1 /* 2 * Copyright IBM Corporation 2001, 2005, 2006 3 * Copyright Dave Engebretsen & Todd Inglett 2001 4 * Copyright Linas Vepstas 2005, 2006 5 * Copyright 2001-2012 IBM Corporation. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com> 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/sched.h> 26 #include <linux/init.h> 27 #include <linux/list.h> 28 #include <linux/pci.h> 29 #include <linux/proc_fs.h> 30 #include <linux/rbtree.h> 31 #include <linux/seq_file.h> 32 #include <linux/spinlock.h> 33 #include <linux/export.h> 34 #include <linux/of.h> 35 36 #include <linux/atomic.h> 37 #include <asm/eeh.h> 38 #include <asm/eeh_event.h> 39 #include <asm/io.h> 40 #include <asm/machdep.h> 41 #include <asm/ppc-pci.h> 42 #include <asm/rtas.h> 43 44 45 /** Overview: 46 * EEH, or "Extended Error Handling" is a PCI bridge technology for 47 * dealing with PCI bus errors that can't be dealt with within the 48 * usual PCI framework, except by check-stopping the CPU. Systems 49 * that are designed for high-availability/reliability cannot afford 50 * to crash due to a "mere" PCI error, thus the need for EEH. 51 * An EEH-capable bridge operates by converting a detected error 52 * into a "slot freeze", taking the PCI adapter off-line, making 53 * the slot behave, from the OS'es point of view, as if the slot 54 * were "empty": all reads return 0xff's and all writes are silently 55 * ignored. EEH slot isolation events can be triggered by parity 56 * errors on the address or data busses (e.g. during posted writes), 57 * which in turn might be caused by low voltage on the bus, dust, 58 * vibration, humidity, radioactivity or plain-old failed hardware. 59 * 60 * Note, however, that one of the leading causes of EEH slot 61 * freeze events are buggy device drivers, buggy device microcode, 62 * or buggy device hardware. This is because any attempt by the 63 * device to bus-master data to a memory address that is not 64 * assigned to the device will trigger a slot freeze. (The idea 65 * is to prevent devices-gone-wild from corrupting system memory). 66 * Buggy hardware/drivers will have a miserable time co-existing 67 * with EEH. 68 * 69 * Ideally, a PCI device driver, when suspecting that an isolation 70 * event has occurred (e.g. by reading 0xff's), will then ask EEH 71 * whether this is the case, and then take appropriate steps to 72 * reset the PCI slot, the PCI device, and then resume operations. 73 * However, until that day, the checking is done here, with the 74 * eeh_check_failure() routine embedded in the MMIO macros. If 75 * the slot is found to be isolated, an "EEH Event" is synthesized 76 * and sent out for processing. 77 */ 78 79 /* If a device driver keeps reading an MMIO register in an interrupt 80 * handler after a slot isolation event, it might be broken. 81 * This sets the threshold for how many read attempts we allow 82 * before printing an error message. 83 */ 84 #define EEH_MAX_FAILS 2100000 85 86 /* Time to wait for a PCI slot to report status, in milliseconds */ 87 #define PCI_BUS_RESET_WAIT_MSEC (60*1000) 88 89 /* Platform dependent EEH operations */ 90 struct eeh_ops *eeh_ops = NULL; 91 92 int eeh_subsystem_enabled; 93 EXPORT_SYMBOL(eeh_subsystem_enabled); 94 95 /* 96 * EEH probe mode support. The intention is to support multiple 97 * platforms for EEH. Some platforms like pSeries do PCI emunation 98 * based on device tree. However, other platforms like powernv probe 99 * PCI devices from hardware. The flag is used to distinguish that. 100 * In addition, struct eeh_ops::probe would be invoked for particular 101 * OF node or PCI device so that the corresponding PE would be created 102 * there. 103 */ 104 int eeh_probe_mode; 105 106 /* Lock to avoid races due to multiple reports of an error */ 107 DEFINE_RAW_SPINLOCK(confirm_error_lock); 108 109 /* Buffer for reporting pci register dumps. Its here in BSS, and 110 * not dynamically alloced, so that it ends up in RMO where RTAS 111 * can access it. 112 */ 113 #define EEH_PCI_REGS_LOG_LEN 4096 114 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN]; 115 116 /* 117 * The struct is used to maintain the EEH global statistic 118 * information. Besides, the EEH global statistics will be 119 * exported to user space through procfs 120 */ 121 struct eeh_stats { 122 u64 no_device; /* PCI device not found */ 123 u64 no_dn; /* OF node not found */ 124 u64 no_cfg_addr; /* Config address not found */ 125 u64 ignored_check; /* EEH check skipped */ 126 u64 total_mmio_ffs; /* Total EEH checks */ 127 u64 false_positives; /* Unnecessary EEH checks */ 128 u64 slot_resets; /* PE reset */ 129 }; 130 131 static struct eeh_stats eeh_stats; 132 133 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE) 134 135 /** 136 * eeh_gather_pci_data - Copy assorted PCI config space registers to buff 137 * @edev: device to report data for 138 * @buf: point to buffer in which to log 139 * @len: amount of room in buffer 140 * 141 * This routine captures assorted PCI configuration space data, 142 * and puts them into a buffer for RTAS error logging. 143 */ 144 static size_t eeh_gather_pci_data(struct eeh_dev *edev, char * buf, size_t len) 145 { 146 struct device_node *dn = eeh_dev_to_of_node(edev); 147 struct pci_dev *dev = eeh_dev_to_pci_dev(edev); 148 u32 cfg; 149 int cap, i; 150 int n = 0; 151 152 n += scnprintf(buf+n, len-n, "%s\n", dn->full_name); 153 printk(KERN_WARNING "EEH: of node=%s\n", dn->full_name); 154 155 eeh_ops->read_config(dn, PCI_VENDOR_ID, 4, &cfg); 156 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg); 157 printk(KERN_WARNING "EEH: PCI device/vendor: %08x\n", cfg); 158 159 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cfg); 160 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg); 161 printk(KERN_WARNING "EEH: PCI cmd/status register: %08x\n", cfg); 162 163 if (!dev) { 164 printk(KERN_WARNING "EEH: no PCI device for this of node\n"); 165 return n; 166 } 167 168 /* Gather bridge-specific registers */ 169 if (dev->class >> 16 == PCI_BASE_CLASS_BRIDGE) { 170 eeh_ops->read_config(dn, PCI_SEC_STATUS, 2, &cfg); 171 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg); 172 printk(KERN_WARNING "EEH: Bridge secondary status: %04x\n", cfg); 173 174 eeh_ops->read_config(dn, PCI_BRIDGE_CONTROL, 2, &cfg); 175 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg); 176 printk(KERN_WARNING "EEH: Bridge control: %04x\n", cfg); 177 } 178 179 /* Dump out the PCI-X command and status regs */ 180 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 181 if (cap) { 182 eeh_ops->read_config(dn, cap, 4, &cfg); 183 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg); 184 printk(KERN_WARNING "EEH: PCI-X cmd: %08x\n", cfg); 185 186 eeh_ops->read_config(dn, cap+4, 4, &cfg); 187 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg); 188 printk(KERN_WARNING "EEH: PCI-X status: %08x\n", cfg); 189 } 190 191 /* If PCI-E capable, dump PCI-E cap 10, and the AER */ 192 if (pci_is_pcie(dev)) { 193 n += scnprintf(buf+n, len-n, "pci-e cap10:\n"); 194 printk(KERN_WARNING 195 "EEH: PCI-E capabilities and status follow:\n"); 196 197 for (i=0; i<=8; i++) { 198 eeh_ops->read_config(dn, dev->pcie_cap+4*i, 4, &cfg); 199 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); 200 printk(KERN_WARNING "EEH: PCI-E %02x: %08x\n", i, cfg); 201 } 202 203 cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 204 if (cap) { 205 n += scnprintf(buf+n, len-n, "pci-e AER:\n"); 206 printk(KERN_WARNING 207 "EEH: PCI-E AER capability register set follows:\n"); 208 209 for (i=0; i<14; i++) { 210 eeh_ops->read_config(dn, cap+4*i, 4, &cfg); 211 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg); 212 printk(KERN_WARNING "EEH: PCI-E AER %02x: %08x\n", i, cfg); 213 } 214 } 215 } 216 217 return n; 218 } 219 220 /** 221 * eeh_slot_error_detail - Generate combined log including driver log and error log 222 * @pe: EEH PE 223 * @severity: temporary or permanent error log 224 * 225 * This routine should be called to generate the combined log, which 226 * is comprised of driver log and error log. The driver log is figured 227 * out from the config space of the corresponding PCI device, while 228 * the error log is fetched through platform dependent function call. 229 */ 230 void eeh_slot_error_detail(struct eeh_pe *pe, int severity) 231 { 232 size_t loglen = 0; 233 struct eeh_dev *edev, *tmp; 234 bool valid_cfg_log = true; 235 236 /* 237 * When the PHB is fenced or dead, it's pointless to collect 238 * the data from PCI config space because it should return 239 * 0xFF's. For ER, we still retrieve the data from the PCI 240 * config space. 241 */ 242 if (eeh_probe_mode_dev() && 243 (pe->type & EEH_PE_PHB) && 244 (pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD))) 245 valid_cfg_log = false; 246 247 if (valid_cfg_log) { 248 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO); 249 eeh_ops->configure_bridge(pe); 250 eeh_pe_restore_bars(pe); 251 252 pci_regs_buf[0] = 0; 253 eeh_pe_for_each_dev(pe, edev, tmp) { 254 loglen += eeh_gather_pci_data(edev, pci_regs_buf + loglen, 255 EEH_PCI_REGS_LOG_LEN - loglen); 256 } 257 } 258 259 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen); 260 } 261 262 /** 263 * eeh_token_to_phys - Convert EEH address token to phys address 264 * @token: I/O token, should be address in the form 0xA.... 265 * 266 * This routine should be called to convert virtual I/O address 267 * to physical one. 268 */ 269 static inline unsigned long eeh_token_to_phys(unsigned long token) 270 { 271 pte_t *ptep; 272 unsigned long pa; 273 int hugepage_shift; 274 275 /* 276 * We won't find hugepages here, iomem 277 */ 278 ptep = find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift); 279 if (!ptep) 280 return token; 281 WARN_ON(hugepage_shift); 282 pa = pte_pfn(*ptep) << PAGE_SHIFT; 283 284 return pa | (token & (PAGE_SIZE-1)); 285 } 286 287 /* 288 * On PowerNV platform, we might already have fenced PHB there. 289 * For that case, it's meaningless to recover frozen PE. Intead, 290 * We have to handle fenced PHB firstly. 291 */ 292 static int eeh_phb_check_failure(struct eeh_pe *pe) 293 { 294 struct eeh_pe *phb_pe; 295 unsigned long flags; 296 int ret; 297 298 if (!eeh_probe_mode_dev()) 299 return -EPERM; 300 301 /* Find the PHB PE */ 302 phb_pe = eeh_phb_pe_get(pe->phb); 303 if (!phb_pe) { 304 pr_warning("%s Can't find PE for PHB#%d\n", 305 __func__, pe->phb->global_number); 306 return -EEXIST; 307 } 308 309 /* If the PHB has been in problematic state */ 310 eeh_serialize_lock(&flags); 311 if (phb_pe->state & (EEH_PE_ISOLATED | EEH_PE_PHB_DEAD)) { 312 ret = 0; 313 goto out; 314 } 315 316 /* Check PHB state */ 317 ret = eeh_ops->get_state(phb_pe, NULL); 318 if ((ret < 0) || 319 (ret == EEH_STATE_NOT_SUPPORT) || 320 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) == 321 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) { 322 ret = 0; 323 goto out; 324 } 325 326 /* Isolate the PHB and send event */ 327 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED); 328 eeh_serialize_unlock(flags); 329 330 pr_err("EEH: PHB#%x failure detected\n", 331 phb_pe->phb->global_number); 332 dump_stack(); 333 eeh_send_failure_event(phb_pe); 334 335 return 1; 336 out: 337 eeh_serialize_unlock(flags); 338 return ret; 339 } 340 341 /** 342 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze 343 * @edev: eeh device 344 * 345 * Check for an EEH failure for the given device node. Call this 346 * routine if the result of a read was all 0xff's and you want to 347 * find out if this is due to an EEH slot freeze. This routine 348 * will query firmware for the EEH status. 349 * 350 * Returns 0 if there has not been an EEH error; otherwise returns 351 * a non-zero value and queues up a slot isolation event notification. 352 * 353 * It is safe to call this routine in an interrupt context. 354 */ 355 int eeh_dev_check_failure(struct eeh_dev *edev) 356 { 357 int ret; 358 unsigned long flags; 359 struct device_node *dn; 360 struct pci_dev *dev; 361 struct eeh_pe *pe; 362 int rc = 0; 363 const char *location; 364 365 eeh_stats.total_mmio_ffs++; 366 367 if (!eeh_subsystem_enabled) 368 return 0; 369 370 if (!edev) { 371 eeh_stats.no_dn++; 372 return 0; 373 } 374 dn = eeh_dev_to_of_node(edev); 375 dev = eeh_dev_to_pci_dev(edev); 376 pe = edev->pe; 377 378 /* Access to IO BARs might get this far and still not want checking. */ 379 if (!pe) { 380 eeh_stats.ignored_check++; 381 pr_debug("EEH: Ignored check for %s %s\n", 382 eeh_pci_name(dev), dn->full_name); 383 return 0; 384 } 385 386 if (!pe->addr && !pe->config_addr) { 387 eeh_stats.no_cfg_addr++; 388 return 0; 389 } 390 391 /* 392 * On PowerNV platform, we might already have fenced PHB 393 * there and we need take care of that firstly. 394 */ 395 ret = eeh_phb_check_failure(pe); 396 if (ret > 0) 397 return ret; 398 399 /* If we already have a pending isolation event for this 400 * slot, we know it's bad already, we don't need to check. 401 * Do this checking under a lock; as multiple PCI devices 402 * in one slot might report errors simultaneously, and we 403 * only want one error recovery routine running. 404 */ 405 eeh_serialize_lock(&flags); 406 rc = 1; 407 if (pe->state & EEH_PE_ISOLATED) { 408 pe->check_count++; 409 if (pe->check_count % EEH_MAX_FAILS == 0) { 410 location = of_get_property(dn, "ibm,loc-code", NULL); 411 printk(KERN_ERR "EEH: %d reads ignored for recovering device at " 412 "location=%s driver=%s pci addr=%s\n", 413 pe->check_count, location, 414 eeh_driver_name(dev), eeh_pci_name(dev)); 415 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n", 416 eeh_driver_name(dev)); 417 dump_stack(); 418 } 419 goto dn_unlock; 420 } 421 422 /* 423 * Now test for an EEH failure. This is VERY expensive. 424 * Note that the eeh_config_addr may be a parent device 425 * in the case of a device behind a bridge, or it may be 426 * function zero of a multi-function device. 427 * In any case they must share a common PHB. 428 */ 429 ret = eeh_ops->get_state(pe, NULL); 430 431 /* Note that config-io to empty slots may fail; 432 * they are empty when they don't have children. 433 * We will punt with the following conditions: Failure to get 434 * PE's state, EEH not support and Permanently unavailable 435 * state, PE is in good state. 436 */ 437 if ((ret < 0) || 438 (ret == EEH_STATE_NOT_SUPPORT) || 439 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) == 440 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) { 441 eeh_stats.false_positives++; 442 pe->false_positives++; 443 rc = 0; 444 goto dn_unlock; 445 } 446 447 eeh_stats.slot_resets++; 448 449 /* Avoid repeated reports of this failure, including problems 450 * with other functions on this device, and functions under 451 * bridges. 452 */ 453 eeh_pe_state_mark(pe, EEH_PE_ISOLATED); 454 eeh_serialize_unlock(flags); 455 456 /* Most EEH events are due to device driver bugs. Having 457 * a stack trace will help the device-driver authors figure 458 * out what happened. So print that out. 459 */ 460 pr_err("EEH: Frozen PE#%x detected on PHB#%x\n", 461 pe->addr, pe->phb->global_number); 462 dump_stack(); 463 464 eeh_send_failure_event(pe); 465 466 return 1; 467 468 dn_unlock: 469 eeh_serialize_unlock(flags); 470 return rc; 471 } 472 473 EXPORT_SYMBOL_GPL(eeh_dev_check_failure); 474 475 /** 476 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze 477 * @token: I/O token, should be address in the form 0xA.... 478 * @val: value, should be all 1's (XXX why do we need this arg??) 479 * 480 * Check for an EEH failure at the given token address. Call this 481 * routine if the result of a read was all 0xff's and you want to 482 * find out if this is due to an EEH slot freeze event. This routine 483 * will query firmware for the EEH status. 484 * 485 * Note this routine is safe to call in an interrupt context. 486 */ 487 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) 488 { 489 unsigned long addr; 490 struct eeh_dev *edev; 491 492 /* Finding the phys addr + pci device; this is pretty quick. */ 493 addr = eeh_token_to_phys((unsigned long __force) token); 494 edev = eeh_addr_cache_get_dev(addr); 495 if (!edev) { 496 eeh_stats.no_device++; 497 return val; 498 } 499 500 eeh_dev_check_failure(edev); 501 return val; 502 } 503 504 EXPORT_SYMBOL(eeh_check_failure); 505 506 507 /** 508 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot 509 * @pe: EEH PE 510 * 511 * This routine should be called to reenable frozen MMIO or DMA 512 * so that it would work correctly again. It's useful while doing 513 * recovery or log collection on the indicated device. 514 */ 515 int eeh_pci_enable(struct eeh_pe *pe, int function) 516 { 517 int rc; 518 519 rc = eeh_ops->set_option(pe, function); 520 if (rc) 521 pr_warning("%s: Unexpected state change %d on PHB#%d-PE#%x, err=%d\n", 522 __func__, function, pe->phb->global_number, pe->addr, rc); 523 524 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); 525 if (rc > 0 && (rc & EEH_STATE_MMIO_ENABLED) && 526 (function == EEH_OPT_THAW_MMIO)) 527 return 0; 528 529 return rc; 530 } 531 532 /** 533 * pcibios_set_pcie_slot_reset - Set PCI-E reset state 534 * @dev: pci device struct 535 * @state: reset state to enter 536 * 537 * Return value: 538 * 0 if success 539 */ 540 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 541 { 542 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev); 543 struct eeh_pe *pe = edev->pe; 544 545 if (!pe) { 546 pr_err("%s: No PE found on PCI device %s\n", 547 __func__, pci_name(dev)); 548 return -EINVAL; 549 } 550 551 switch (state) { 552 case pcie_deassert_reset: 553 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); 554 break; 555 case pcie_hot_reset: 556 eeh_ops->reset(pe, EEH_RESET_HOT); 557 break; 558 case pcie_warm_reset: 559 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); 560 break; 561 default: 562 return -EINVAL; 563 }; 564 565 return 0; 566 } 567 568 /** 569 * eeh_set_pe_freset - Check the required reset for the indicated device 570 * @data: EEH device 571 * @flag: return value 572 * 573 * Each device might have its preferred reset type: fundamental or 574 * hot reset. The routine is used to collected the information for 575 * the indicated device and its children so that the bunch of the 576 * devices could be reset properly. 577 */ 578 static void *eeh_set_dev_freset(void *data, void *flag) 579 { 580 struct pci_dev *dev; 581 unsigned int *freset = (unsigned int *)flag; 582 struct eeh_dev *edev = (struct eeh_dev *)data; 583 584 dev = eeh_dev_to_pci_dev(edev); 585 if (dev) 586 *freset |= dev->needs_freset; 587 588 return NULL; 589 } 590 591 /** 592 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second 593 * @pe: EEH PE 594 * 595 * Assert the PCI #RST line for 1/4 second. 596 */ 597 static void eeh_reset_pe_once(struct eeh_pe *pe) 598 { 599 unsigned int freset = 0; 600 601 /* Determine type of EEH reset required for 602 * Partitionable Endpoint, a hot-reset (1) 603 * or a fundamental reset (3). 604 * A fundamental reset required by any device under 605 * Partitionable Endpoint trumps hot-reset. 606 */ 607 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset); 608 609 if (freset) 610 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL); 611 else 612 eeh_ops->reset(pe, EEH_RESET_HOT); 613 614 /* The PCI bus requires that the reset be held high for at least 615 * a 100 milliseconds. We wait a bit longer 'just in case'. 616 */ 617 #define PCI_BUS_RST_HOLD_TIME_MSEC 250 618 msleep(PCI_BUS_RST_HOLD_TIME_MSEC); 619 620 /* We might get hit with another EEH freeze as soon as the 621 * pci slot reset line is dropped. Make sure we don't miss 622 * these, and clear the flag now. 623 */ 624 eeh_pe_state_clear(pe, EEH_PE_ISOLATED); 625 626 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE); 627 628 /* After a PCI slot has been reset, the PCI Express spec requires 629 * a 1.5 second idle time for the bus to stabilize, before starting 630 * up traffic. 631 */ 632 #define PCI_BUS_SETTLE_TIME_MSEC 1800 633 msleep(PCI_BUS_SETTLE_TIME_MSEC); 634 } 635 636 /** 637 * eeh_reset_pe - Reset the indicated PE 638 * @pe: EEH PE 639 * 640 * This routine should be called to reset indicated device, including 641 * PE. A PE might include multiple PCI devices and sometimes PCI bridges 642 * might be involved as well. 643 */ 644 int eeh_reset_pe(struct eeh_pe *pe) 645 { 646 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); 647 int i, rc; 648 649 /* Take three shots at resetting the bus */ 650 for (i=0; i<3; i++) { 651 eeh_reset_pe_once(pe); 652 653 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC); 654 if ((rc & flags) == flags) 655 return 0; 656 657 if (rc < 0) { 658 pr_err("%s: Unrecoverable slot failure on PHB#%d-PE#%x", 659 __func__, pe->phb->global_number, pe->addr); 660 return -1; 661 } 662 pr_err("EEH: bus reset %d failed on PHB#%d-PE#%x, rc=%d\n", 663 i+1, pe->phb->global_number, pe->addr, rc); 664 } 665 666 return -1; 667 } 668 669 /** 670 * eeh_save_bars - Save device bars 671 * @edev: PCI device associated EEH device 672 * 673 * Save the values of the device bars. Unlike the restore 674 * routine, this routine is *not* recursive. This is because 675 * PCI devices are added individually; but, for the restore, 676 * an entire slot is reset at a time. 677 */ 678 void eeh_save_bars(struct eeh_dev *edev) 679 { 680 int i; 681 struct device_node *dn; 682 683 if (!edev) 684 return; 685 dn = eeh_dev_to_of_node(edev); 686 687 for (i = 0; i < 16; i++) 688 eeh_ops->read_config(dn, i * 4, 4, &edev->config_space[i]); 689 } 690 691 /** 692 * eeh_ops_register - Register platform dependent EEH operations 693 * @ops: platform dependent EEH operations 694 * 695 * Register the platform dependent EEH operation callback 696 * functions. The platform should call this function before 697 * any other EEH operations. 698 */ 699 int __init eeh_ops_register(struct eeh_ops *ops) 700 { 701 if (!ops->name) { 702 pr_warning("%s: Invalid EEH ops name for %p\n", 703 __func__, ops); 704 return -EINVAL; 705 } 706 707 if (eeh_ops && eeh_ops != ops) { 708 pr_warning("%s: EEH ops of platform %s already existing (%s)\n", 709 __func__, eeh_ops->name, ops->name); 710 return -EEXIST; 711 } 712 713 eeh_ops = ops; 714 715 return 0; 716 } 717 718 /** 719 * eeh_ops_unregister - Unreigster platform dependent EEH operations 720 * @name: name of EEH platform operations 721 * 722 * Unregister the platform dependent EEH operation callback 723 * functions. 724 */ 725 int __exit eeh_ops_unregister(const char *name) 726 { 727 if (!name || !strlen(name)) { 728 pr_warning("%s: Invalid EEH ops name\n", 729 __func__); 730 return -EINVAL; 731 } 732 733 if (eeh_ops && !strcmp(eeh_ops->name, name)) { 734 eeh_ops = NULL; 735 return 0; 736 } 737 738 return -EEXIST; 739 } 740 741 /** 742 * eeh_init - EEH initialization 743 * 744 * Initialize EEH by trying to enable it for all of the adapters in the system. 745 * As a side effect we can determine here if eeh is supported at all. 746 * Note that we leave EEH on so failed config cycles won't cause a machine 747 * check. If a user turns off EEH for a particular adapter they are really 748 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't 749 * grant access to a slot if EEH isn't enabled, and so we always enable 750 * EEH for all slots/all devices. 751 * 752 * The eeh-force-off option disables EEH checking globally, for all slots. 753 * Even if force-off is set, the EEH hardware is still enabled, so that 754 * newer systems can boot. 755 */ 756 int eeh_init(void) 757 { 758 struct pci_controller *hose, *tmp; 759 struct device_node *phb; 760 static int cnt = 0; 761 int ret = 0; 762 763 /* 764 * We have to delay the initialization on PowerNV after 765 * the PCI hierarchy tree has been built because the PEs 766 * are figured out based on PCI devices instead of device 767 * tree nodes 768 */ 769 if (machine_is(powernv) && cnt++ <= 0) 770 return ret; 771 772 /* call platform initialization function */ 773 if (!eeh_ops) { 774 pr_warning("%s: Platform EEH operation not found\n", 775 __func__); 776 return -EEXIST; 777 } else if ((ret = eeh_ops->init())) { 778 pr_warning("%s: Failed to call platform init function (%d)\n", 779 __func__, ret); 780 return ret; 781 } 782 783 /* Initialize EEH event */ 784 ret = eeh_event_init(); 785 if (ret) 786 return ret; 787 788 /* Enable EEH for all adapters */ 789 if (eeh_probe_mode_devtree()) { 790 list_for_each_entry_safe(hose, tmp, 791 &hose_list, list_node) { 792 phb = hose->dn; 793 traverse_pci_devices(phb, eeh_ops->of_probe, NULL); 794 } 795 } else if (eeh_probe_mode_dev()) { 796 list_for_each_entry_safe(hose, tmp, 797 &hose_list, list_node) 798 pci_walk_bus(hose->bus, eeh_ops->dev_probe, NULL); 799 } else { 800 pr_warning("%s: Invalid probe mode %d\n", 801 __func__, eeh_probe_mode); 802 return -EINVAL; 803 } 804 805 /* 806 * Call platform post-initialization. Actually, It's good chance 807 * to inform platform that EEH is ready to supply service if the 808 * I/O cache stuff has been built up. 809 */ 810 if (eeh_ops->post_init) { 811 ret = eeh_ops->post_init(); 812 if (ret) 813 return ret; 814 } 815 816 if (eeh_subsystem_enabled) 817 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n"); 818 else 819 pr_warning("EEH: No capable adapters found\n"); 820 821 return ret; 822 } 823 824 core_initcall_sync(eeh_init); 825 826 /** 827 * eeh_add_device_early - Enable EEH for the indicated device_node 828 * @dn: device node for which to set up EEH 829 * 830 * This routine must be used to perform EEH initialization for PCI 831 * devices that were added after system boot (e.g. hotplug, dlpar). 832 * This routine must be called before any i/o is performed to the 833 * adapter (inluding any config-space i/o). 834 * Whether this actually enables EEH or not for this device depends 835 * on the CEC architecture, type of the device, on earlier boot 836 * command-line arguments & etc. 837 */ 838 void eeh_add_device_early(struct device_node *dn) 839 { 840 struct pci_controller *phb; 841 842 /* 843 * If we're doing EEH probe based on PCI device, we 844 * would delay the probe until late stage because 845 * the PCI device isn't available this moment. 846 */ 847 if (!eeh_probe_mode_devtree()) 848 return; 849 850 if (!of_node_to_eeh_dev(dn)) 851 return; 852 phb = of_node_to_eeh_dev(dn)->phb; 853 854 /* USB Bus children of PCI devices will not have BUID's */ 855 if (NULL == phb || 0 == phb->buid) 856 return; 857 858 eeh_ops->of_probe(dn, NULL); 859 } 860 861 /** 862 * eeh_add_device_tree_early - Enable EEH for the indicated device 863 * @dn: device node 864 * 865 * This routine must be used to perform EEH initialization for the 866 * indicated PCI device that was added after system boot (e.g. 867 * hotplug, dlpar). 868 */ 869 void eeh_add_device_tree_early(struct device_node *dn) 870 { 871 struct device_node *sib; 872 873 for_each_child_of_node(dn, sib) 874 eeh_add_device_tree_early(sib); 875 eeh_add_device_early(dn); 876 } 877 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early); 878 879 /** 880 * eeh_add_device_late - Perform EEH initialization for the indicated pci device 881 * @dev: pci device for which to set up EEH 882 * 883 * This routine must be used to complete EEH initialization for PCI 884 * devices that were added after system boot (e.g. hotplug, dlpar). 885 */ 886 void eeh_add_device_late(struct pci_dev *dev) 887 { 888 struct device_node *dn; 889 struct eeh_dev *edev; 890 891 if (!dev || !eeh_subsystem_enabled) 892 return; 893 894 pr_debug("EEH: Adding device %s\n", pci_name(dev)); 895 896 dn = pci_device_to_OF_node(dev); 897 edev = of_node_to_eeh_dev(dn); 898 if (edev->pdev == dev) { 899 pr_debug("EEH: Already referenced !\n"); 900 return; 901 } 902 903 /* 904 * The EEH cache might not be removed correctly because of 905 * unbalanced kref to the device during unplug time, which 906 * relies on pcibios_release_device(). So we have to remove 907 * that here explicitly. 908 */ 909 if (edev->pdev) { 910 eeh_rmv_from_parent_pe(edev); 911 eeh_addr_cache_rmv_dev(edev->pdev); 912 eeh_sysfs_remove_device(edev->pdev); 913 edev->mode &= ~EEH_DEV_SYSFS; 914 915 edev->pdev = NULL; 916 dev->dev.archdata.edev = NULL; 917 } 918 919 edev->pdev = dev; 920 dev->dev.archdata.edev = edev; 921 922 /* 923 * We have to do the EEH probe here because the PCI device 924 * hasn't been created yet in the early stage. 925 */ 926 if (eeh_probe_mode_dev()) 927 eeh_ops->dev_probe(dev, NULL); 928 929 eeh_addr_cache_insert_dev(dev); 930 } 931 932 /** 933 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus 934 * @bus: PCI bus 935 * 936 * This routine must be used to perform EEH initialization for PCI 937 * devices which are attached to the indicated PCI bus. The PCI bus 938 * is added after system boot through hotplug or dlpar. 939 */ 940 void eeh_add_device_tree_late(struct pci_bus *bus) 941 { 942 struct pci_dev *dev; 943 944 list_for_each_entry(dev, &bus->devices, bus_list) { 945 eeh_add_device_late(dev); 946 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 947 struct pci_bus *subbus = dev->subordinate; 948 if (subbus) 949 eeh_add_device_tree_late(subbus); 950 } 951 } 952 } 953 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late); 954 955 /** 956 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus 957 * @bus: PCI bus 958 * 959 * This routine must be used to add EEH sysfs files for PCI 960 * devices which are attached to the indicated PCI bus. The PCI bus 961 * is added after system boot through hotplug or dlpar. 962 */ 963 void eeh_add_sysfs_files(struct pci_bus *bus) 964 { 965 struct pci_dev *dev; 966 967 list_for_each_entry(dev, &bus->devices, bus_list) { 968 eeh_sysfs_add_device(dev); 969 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 970 struct pci_bus *subbus = dev->subordinate; 971 if (subbus) 972 eeh_add_sysfs_files(subbus); 973 } 974 } 975 } 976 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files); 977 978 /** 979 * eeh_remove_device - Undo EEH setup for the indicated pci device 980 * @dev: pci device to be removed 981 * 982 * This routine should be called when a device is removed from 983 * a running system (e.g. by hotplug or dlpar). It unregisters 984 * the PCI device from the EEH subsystem. I/O errors affecting 985 * this device will no longer be detected after this call; thus, 986 * i/o errors affecting this slot may leave this device unusable. 987 */ 988 void eeh_remove_device(struct pci_dev *dev) 989 { 990 struct eeh_dev *edev; 991 992 if (!dev || !eeh_subsystem_enabled) 993 return; 994 edev = pci_dev_to_eeh_dev(dev); 995 996 /* Unregister the device with the EEH/PCI address search system */ 997 pr_debug("EEH: Removing device %s\n", pci_name(dev)); 998 999 if (!edev || !edev->pdev || !edev->pe) { 1000 pr_debug("EEH: Not referenced !\n"); 1001 return; 1002 } 1003 1004 /* 1005 * During the hotplug for EEH error recovery, we need the EEH 1006 * device attached to the parent PE in order for BAR restore 1007 * a bit later. So we keep it for BAR restore and remove it 1008 * from the parent PE during the BAR resotre. 1009 */ 1010 edev->pdev = NULL; 1011 dev->dev.archdata.edev = NULL; 1012 if (!(edev->pe->state & EEH_PE_KEEP)) 1013 eeh_rmv_from_parent_pe(edev); 1014 else 1015 edev->mode |= EEH_DEV_DISCONNECTED; 1016 1017 eeh_addr_cache_rmv_dev(dev); 1018 eeh_sysfs_remove_device(dev); 1019 edev->mode &= ~EEH_DEV_SYSFS; 1020 } 1021 1022 static int proc_eeh_show(struct seq_file *m, void *v) 1023 { 1024 if (0 == eeh_subsystem_enabled) { 1025 seq_printf(m, "EEH Subsystem is globally disabled\n"); 1026 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs); 1027 } else { 1028 seq_printf(m, "EEH Subsystem is enabled\n"); 1029 seq_printf(m, 1030 "no device=%llu\n" 1031 "no device node=%llu\n" 1032 "no config address=%llu\n" 1033 "check not wanted=%llu\n" 1034 "eeh_total_mmio_ffs=%llu\n" 1035 "eeh_false_positives=%llu\n" 1036 "eeh_slot_resets=%llu\n", 1037 eeh_stats.no_device, 1038 eeh_stats.no_dn, 1039 eeh_stats.no_cfg_addr, 1040 eeh_stats.ignored_check, 1041 eeh_stats.total_mmio_ffs, 1042 eeh_stats.false_positives, 1043 eeh_stats.slot_resets); 1044 } 1045 1046 return 0; 1047 } 1048 1049 static int proc_eeh_open(struct inode *inode, struct file *file) 1050 { 1051 return single_open(file, proc_eeh_show, NULL); 1052 } 1053 1054 static const struct file_operations proc_eeh_operations = { 1055 .open = proc_eeh_open, 1056 .read = seq_read, 1057 .llseek = seq_lseek, 1058 .release = single_release, 1059 }; 1060 1061 static int __init eeh_init_proc(void) 1062 { 1063 if (machine_is(pseries) || machine_is(powernv)) 1064 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations); 1065 return 0; 1066 } 1067 __initcall(eeh_init_proc); 1068