phys addr + pci device; this is pretty quick. */
581 	addr = eeh_token_to_phys((unsigned long __force) token);
582 	edev = eeh_addr_cache_get_dev(addr);
583 	if (!edev) {
584 		eeh_stats.no_device++;
585 		return 0;
586 	}
587 
588 	return eeh_dev_check_failure(edev);
589 }
590 EXPORT_SYMBOL(eeh_check_failure);
591 
592 
593 /**
594  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
595  * @pe: EEH PE
596  *
597  * This routine should be called to reenable frozen MMIO or DMA
598  * so that it would work correctly again. It's useful while doing
599  * recovery or log collection on the indicated device.
600  */
601 int eeh_pci_enable(struct eeh_pe *pe, int function)
602 {
603 	int active_flag, rc;
604 
605 	/*
606 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
607 	 * Also, it's pointless to enable them on unfrozen PE. So
608 	 * we have to check before enabling IO or DMA.
609 	 */
610 	switch (function) {
611 	case EEH_OPT_THAW_MMIO:
612 		active_flag = EEH_STATE_MMIO_ACTIVE;
613 		break;
614 	case EEH_OPT_THAW_DMA:
615 		active_flag = EEH_STATE_DMA_ACTIVE;
616 		break;
617 	case EEH_OPT_DISABLE:
618 	case EEH_OPT_ENABLE:
619 	case EEH_OPT_FREEZE_PE:
620 		active_flag = 0;
621 		break;
622 	default:
623 		pr_warn("%s: Invalid function %d\n",
624 			__func__, function);
625 		return -EINVAL;
626 	}
627 
628 	/*
629 	 * Check if IO or DMA has been enabled before
630 	 * enabling them.
631 	 */
632 	if (active_flag) {
633 		rc = eeh_ops->get_state(pe, NULL);
634 		if (rc < 0)
635 			return rc;
636 
637 		/* Needn't enable it at all */
638 		if (rc == EEH_STATE_NOT_SUPPORT)
639 			return 0;
640 
641 		/* It's already enabled */
642 		if (rc & active_flag)
643 			return 0;
644 	}
645 
646 
647 	/* Issue the request */
648 	rc = eeh_ops->set_option(pe, function);
649 	if (rc)
650 		pr_warn("%s: Unexpected state change %d on "
651 			"PHB#%d-PE#%x, err=%d\n",
652 			__func__, function, pe->phb->global_number,
653 			pe->addr, rc);
654 
655 	/* Check if the request is finished successfully */
656 	if (active_flag) {
657 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
658 		if (rc <= 0)
659 			return rc;
660 
661 		if (rc & active_flag)
662 			return 0;
663 
664 		return -EIO;
665 	}
666 
667 	return rc;
668 }
669 
670 /**
671  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
672  * @dev: pci device struct
673  * @state: reset state to enter
674  *
675  * Return value:
676  * 	0 if success
677  */
678 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
679 {
680 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
681 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
682 
683 	if (!pe) {
684 		pr_err("%s: No PE found on PCI device %s\n",
685 			__func__, pci_name(dev));
686 		return -EINVAL;
687 	}
688 
689 	switch (state) {
690 	case pcie_deassert_reset:
691 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
692 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
693 		break;
694 	case pcie_hot_reset:
695 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
696 		eeh_ops->reset(pe, EEH_RESET_HOT);
697 		break;
698 	case pcie_warm_reset:
699 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
700 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
701 		break;
702 	default:
703 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
704 		return -EINVAL;
705 	};
706 
707 	return 0;
708 }
709 
710 /**
711  * eeh_set_pe_freset - Check the required reset for the indicated device
712  * @data: EEH device
713  * @flag: return value
714  *
715  * Each device might have its preferred reset type: fundamental or
716  * hot reset. The routine is used to collected the information for
717  * the indicated device and its children so that the bunch of the
718  * devices could be reset properly.
719  */
720 static void *eeh_set_dev_freset(void *data, void *flag)
721 {
722 	struct pci_dev *dev;
723 	unsigned int *freset = (unsigned int *)flag;
724 	struct eeh_dev *edev = (struct eeh_dev *)data;
725 
726 	dev = eeh_dev_to_pci_dev(edev);
727 	if (dev)
728 		*freset |= dev->needs_freset;
729 
730 	return NULL;
731 }
732 
733 /**
734  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
735  * @pe: EEH PE
736  *
737  * Assert the PCI #RST line for 1/4 second.
738  */
739 static void eeh_reset_pe_once(struct eeh_pe *pe)
740 {
741 	unsigned int freset = 0;
742 
743 	/* Determine type of EEH reset required for
744 	 * Partitionable Endpoint, a hot-reset (1)
745 	 * or a fundamental reset (3).
746 	 * A fundamental reset required by any device under
747 	 * Partitionable Endpoint trumps hot-reset.
748 	 */
749 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
750 
751 	if (freset)
752 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
753 	else
754 		eeh_ops->reset(pe, EEH_RESET_HOT);
755 
756 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
757 }
758 
759 /**
760  * eeh_reset_pe - Reset the indicated PE
761  * @pe: EEH PE
762  *
763  * This routine should be called to reset indicated device, including
764  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
765  * might be involved as well.
766  */
767 int eeh_reset_pe(struct eeh_pe *pe)
768 {
769 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
770 	int i, state, ret;
771 
772 	/* Mark as reset and block config space */
773 	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
774 
775 	/* Take three shots at resetting the bus */
776 	for (i = 0; i < 3; i++) {
777 		eeh_reset_pe_once(pe);
778 
779 		/*
780 		 * EEH_PE_ISOLATED is expected to be removed after
781 		 * BAR restore.
782 		 */
783 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
784 		if ((state & flags) == flags) {
785 			ret = 0;
786 			goto out;
787 		}
788 
789 		if (state < 0) {
790 			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
791 				__func__, pe->phb->global_number, pe->addr);
792 			ret = -ENOTRECOVERABLE;
793 			goto out;
794 		}
795 
796 		/* We might run out of credits */
797 		ret = -EIO;
798 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
799 			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
800 	}
801 
802 out:
803 	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
804 	return ret;
805 }
806 
807 /**
808  * eeh_save_bars - Save device bars
809  * @edev: PCI device associated EEH device
810  *
811  * Save the values of the device bars. Unlike the restore
812  * routine, this routine is *not* recursive. This is because
813  * PCI devices are added individually; but, for the restore,
814  * an entire slot is reset at a time.
815  */
816 void eeh_save_bars(struct eeh_dev *edev)
817 {
818 	int i;
819 	struct device_node *dn;
820 
821 	if (!edev)
822 		return;
823 	dn = eeh_dev_to_of_node(edev);
824 
825 	for (i = 0; i < 16; i++)
826 		eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]);
827 
828 	/*
829 	 * For PCI bridges including root port, we need enable bus
830 	 * master explicitly. Otherwise, it can't fetch IODA table
831 	 * entries correctly. So we cache the bit in advance so that
832 	 * we can restore it after reset, either PHB range or PE range.
833 	 */
834 	if (edev->mode & EEH_DEV_BRIDGE)
835 		edev->config_space[1] |= PCI_COMMAND_MASTER;
836 }
837 
838 /**
839  * eeh_ops_register - Register platform dependent EEH operations
840  * @ops: platform dependent EEH operations
841  *
842  * Register the platform dependent EEH operation callback
843  * functions. The platform should call this function before
844  * any other EEH operations.
845  */
846 int __init eeh_ops_register(struct eeh_ops *ops)
847 {
848 	if (!ops->name) {
849 		pr_warn("%s: Invalid EEH ops name for %p\n",
850 			__func__, ops);
851 		return -EINVAL;
852 	}
853 
854 	if (eeh_ops && eeh_ops != ops) {
855 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
856 			__func__, eeh_ops->name, ops->name);
857 		return -EEXIST;
858 	}
859 
860 	eeh_ops = ops;
861 
862 	return 0;
863 }
864 
865 /**
866  * eeh_ops_unregister - Unreigster platform dependent EEH operations
867  * @name: name of EEH platform operations
868  *
869  * Unregister the platform dependent EEH operation callback
870  * functions.
871  */
872 int __exit eeh_ops_unregister(const char *name)
873 {
874 	if (!name || !strlen(name)) {
875 		pr_warn("%s: Invalid EEH ops name\n",
876 			__func__);
877 		return -EINVAL;
878 	}
879 
880 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
881 		eeh_ops = NULL;
882 		return 0;
883 	}
884 
885 	return -EEXIST;
886 }
887 
888 static int eeh_reboot_notifier(struct notifier_block *nb,
889 			       unsigned long action, void *unused)
890 {
891 	eeh_clear_flag(EEH_ENABLED);
892 	return NOTIFY_DONE;
893 }
894 
895 static struct notifier_block eeh_reboot_nb = {
896 	.notifier_call = eeh_reboot_notifier,
897 };
898 
899 /**
900  * eeh_init - EEH initialization
901  *
902  * Initialize EEH by trying to enable it for all of the adapters in the system.
903  * As a side effect we can determine here if eeh is supported at all.
904  * Note that we leave EEH on so failed config cycles won't cause a machine
905  * check.  If a user turns off EEH for a particular adapter they are really
906  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
907  * grant access to a slot if EEH isn't enabled, and so we always enable
908  * EEH for all slots/all devices.
909  *
910  * The eeh-force-off option disables EEH checking globally, for all slots.
911  * Even if force-off is set, the EEH hardware is still enabled, so that
912  * newer systems can boot.
913  */
914 int eeh_init(void)
915 {
916 	struct pci_controller *hose, *tmp;
917 	struct device_node *phb;
918 	static int cnt = 0;
919 	int ret = 0;
920 
921 	/*
922 	 * We have to delay the initialization on PowerNV after
923 	 * the PCI hierarchy tree has been built because the PEs
924 	 * are figured out based on PCI devices instead of device
925 	 * tree nodes
926 	 */
927 	if (machine_is(powernv) && cnt++ <= 0)
928 		return ret;
929 
930 	/* Register reboot notifier */
931 	ret = register_reboot_notifier(&eeh_reboot_nb);
932 	if (ret) {
933 		pr_warn("%s: Failed to register notifier (%d)\n",
934 			__func__, ret);
935 		return ret;
936 	}
937 
938 	/* call platform initialization function */
939 	if (!eeh_ops) {
940 		pr_warn("%s: Platform EEH operation not found\n",
941 			__func__);
942 		return -EEXIST;
943 	} else if ((ret = eeh_ops->init()))
944 		return ret;
945 
946 	/* Initialize EEH event */
947 	ret = eeh_event_init();
948 	if (ret)
949 		return ret;
950 
951 	/* Enable EEH for all adapters */
952 	if (eeh_has_flag(EEH_PROBE_MODE_DEVTREE)) {
953 		list_for_each_entry_safe(hose, tmp,
954 			&hose_list, list_node) {
955 			phb = hose->dn;
956 			traverse_pci_devices(phb, eeh_ops->of_probe, NULL);
957 		}
958 	} else if (eeh_has_flag(EEH_PROBE_MODE_DEV)) {
959 		list_for_each_entry_safe(hose, tmp,
960 			&hose_list, list_node)
961 			pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL);
962 	} else {
963 		pr_warn("%s: Invalid probe mode %x",
964 			__func__, eeh_subsystem_flags);
965 		return -EINVAL;
966 	}
967 
968 	/*
969 	 * Call platform post-initialization. Actually, It's good chance
970 	 * to inform platform that EEH is ready to supply service if the
971 	 * I/O cache stuff has been built up.
972 	 */
973 	if (eeh_ops->post_init) {
974 		ret = eeh_ops->post_init();
975 		if (ret)
976 			return ret;
977 	}
978 
979 	if (eeh_enabled())
980 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
981 	else
982 		pr_warn("EEH: No capable adapters found\n");
983 
984 	return ret;
985 }
986 
987 core_initcall_sync(eeh_init);
988 
989 /**
990  * eeh_add_device_early - Enable EEH for the indicated device_node
991  * @dn: device node for which to set up EEH
992  *
993  * This routine must be used to perform EEH initialization for PCI
994  * devices that were added after system boot (e.g. hotplug, dlpar).
995  * This routine must be called before any i/o is performed to the
996  * adapter (inluding any config-space i/o).
997  * Whether this actually enables EEH or not for this device depends
998  * on the CEC architecture, type of the device, on earlier boot
999  * command-line arguments & etc.
1000  */
1001 void eeh_add_device_early(struct device_node *dn)
1002 {
1003 	struct pci_controller *phb;
1004 
1005 	/*
1006 	 * If we're doing EEH probe based on PCI device, we
1007 	 * would delay the probe until late stage because
1008 	 * the PCI device isn't available this moment.
1009 	 */
1010 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1011 		return;
1012 
1013 	if (!of_node_to_eeh_dev(dn))
1014 		return;
1015 	phb = of_node_to_eeh_dev(dn)->phb;
1016 
1017 	/* USB Bus children of PCI devices will not have BUID's */
1018 	if (NULL == phb || 0 == phb->buid)
1019 		return;
1020 
1021 	eeh_ops->of_probe(dn, NULL);
1022 }
1023 
1024 /**
1025  * eeh_add_device_tree_early - Enable EEH for the indicated device
1026  * @dn: device node
1027  *
1028  * This routine must be used to perform EEH initialization for the
1029  * indicated PCI device that was added after system boot (e.g.
1030  * hotplug, dlpar).
1031  */
1032 void eeh_add_device_tree_early(struct device_node *dn)
1033 {
1034 	struct device_node *sib;
1035 
1036 	for_each_child_of_node(dn, sib)
1037 		eeh_add_device_tree_early(sib);
1038 	eeh_add_device_early(dn);
1039 }
1040 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1041 
1042 /**
1043  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1044  * @dev: pci device for which to set up EEH
1045  *
1046  * This routine must be used to complete EEH initialization for PCI
1047  * devices that were added after system boot (e.g. hotplug, dlpar).
1048  */
1049 void eeh_add_device_late(struct pci_dev *dev)
1050 {
1051 	struct device_node *dn;
1052 	struct eeh_dev *edev;
1053 
1054 	if (!dev || !eeh_enabled())
1055 		return;
1056 
1057 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1058 
1059 	dn = pci_device_to_OF_node(dev);
1060 	edev = of_node_to_eeh_dev(dn);
1061 	if (edev->pdev == dev) {
1062 		pr_debug("EEH: Already referenced !\n");
1063 		return;
1064 	}
1065 
1066 	/*
1067 	 * The EEH cache might not be removed correctly because of
1068 	 * unbalanced kref to the device during unplug time, which
1069 	 * relies on pcibios_release_device(). So we have to remove
1070 	 * that here explicitly.
1071 	 */
1072 	if (edev->pdev) {
1073 		eeh_rmv_from_parent_pe(edev);
1074 		eeh_addr_cache_rmv_dev(edev->pdev);
1075 		eeh_sysfs_remove_device(edev->pdev);
1076 		edev->mode &= ~EEH_DEV_SYSFS;
1077 
1078 		/*
1079 		 * We definitely should have the PCI device removed
1080 		 * though it wasn't correctly. So we needn't call
1081 		 * into error handler afterwards.
1082 		 */
1083 		edev->mode |= EEH_DEV_NO_HANDLER;
1084 
1085 		edev->pdev = NULL;
1086 		dev->dev.archdata.edev = NULL;
1087 	}
1088 
1089 	edev->pdev = dev;
1090 	dev->dev.archdata.edev = edev;
1091 
1092 	/*
1093 	 * We have to do the EEH probe here because the PCI device
1094 	 * hasn't been created yet in the early stage.
1095 	 */
1096 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1097 		eeh_ops->dev_probe(dev, NULL);
1098 
1099 	eeh_addr_cache_insert_dev(dev);
1100 }
1101 
1102 /**
1103  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1104  * @bus: PCI bus
1105  *
1106  * This routine must be used to perform EEH initialization for PCI
1107  * devices which are attached to the indicated PCI bus. The PCI bus
1108  * is added after system boot through hotplug or dlpar.
1109  */
1110 void eeh_add_device_tree_late(struct pci_bus *bus)
1111 {
1112 	struct pci_dev *dev;
1113 
1114 	list_for_each_entry(dev, &bus->devices, bus_list) {
1115 		eeh_add_device_late(dev);
1116 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1117 			struct pci_bus *subbus = dev->subordinate;
1118 			if (subbus)
1119 				eeh_add_device_tree_late(subbus);
1120 		}
1121 	}
1122 }
1123 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1124 
1125 /**
1126  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1127  * @bus: PCI bus
1128  *
1129  * This routine must be used to add EEH sysfs files for PCI
1130  * devices which are attached to the indicated PCI bus. The PCI bus
1131  * is added after system boot through hotplug or dlpar.
1132  */
1133 void eeh_add_sysfs_files(struct pci_bus *bus)
1134 {
1135 	struct pci_dev *dev;
1136 
1137 	list_for_each_entry(dev, &bus->devices, bus_list) {
1138 		eeh_sysfs_add_device(dev);
1139 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1140 			struct pci_bus *subbus = dev->subordinate;
1141 			if (subbus)
1142 				eeh_add_sysfs_files(subbus);
1143 		}
1144 	}
1145 }
1146 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1147 
1148 /**
1149  * eeh_remove_device - Undo EEH setup for the indicated pci device
1150  * @dev: pci device to be removed
1151  *
1152  * This routine should be called when a device is removed from
1153  * a running system (e.g. by hotplug or dlpar).  It unregisters
1154  * the PCI device from the EEH subsystem.  I/O errors affecting
1155  * this device will no longer be detected after this call; thus,
1156  * i/o errors affecting this slot may leave this device unusable.
1157  */
1158 void eeh_remove_device(struct pci_dev *dev)
1159 {
1160 	struct eeh_dev *edev;
1161 
1162 	if (!dev || !eeh_enabled())
1163 		return;
1164 	edev = pci_dev_to_eeh_dev(dev);
1165 
1166 	/* Unregister the device with the EEH/PCI address search system */
1167 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1168 
1169 	if (!edev || !edev->pdev || !edev->pe) {
1170 		pr_debug("EEH: Not referenced !\n");
1171 		return;
1172 	}
1173 
1174 	/*
1175 	 * During the hotplug for EEH error recovery, we need the EEH
1176 	 * device attached to the parent PE in order for BAR restore
1177 	 * a bit later. So we keep it for BAR restore and remove it
1178 	 * from the parent PE during the BAR resotre.
1179 	 */
1180 	edev->pdev = NULL;
1181 	dev->dev.archdata.edev = NULL;
1182 	if (!(edev->pe->state & EEH_PE_KEEP))
1183 		eeh_rmv_from_parent_pe(edev);
1184 	else
1185 		edev->mode |= EEH_DEV_DISCONNECTED;
1186 
1187 	/*
1188 	 * We're removing from the PCI subsystem, that means
1189 	 * the PCI device driver can't support EEH or not
1190 	 * well. So we rely on hotplug completely to do recovery
1191 	 * for the specific PCI device.
1192 	 */
1193 	edev->mode |= EEH_DEV_NO_HANDLER;
1194 
1195 	eeh_addr_cache_rmv_dev(dev);
1196 	eeh_sysfs_remove_device(dev);
1197 	edev->mode &= ~EEH_DEV_SYSFS;
1198 }
1199 
1200 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1201 {
1202 	int ret;
1203 
1204 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1205 	if (ret) {
1206 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1207 			__func__, ret, pe->phb->global_number, pe->addr);
1208 		return ret;
1209 	}
1210 
1211 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1212 	if (ret) {
1213 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1214 			__func__, ret, pe->phb->global_number, pe->addr);
1215 		return ret;
1216 	}
1217 
1218 	/* Clear software isolated state */
1219 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1220 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1221 
1222 	return ret;
1223 }
1224 
1225 
1226 static struct pci_device_id eeh_reset_ids[] = {
1227 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1228 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1229 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1230 	{ 0 }
1231 };
1232 
1233 static int eeh_pe_change_owner(struct eeh_pe *pe)
1234 {
1235 	struct eeh_dev *edev, *tmp;
1236 	struct pci_dev *pdev;
1237 	struct pci_device_id *id;
1238 	int flags, ret;
1239 
1240 	/* Check PE state */
1241 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1242 	ret = eeh_ops->get_state(pe, NULL);
1243 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1244 		return 0;
1245 
1246 	/* Unfrozen PE, nothing to do */
1247 	if ((ret & flags) == flags)
1248 		return 0;
1249 
1250 	/* Frozen PE, check if it needs PE level reset */
1251 	eeh_pe_for_each_dev(pe, edev, tmp) {
1252 		pdev = eeh_dev_to_pci_dev(edev);
1253 		if (!pdev)
1254 			continue;
1255 
1256 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1257 			if (id->vendor != PCI_ANY_ID &&
1258 			    id->vendor != pdev->vendor)
1259 				continue;
1260 			if (id->device != PCI_ANY_ID &&
1261 			    id->device != pdev->device)
1262 				continue;
1263 			if (id->subvendor != PCI_ANY_ID &&
1264 			    id->subvendor != pdev->subsystem_vendor)
1265 				continue;
1266 			if (id->subdevice != PCI_ANY_ID &&
1267 			    id->subdevice != pdev->subsystem_device)
1268 				continue;
1269 
1270 			goto reset;
1271 		}
1272 	}
1273 
1274 	return eeh_unfreeze_pe(pe, true);
1275 
1276 reset:
1277 	return eeh_pe_reset_and_recover(pe);
1278 }
1279 
1280 /**
1281  * eeh_dev_open - Increase count of pass through devices for PE
1282  * @pdev: PCI device
1283  *
1284  * Increase count of passed through devices for the indicated
1285  * PE. In the result, the EEH errors detected on the PE won't be
1286  * reported. The PE owner will be responsible for detection
1287  * and recovery.
1288  */
1289 int eeh_dev_open(struct pci_dev *pdev)
1290 {
1291 	struct eeh_dev *edev;
1292 	int ret = -ENODEV;
1293 
1294 	mutex_lock(&eeh_dev_mutex);
1295 
1296 	/* No PCI device ? */
1297 	if (!pdev)
1298 		goto out;
1299 
1300 	/* No EEH device or PE ? */
1301 	edev = pci_dev_to_eeh_dev(pdev);
1302 	if (!edev || !edev->pe)
1303 		goto out;
1304 
1305 	/*
1306 	 * The PE might have been put into frozen state, but we
1307 	 * didn't detect that yet. The passed through PCI devices
1308 	 * in frozen PE won't work properly. Clear the frozen state
1309 	 * in advance.
1310 	 */
1311 	ret = eeh_pe_change_owner(edev->pe);
1312 	if (ret)
1313 		goto out;
1314 
1315 	/* Increase PE's pass through count */
1316 	atomic_inc(&edev->pe->pass_dev_cnt);
1317 	mutex_unlock(&eeh_dev_mutex);
1318 
1319 	return 0;
1320 out:
1321 	mutex_unlock(&eeh_dev_mutex);
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL_GPL(eeh_dev_open);
1325 
1326 /**
1327  * eeh_dev_release - Decrease count of pass through devices for PE
1328  * @pdev: PCI device
1329  *
1330  * Decrease count of pass through devices for the indicated PE. If
1331  * there is no passed through device in PE, the EEH errors detected
1332  * on the PE will be reported and handled as usual.
1333  */
1334 void eeh_dev_release(struct pci_dev *pdev)
1335 {
1336 	struct eeh_dev *edev;
1337 
1338 	mutex_lock(&eeh_dev_mutex);
1339 
1340 	/* No PCI device ? */
1341 	if (!pdev)
1342 		goto out;
1343 
1344 	/* No EEH device ? */
1345 	edev = pci_dev_to_eeh_dev(pdev);
1346 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1347 		goto out;
1348 
1349 	/* Decrease PE's pass through count */
1350 	atomic_dec(&edev->pe->pass_dev_cnt);
1351 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1352 	eeh_pe_change_owner(edev->pe);
1353 out:
1354 	mutex_unlock(&eeh_dev_mutex);
1355 }
1356 EXPORT_SYMBOL(eeh_dev_release);
1357 
1358 #ifdef CONFIG_IOMMU_API
1359 
1360 static int dev_has_iommu_table(struct device *dev, void *data)
1361 {
1362 	struct pci_dev *pdev = to_pci_dev(dev);
1363 	struct pci_dev **ppdev = data;
1364 	struct iommu_table *tbl;
1365 
1366 	if (!dev)
1367 		return 0;
1368 
1369 	tbl = get_iommu_table_base(dev);
1370 	if (tbl && tbl->it_group) {
1371 		*ppdev = pdev;
1372 		return 1;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 /**
1379  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1380  * @group: IOMMU group
1381  *
1382  * The routine is called to convert IOMMU group to EEH PE.
1383  */
1384 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1385 {
1386 	struct pci_dev *pdev = NULL;
1387 	struct eeh_dev *edev;
1388 	int ret;
1389 
1390 	/* No IOMMU group ? */
1391 	if (!group)
1392 		return NULL;
1393 
1394 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1395 	if (!ret || !pdev)
1396 		return NULL;
1397 
1398 	/* No EEH device or PE ? */
1399 	edev = pci_dev_to_eeh_dev(pdev);
1400 	if (!edev || !edev->pe)
1401 		return NULL;
1402 
1403 	return edev->pe;
1404 }
1405 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1406 
1407 #endif /* CONFIG_IOMMU_API */
1408 
1409 /**
1410  * eeh_pe_set_option - Set options for the indicated PE
1411  * @pe: EEH PE
1412  * @option: requested option
1413  *
1414  * The routine is called to enable or disable EEH functionality
1415  * on the indicated PE, to enable IO or DMA for the frozen PE.
1416  */
1417 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1418 {
1419 	int ret = 0;
1420 
1421 	/* Invalid PE ? */
1422 	if (!pe)
1423 		return -ENODEV;
1424 
1425 	/*
1426 	 * EEH functionality could possibly be disabled, just
1427 	 * return error for the case. And the EEH functinality
1428 	 * isn't expected to be disabled on one specific PE.
1429 	 */
1430 	switch (option) {
1431 	case EEH_OPT_ENABLE:
1432 		if (eeh_enabled()) {
1433 			ret = eeh_pe_change_owner(pe);
1434 			break;
1435 		}
1436 		ret = -EIO;
1437 		break;
1438 	case EEH_OPT_DISABLE:
1439 		break;
1440 	case EEH_OPT_THAW_MMIO:
1441 	case EEH_OPT_THAW_DMA:
1442 		if (!eeh_ops || !eeh_ops->set_option) {
1443 			ret = -ENOENT;
1444 			break;
1445 		}
1446 
1447 		ret = eeh_pci_enable(pe, option);
1448 		break;
1449 	default:
1450 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1451 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1452 		ret = -EINVAL;
1453 	}
1454 
1455 	return ret;
1456 }
1457 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1458 
1459 /**
1460  * eeh_pe_get_state - Retrieve PE's state
1461  * @pe: EEH PE
1462  *
1463  * Retrieve the PE's state, which includes 3 aspects: enabled
1464  * DMA, enabled IO and asserted reset.
1465  */
1466 int eeh_pe_get_state(struct eeh_pe *pe)
1467 {
1468 	int result, ret = 0;
1469 	bool rst_active, dma_en, mmio_en;
1470 
1471 	/* Existing PE ? */
1472 	if (!pe)
1473 		return -ENODEV;
1474 
1475 	if (!eeh_ops || !eeh_ops->get_state)
1476 		return -ENOENT;
1477 
1478 	result = eeh_ops->get_state(pe, NULL);
1479 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1480 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1481 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1482 
1483 	if (rst_active)
1484 		ret = EEH_PE_STATE_RESET;
1485 	else if (dma_en && mmio_en)
1486 		ret = EEH_PE_STATE_NORMAL;
1487 	else if (!dma_en && !mmio_en)
1488 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1489 	else if (!dma_en && mmio_en)
1490 		ret = EEH_PE_STATE_STOPPED_DMA;
1491 	else
1492 		ret = EEH_PE_STATE_UNAVAIL;
1493 
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1497 
1498 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1499 {
1500 	struct eeh_dev *edev, *tmp;
1501 	struct pci_dev *pdev;
1502 	int ret = 0;
1503 
1504 	/* Restore config space */
1505 	eeh_pe_restore_bars(pe);
1506 
1507 	/*
1508 	 * Reenable PCI devices as the devices passed
1509 	 * through are always enabled before the reset.
1510 	 */
1511 	eeh_pe_for_each_dev(pe, edev, tmp) {
1512 		pdev = eeh_dev_to_pci_dev(edev);
1513 		if (!pdev)
1514 			continue;
1515 
1516 		ret = pci_reenable_device(pdev);
1517 		if (ret) {
1518 			pr_warn("%s: Failure %d reenabling %s\n",
1519 				__func__, ret, pci_name(pdev));
1520 			return ret;
1521 		}
1522 	}
1523 
1524 	/* The PE is still in frozen state */
1525 	return eeh_unfreeze_pe(pe, true);
1526 }
1527 
1528 /**
1529  * eeh_pe_reset - Issue PE reset according to specified type
1530  * @pe: EEH PE
1531  * @option: reset type
1532  *
1533  * The routine is called to reset the specified PE with the
1534  * indicated type, either fundamental reset or hot reset.
1535  * PE reset is the most important part for error recovery.
1536  */
1537 int eeh_pe_reset(struct eeh_pe *pe, int option)
1538 {
1539 	int ret = 0;
1540 
1541 	/* Invalid PE ? */
1542 	if (!pe)
1543 		return -ENODEV;
1544 
1545 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1546 		return -ENOENT;
1547 
1548 	switch (option) {
1549 	case EEH_RESET_DEACTIVATE:
1550 		ret = eeh_ops->reset(pe, option);
1551 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1552 		if (ret)
1553 			break;
1554 
1555 		ret = eeh_pe_reenable_devices(pe);
1556 		break;
1557 	case EEH_RESET_HOT:
1558 	case EEH_RESET_FUNDAMENTAL:
1559 		/*
1560 		 * Proactively freeze the PE to drop all MMIO access
1561 		 * during reset, which should be banned as it's always
1562 		 * cause recursive EEH error.
1563 		 */
1564 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1565 
1566 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1567 		ret = eeh_ops->reset(pe, option);
1568 		break;
1569 	default:
1570 		pr_debug("%s: Unsupported option %d\n",
1571 			__func__, option);
1572 		ret = -EINVAL;
1573 	}
1574 
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1578 
1579 /**
1580  * eeh_pe_configure - Configure PCI bridges after PE reset
1581  * @pe: EEH PE
1582  *
1583  * The routine is called to restore the PCI config space for
1584  * those PCI devices, especially PCI bridges affected by PE
1585  * reset issued previously.
1586  */
1587 int eeh_pe_configure(struct eeh_pe *pe)
1588 {
1589 	int ret = 0;
1590 
1591 	/* Invalid PE ? */
1592 	if (!pe)
1593 		return -ENODEV;
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1598 
1599 static int proc_eeh_show(struct seq_file *m, void *v)
1600 {
1601 	if (!eeh_enabled()) {
1602 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1603 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1604 	} else {
1605 		seq_printf(m, "EEH Subsystem is enabled\n");
1606 		seq_printf(m,
1607 				"no device=%llu\n"
1608 				"no device node=%llu\n"
1609 				"no config address=%llu\n"
1610 				"check not wanted=%llu\n"
1611 				"eeh_total_mmio_ffs=%llu\n"
1612 				"eeh_false_positives=%llu\n"
1613 				"eeh_slot_resets=%llu\n",
1614 				eeh_stats.no_device,
1615 				eeh_stats.no_dn,
1616 				eeh_stats.no_cfg_addr,
1617 				eeh_stats.ignored_check,
1618 				eeh_stats.total_mmio_ffs,
1619 				eeh_stats.false_positives,
1620 				eeh_stats.slot_resets);
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static int proc_eeh_open(struct inode *inode, struct file *file)
1627 {
1628 	return single_open(file, proc_eeh_show, NULL);
1629 }
1630 
1631 static const struct file_operations proc_eeh_operations = {
1632 	.open      = proc_eeh_open,
1633 	.read      = seq_read,
1634 	.llseek    = seq_lseek,
1635 	.release   = single_release,
1636 };
1637 
1638 #ifdef CONFIG_DEBUG_FS
1639 static int eeh_enable_dbgfs_set(void *data, u64 val)
1640 {
1641 	if (val)
1642 		eeh_clear_flag(EEH_FORCE_DISABLED);
1643 	else
1644 		eeh_add_flag(EEH_FORCE_DISABLED);
1645 
1646 	/* Notify the backend */
1647 	if (eeh_ops->post_init)
1648 		eeh_ops->post_init();
1649 
1650 	return 0;
1651 }
1652 
1653 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1654 {
1655 	if (eeh_enabled())
1656 		*val = 0x1ul;
1657 	else
1658 		*val = 0x0ul;
1659 	return 0;
1660 }
1661 
1662 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1663 {
1664 	eeh_max_freezes = val;
1665 	return 0;
1666 }
1667 
1668 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1669 {
1670 	*val = eeh_max_freezes;
1671 	return 0;
1672 }
1673 
1674 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1675 			eeh_enable_dbgfs_set, "0x%llx\n");
1676 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1677 			eeh_freeze_dbgfs_set, "0x%llx\n");
1678 #endif
1679 
1680 static int __init eeh_init_proc(void)
1681 {
1682 	if (machine_is(pseries) || machine_is(powernv)) {
1683 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1684 #ifdef CONFIG_DEBUG_FS
1685 		debugfs_create_file("eeh_enable", 0600,
1686                                     powerpc_debugfs_root, NULL,
1687                                     &eeh_enable_dbgfs_ops);
1688 		debugfs_create_file("eeh_max_freezes", 0600,
1689 				    powerpc_debugfs_root, NULL,
1690 				    &eeh_freeze_dbgfs_ops);
1691 #endif
1692 	}
1693 
1694 	return 0;
1695 }
1696 __initcall(eeh_init_proc);
1697