xref: /linux/arch/powerpc/kernel/eeh.c (revision 2169e6daa1ffa6e9869fcc56ff7df23c9287f1ec)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright IBM Corporation 2001, 2005, 2006
4  * Copyright Dave Engebretsen & Todd Inglett 2001
5  * Copyright Linas Vepstas 2005, 2006
6  * Copyright 2001-2012 IBM Corporation.
7  *
8  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
9  */
10 
11 #include <linux/delay.h>
12 #include <linux/sched.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/pci.h>
16 #include <linux/iommu.h>
17 #include <linux/proc_fs.h>
18 #include <linux/rbtree.h>
19 #include <linux/reboot.h>
20 #include <linux/seq_file.h>
21 #include <linux/spinlock.h>
22 #include <linux/export.h>
23 #include <linux/of.h>
24 
25 #include <linux/atomic.h>
26 #include <asm/debugfs.h>
27 #include <asm/eeh.h>
28 #include <asm/eeh_event.h>
29 #include <asm/io.h>
30 #include <asm/iommu.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34 #include <asm/pte-walk.h>
35 
36 
37 /** Overview:
38  *  EEH, or "Enhanced Error Handling" is a PCI bridge technology for
39  *  dealing with PCI bus errors that can't be dealt with within the
40  *  usual PCI framework, except by check-stopping the CPU.  Systems
41  *  that are designed for high-availability/reliability cannot afford
42  *  to crash due to a "mere" PCI error, thus the need for EEH.
43  *  An EEH-capable bridge operates by converting a detected error
44  *  into a "slot freeze", taking the PCI adapter off-line, making
45  *  the slot behave, from the OS'es point of view, as if the slot
46  *  were "empty": all reads return 0xff's and all writes are silently
47  *  ignored.  EEH slot isolation events can be triggered by parity
48  *  errors on the address or data busses (e.g. during posted writes),
49  *  which in turn might be caused by low voltage on the bus, dust,
50  *  vibration, humidity, radioactivity or plain-old failed hardware.
51  *
52  *  Note, however, that one of the leading causes of EEH slot
53  *  freeze events are buggy device drivers, buggy device microcode,
54  *  or buggy device hardware.  This is because any attempt by the
55  *  device to bus-master data to a memory address that is not
56  *  assigned to the device will trigger a slot freeze.   (The idea
57  *  is to prevent devices-gone-wild from corrupting system memory).
58  *  Buggy hardware/drivers will have a miserable time co-existing
59  *  with EEH.
60  *
61  *  Ideally, a PCI device driver, when suspecting that an isolation
62  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
63  *  whether this is the case, and then take appropriate steps to
64  *  reset the PCI slot, the PCI device, and then resume operations.
65  *  However, until that day,  the checking is done here, with the
66  *  eeh_check_failure() routine embedded in the MMIO macros.  If
67  *  the slot is found to be isolated, an "EEH Event" is synthesized
68  *  and sent out for processing.
69  */
70 
71 /* If a device driver keeps reading an MMIO register in an interrupt
72  * handler after a slot isolation event, it might be broken.
73  * This sets the threshold for how many read attempts we allow
74  * before printing an error message.
75  */
76 #define EEH_MAX_FAILS	2100000
77 
78 /* Time to wait for a PCI slot to report status, in milliseconds */
79 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
80 
81 /*
82  * EEH probe mode support, which is part of the flags,
83  * is to support multiple platforms for EEH. Some platforms
84  * like pSeries do PCI emunation based on device tree.
85  * However, other platforms like powernv probe PCI devices
86  * from hardware. The flag is used to distinguish that.
87  * In addition, struct eeh_ops::probe would be invoked for
88  * particular OF node or PCI device so that the corresponding
89  * PE would be created there.
90  */
91 int eeh_subsystem_flags;
92 EXPORT_SYMBOL(eeh_subsystem_flags);
93 
94 /*
95  * EEH allowed maximal frozen times. If one particular PE's
96  * frozen count in last hour exceeds this limit, the PE will
97  * be forced to be offline permanently.
98  */
99 u32 eeh_max_freezes = 5;
100 
101 /*
102  * Controls whether a recovery event should be scheduled when an
103  * isolated device is discovered. This is only really useful for
104  * debugging problems with the EEH core.
105  */
106 bool eeh_debugfs_no_recover;
107 
108 /* Platform dependent EEH operations */
109 struct eeh_ops *eeh_ops = NULL;
110 
111 /* Lock to avoid races due to multiple reports of an error */
112 DEFINE_RAW_SPINLOCK(confirm_error_lock);
113 EXPORT_SYMBOL_GPL(confirm_error_lock);
114 
115 /* Lock to protect passed flags */
116 static DEFINE_MUTEX(eeh_dev_mutex);
117 
118 /* Buffer for reporting pci register dumps. Its here in BSS, and
119  * not dynamically alloced, so that it ends up in RMO where RTAS
120  * can access it.
121  */
122 #define EEH_PCI_REGS_LOG_LEN 8192
123 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
124 
125 /*
126  * The struct is used to maintain the EEH global statistic
127  * information. Besides, the EEH global statistics will be
128  * exported to user space through procfs
129  */
130 struct eeh_stats {
131 	u64 no_device;		/* PCI device not found		*/
132 	u64 no_dn;		/* OF node not found		*/
133 	u64 no_cfg_addr;	/* Config address not found	*/
134 	u64 ignored_check;	/* EEH check skipped		*/
135 	u64 total_mmio_ffs;	/* Total EEH checks		*/
136 	u64 false_positives;	/* Unnecessary EEH checks	*/
137 	u64 slot_resets;	/* PE reset			*/
138 };
139 
140 static struct eeh_stats eeh_stats;
141 
142 static int __init eeh_setup(char *str)
143 {
144 	if (!strcmp(str, "off"))
145 		eeh_add_flag(EEH_FORCE_DISABLED);
146 	else if (!strcmp(str, "early_log"))
147 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
148 
149 	return 1;
150 }
151 __setup("eeh=", eeh_setup);
152 
153 /*
154  * This routine captures assorted PCI configuration space data
155  * for the indicated PCI device, and puts them into a buffer
156  * for RTAS error logging.
157  */
158 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
159 {
160 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
161 	u32 cfg;
162 	int cap, i;
163 	int n = 0, l = 0;
164 	char buffer[128];
165 
166 	if (!pdn) {
167 		pr_warn("EEH: Note: No error log for absent device.\n");
168 		return 0;
169 	}
170 
171 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
172 		       pdn->phb->global_number, pdn->busno,
173 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 	pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
175 		pdn->phb->global_number, pdn->busno,
176 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177 
178 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181 
182 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185 
186 	/* Gather bridge-specific registers */
187 	if (edev->mode & EEH_DEV_BRIDGE) {
188 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191 
192 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 		pr_warn("EEH: Bridge control: %04x\n", cfg);
195 	}
196 
197 	/* Dump out the PCI-X command and status regs */
198 	cap = edev->pcix_cap;
199 	if (cap) {
200 		eeh_ops->read_config(pdn, cap, 4, &cfg);
201 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203 
204 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 	}
208 
209 	/* If PCI-E capable, dump PCI-E cap 10 */
210 	cap = edev->pcie_cap;
211 	if (cap) {
212 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
214 
215 		for (i=0; i<=8; i++) {
216 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218 
219 			if ((i % 4) == 0) {
220 				if (i != 0)
221 					pr_warn("%s\n", buffer);
222 
223 				l = scnprintf(buffer, sizeof(buffer),
224 					      "EEH: PCI-E %02x: %08x ",
225 					      4*i, cfg);
226 			} else {
227 				l += scnprintf(buffer+l, sizeof(buffer)-l,
228 					       "%08x ", cfg);
229 			}
230 
231 		}
232 
233 		pr_warn("%s\n", buffer);
234 	}
235 
236 	/* If AER capable, dump it */
237 	cap = edev->aer_cap;
238 	if (cap) {
239 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
241 
242 		for (i=0; i<=13; i++) {
243 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245 
246 			if ((i % 4) == 0) {
247 				if (i != 0)
248 					pr_warn("%s\n", buffer);
249 
250 				l = scnprintf(buffer, sizeof(buffer),
251 					      "EEH: PCI-E AER %02x: %08x ",
252 					      4*i, cfg);
253 			} else {
254 				l += scnprintf(buffer+l, sizeof(buffer)-l,
255 					       "%08x ", cfg);
256 			}
257 		}
258 
259 		pr_warn("%s\n", buffer);
260 	}
261 
262 	return n;
263 }
264 
265 static void *eeh_dump_pe_log(struct eeh_pe *pe, void *flag)
266 {
267 	struct eeh_dev *edev, *tmp;
268 	size_t *plen = flag;
269 
270 	eeh_pe_for_each_dev(pe, edev, tmp)
271 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
272 					  EEH_PCI_REGS_LOG_LEN - *plen);
273 
274 	return NULL;
275 }
276 
277 /**
278  * eeh_slot_error_detail - Generate combined log including driver log and error log
279  * @pe: EEH PE
280  * @severity: temporary or permanent error log
281  *
282  * This routine should be called to generate the combined log, which
283  * is comprised of driver log and error log. The driver log is figured
284  * out from the config space of the corresponding PCI device, while
285  * the error log is fetched through platform dependent function call.
286  */
287 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
288 {
289 	size_t loglen = 0;
290 
291 	/*
292 	 * When the PHB is fenced or dead, it's pointless to collect
293 	 * the data from PCI config space because it should return
294 	 * 0xFF's. For ER, we still retrieve the data from the PCI
295 	 * config space.
296 	 *
297 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
298 	 * 0xFF's is always returned from PCI config space.
299 	 *
300 	 * When the @severity is EEH_LOG_PERM, the PE is going to be
301 	 * removed. Prior to that, the drivers for devices included in
302 	 * the PE will be closed. The drivers rely on working IO path
303 	 * to bring the devices to quiet state. Otherwise, PCI traffic
304 	 * from those devices after they are removed is like to cause
305 	 * another unexpected EEH error.
306 	 */
307 	if (!(pe->type & EEH_PE_PHB)) {
308 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
309 		    severity == EEH_LOG_PERM)
310 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
311 
312 		/*
313 		 * The config space of some PCI devices can't be accessed
314 		 * when their PEs are in frozen state. Otherwise, fenced
315 		 * PHB might be seen. Those PEs are identified with flag
316 		 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
317 		 * is set automatically when the PE is put to EEH_PE_ISOLATED.
318 		 *
319 		 * Restoring BARs possibly triggers PCI config access in
320 		 * (OPAL) firmware and then causes fenced PHB. If the
321 		 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
322 		 * pointless to restore BARs and dump config space.
323 		 */
324 		eeh_ops->configure_bridge(pe);
325 		if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
326 			eeh_pe_restore_bars(pe);
327 
328 			pci_regs_buf[0] = 0;
329 			eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
330 		}
331 	}
332 
333 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
334 }
335 
336 /**
337  * eeh_token_to_phys - Convert EEH address token to phys address
338  * @token: I/O token, should be address in the form 0xA....
339  *
340  * This routine should be called to convert virtual I/O address
341  * to physical one.
342  */
343 static inline unsigned long eeh_token_to_phys(unsigned long token)
344 {
345 	pte_t *ptep;
346 	unsigned long pa;
347 	int hugepage_shift;
348 
349 	/*
350 	 * We won't find hugepages here(this is iomem). Hence we are not
351 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
352 	 * page table free, because of init_mm.
353 	 */
354 	ptep = find_init_mm_pte(token, &hugepage_shift);
355 	if (!ptep)
356 		return token;
357 
358 	pa = pte_pfn(*ptep);
359 
360 	/* On radix we can do hugepage mappings for io, so handle that */
361 	if (hugepage_shift) {
362 		pa <<= hugepage_shift;
363 		pa |= token & ((1ul << hugepage_shift) - 1);
364 	} else {
365 		pa <<= PAGE_SHIFT;
366 		pa |= token & (PAGE_SIZE - 1);
367 	}
368 
369 	return pa;
370 }
371 
372 /*
373  * On PowerNV platform, we might already have fenced PHB there.
374  * For that case, it's meaningless to recover frozen PE. Intead,
375  * We have to handle fenced PHB firstly.
376  */
377 static int eeh_phb_check_failure(struct eeh_pe *pe)
378 {
379 	struct eeh_pe *phb_pe;
380 	unsigned long flags;
381 	int ret;
382 
383 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
384 		return -EPERM;
385 
386 	/* Find the PHB PE */
387 	phb_pe = eeh_phb_pe_get(pe->phb);
388 	if (!phb_pe) {
389 		pr_warn("%s Can't find PE for PHB#%x\n",
390 			__func__, pe->phb->global_number);
391 		return -EEXIST;
392 	}
393 
394 	/* If the PHB has been in problematic state */
395 	eeh_serialize_lock(&flags);
396 	if (phb_pe->state & EEH_PE_ISOLATED) {
397 		ret = 0;
398 		goto out;
399 	}
400 
401 	/* Check PHB state */
402 	ret = eeh_ops->get_state(phb_pe, NULL);
403 	if ((ret < 0) ||
404 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
405 		ret = 0;
406 		goto out;
407 	}
408 
409 	/* Isolate the PHB and send event */
410 	eeh_pe_mark_isolated(phb_pe);
411 	eeh_serialize_unlock(flags);
412 
413 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
414 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
415 	dump_stack();
416 	eeh_send_failure_event(phb_pe);
417 
418 	return 1;
419 out:
420 	eeh_serialize_unlock(flags);
421 	return ret;
422 }
423 
424 /**
425  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
426  * @edev: eeh device
427  *
428  * Check for an EEH failure for the given device node.  Call this
429  * routine if the result of a read was all 0xff's and you want to
430  * find out if this is due to an EEH slot freeze.  This routine
431  * will query firmware for the EEH status.
432  *
433  * Returns 0 if there has not been an EEH error; otherwise returns
434  * a non-zero value and queues up a slot isolation event notification.
435  *
436  * It is safe to call this routine in an interrupt context.
437  */
438 int eeh_dev_check_failure(struct eeh_dev *edev)
439 {
440 	int ret;
441 	unsigned long flags;
442 	struct device_node *dn;
443 	struct pci_dev *dev;
444 	struct eeh_pe *pe, *parent_pe, *phb_pe;
445 	int rc = 0;
446 	const char *location = NULL;
447 
448 	eeh_stats.total_mmio_ffs++;
449 
450 	if (!eeh_enabled())
451 		return 0;
452 
453 	if (!edev) {
454 		eeh_stats.no_dn++;
455 		return 0;
456 	}
457 	dev = eeh_dev_to_pci_dev(edev);
458 	pe = eeh_dev_to_pe(edev);
459 
460 	/* Access to IO BARs might get this far and still not want checking. */
461 	if (!pe) {
462 		eeh_stats.ignored_check++;
463 		pr_debug("EEH: Ignored check for %s\n",
464 			eeh_pci_name(dev));
465 		return 0;
466 	}
467 
468 	if (!pe->addr && !pe->config_addr) {
469 		eeh_stats.no_cfg_addr++;
470 		return 0;
471 	}
472 
473 	/*
474 	 * On PowerNV platform, we might already have fenced PHB
475 	 * there and we need take care of that firstly.
476 	 */
477 	ret = eeh_phb_check_failure(pe);
478 	if (ret > 0)
479 		return ret;
480 
481 	/*
482 	 * If the PE isn't owned by us, we shouldn't check the
483 	 * state. Instead, let the owner handle it if the PE has
484 	 * been frozen.
485 	 */
486 	if (eeh_pe_passed(pe))
487 		return 0;
488 
489 	/* If we already have a pending isolation event for this
490 	 * slot, we know it's bad already, we don't need to check.
491 	 * Do this checking under a lock; as multiple PCI devices
492 	 * in one slot might report errors simultaneously, and we
493 	 * only want one error recovery routine running.
494 	 */
495 	eeh_serialize_lock(&flags);
496 	rc = 1;
497 	if (pe->state & EEH_PE_ISOLATED) {
498 		pe->check_count++;
499 		if (pe->check_count % EEH_MAX_FAILS == 0) {
500 			dn = pci_device_to_OF_node(dev);
501 			if (dn)
502 				location = of_get_property(dn, "ibm,loc-code",
503 						NULL);
504 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
505 				"location=%s driver=%s pci addr=%s\n",
506 				pe->check_count,
507 				location ? location : "unknown",
508 				eeh_driver_name(dev), eeh_pci_name(dev));
509 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
510 				eeh_driver_name(dev));
511 			dump_stack();
512 		}
513 		goto dn_unlock;
514 	}
515 
516 	/*
517 	 * Now test for an EEH failure.  This is VERY expensive.
518 	 * Note that the eeh_config_addr may be a parent device
519 	 * in the case of a device behind a bridge, or it may be
520 	 * function zero of a multi-function device.
521 	 * In any case they must share a common PHB.
522 	 */
523 	ret = eeh_ops->get_state(pe, NULL);
524 
525 	/* Note that config-io to empty slots may fail;
526 	 * they are empty when they don't have children.
527 	 * We will punt with the following conditions: Failure to get
528 	 * PE's state, EEH not support and Permanently unavailable
529 	 * state, PE is in good state.
530 	 */
531 	if ((ret < 0) ||
532 	    (ret == EEH_STATE_NOT_SUPPORT) || eeh_state_active(ret)) {
533 		eeh_stats.false_positives++;
534 		pe->false_positives++;
535 		rc = 0;
536 		goto dn_unlock;
537 	}
538 
539 	/*
540 	 * It should be corner case that the parent PE has been
541 	 * put into frozen state as well. We should take care
542 	 * that at first.
543 	 */
544 	parent_pe = pe->parent;
545 	while (parent_pe) {
546 		/* Hit the ceiling ? */
547 		if (parent_pe->type & EEH_PE_PHB)
548 			break;
549 
550 		/* Frozen parent PE ? */
551 		ret = eeh_ops->get_state(parent_pe, NULL);
552 		if (ret > 0 && !eeh_state_active(ret)) {
553 			pe = parent_pe;
554 			pr_err("EEH: Failure of PHB#%x-PE#%x will be handled at parent PHB#%x-PE#%x.\n",
555 			       pe->phb->global_number, pe->addr,
556 			       pe->phb->global_number, parent_pe->addr);
557 		}
558 
559 		/* Next parent level */
560 		parent_pe = parent_pe->parent;
561 	}
562 
563 	eeh_stats.slot_resets++;
564 
565 	/* Avoid repeated reports of this failure, including problems
566 	 * with other functions on this device, and functions under
567 	 * bridges.
568 	 */
569 	eeh_pe_mark_isolated(pe);
570 	eeh_serialize_unlock(flags);
571 
572 	/* Most EEH events are due to device driver bugs.  Having
573 	 * a stack trace will help the device-driver authors figure
574 	 * out what happened.  So print that out.
575 	 */
576 	phb_pe = eeh_phb_pe_get(pe->phb);
577 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
578 	       pe->phb->global_number, pe->addr);
579 	pr_err("EEH: PE location: %s, PHB location: %s\n",
580 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
581 	dump_stack();
582 
583 	eeh_send_failure_event(pe);
584 
585 	return 1;
586 
587 dn_unlock:
588 	eeh_serialize_unlock(flags);
589 	return rc;
590 }
591 
592 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
593 
594 /**
595  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
596  * @token: I/O address
597  *
598  * Check for an EEH failure at the given I/O address. Call this
599  * routine if the result of a read was all 0xff's and you want to
600  * find out if this is due to an EEH slot freeze event. This routine
601  * will query firmware for the EEH status.
602  *
603  * Note this routine is safe to call in an interrupt context.
604  */
605 int eeh_check_failure(const volatile void __iomem *token)
606 {
607 	unsigned long addr;
608 	struct eeh_dev *edev;
609 
610 	/* Finding the phys addr + pci device; this is pretty quick. */
611 	addr = eeh_token_to_phys((unsigned long __force) token);
612 	edev = eeh_addr_cache_get_dev(addr);
613 	if (!edev) {
614 		eeh_stats.no_device++;
615 		return 0;
616 	}
617 
618 	return eeh_dev_check_failure(edev);
619 }
620 EXPORT_SYMBOL(eeh_check_failure);
621 
622 
623 /**
624  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
625  * @pe: EEH PE
626  *
627  * This routine should be called to reenable frozen MMIO or DMA
628  * so that it would work correctly again. It's useful while doing
629  * recovery or log collection on the indicated device.
630  */
631 int eeh_pci_enable(struct eeh_pe *pe, int function)
632 {
633 	int active_flag, rc;
634 
635 	/*
636 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
637 	 * Also, it's pointless to enable them on unfrozen PE. So
638 	 * we have to check before enabling IO or DMA.
639 	 */
640 	switch (function) {
641 	case EEH_OPT_THAW_MMIO:
642 		active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
643 		break;
644 	case EEH_OPT_THAW_DMA:
645 		active_flag = EEH_STATE_DMA_ACTIVE;
646 		break;
647 	case EEH_OPT_DISABLE:
648 	case EEH_OPT_ENABLE:
649 	case EEH_OPT_FREEZE_PE:
650 		active_flag = 0;
651 		break;
652 	default:
653 		pr_warn("%s: Invalid function %d\n",
654 			__func__, function);
655 		return -EINVAL;
656 	}
657 
658 	/*
659 	 * Check if IO or DMA has been enabled before
660 	 * enabling them.
661 	 */
662 	if (active_flag) {
663 		rc = eeh_ops->get_state(pe, NULL);
664 		if (rc < 0)
665 			return rc;
666 
667 		/* Needn't enable it at all */
668 		if (rc == EEH_STATE_NOT_SUPPORT)
669 			return 0;
670 
671 		/* It's already enabled */
672 		if (rc & active_flag)
673 			return 0;
674 	}
675 
676 
677 	/* Issue the request */
678 	rc = eeh_ops->set_option(pe, function);
679 	if (rc)
680 		pr_warn("%s: Unexpected state change %d on "
681 			"PHB#%x-PE#%x, err=%d\n",
682 			__func__, function, pe->phb->global_number,
683 			pe->addr, rc);
684 
685 	/* Check if the request is finished successfully */
686 	if (active_flag) {
687 		rc = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
688 		if (rc < 0)
689 			return rc;
690 
691 		if (rc & active_flag)
692 			return 0;
693 
694 		return -EIO;
695 	}
696 
697 	return rc;
698 }
699 
700 static void *eeh_disable_and_save_dev_state(struct eeh_dev *edev,
701 					    void *userdata)
702 {
703 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
704 	struct pci_dev *dev = userdata;
705 
706 	/*
707 	 * The caller should have disabled and saved the
708 	 * state for the specified device
709 	 */
710 	if (!pdev || pdev == dev)
711 		return NULL;
712 
713 	/* Ensure we have D0 power state */
714 	pci_set_power_state(pdev, PCI_D0);
715 
716 	/* Save device state */
717 	pci_save_state(pdev);
718 
719 	/*
720 	 * Disable device to avoid any DMA traffic and
721 	 * interrupt from the device
722 	 */
723 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
724 
725 	return NULL;
726 }
727 
728 static void *eeh_restore_dev_state(struct eeh_dev *edev, void *userdata)
729 {
730 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
731 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
732 	struct pci_dev *dev = userdata;
733 
734 	if (!pdev)
735 		return NULL;
736 
737 	/* Apply customization from firmware */
738 	if (pdn && eeh_ops->restore_config)
739 		eeh_ops->restore_config(pdn);
740 
741 	/* The caller should restore state for the specified device */
742 	if (pdev != dev)
743 		pci_restore_state(pdev);
744 
745 	return NULL;
746 }
747 
748 int eeh_restore_vf_config(struct pci_dn *pdn)
749 {
750 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
751 	u32 devctl, cmd, cap2, aer_capctl;
752 	int old_mps;
753 
754 	if (edev->pcie_cap) {
755 		/* Restore MPS */
756 		old_mps = (ffs(pdn->mps) - 8) << 5;
757 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
758 				     2, &devctl);
759 		devctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
760 		devctl |= old_mps;
761 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
762 				      2, devctl);
763 
764 		/* Disable Completion Timeout if possible */
765 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2,
766 				     4, &cap2);
767 		if (cap2 & PCI_EXP_DEVCAP2_COMP_TMOUT_DIS) {
768 			eeh_ops->read_config(pdn,
769 					     edev->pcie_cap + PCI_EXP_DEVCTL2,
770 					     4, &cap2);
771 			cap2 |= PCI_EXP_DEVCTL2_COMP_TMOUT_DIS;
772 			eeh_ops->write_config(pdn,
773 					      edev->pcie_cap + PCI_EXP_DEVCTL2,
774 					      4, cap2);
775 		}
776 	}
777 
778 	/* Enable SERR and parity checking */
779 	eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd);
780 	cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR);
781 	eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd);
782 
783 	/* Enable report various errors */
784 	if (edev->pcie_cap) {
785 		eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
786 				     2, &devctl);
787 		devctl &= ~PCI_EXP_DEVCTL_CERE;
788 		devctl |= (PCI_EXP_DEVCTL_NFERE |
789 			   PCI_EXP_DEVCTL_FERE |
790 			   PCI_EXP_DEVCTL_URRE);
791 		eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL,
792 				      2, devctl);
793 	}
794 
795 	/* Enable ECRC generation and check */
796 	if (edev->pcie_cap && edev->aer_cap) {
797 		eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP,
798 				     4, &aer_capctl);
799 		aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE);
800 		eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP,
801 				      4, aer_capctl);
802 	}
803 
804 	return 0;
805 }
806 
807 /**
808  * pcibios_set_pcie_reset_state - Set PCI-E reset state
809  * @dev: pci device struct
810  * @state: reset state to enter
811  *
812  * Return value:
813  * 	0 if success
814  */
815 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
816 {
817 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
818 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
819 
820 	if (!pe) {
821 		pr_err("%s: No PE found on PCI device %s\n",
822 			__func__, pci_name(dev));
823 		return -EINVAL;
824 	}
825 
826 	switch (state) {
827 	case pcie_deassert_reset:
828 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
829 		eeh_unfreeze_pe(pe);
830 		if (!(pe->type & EEH_PE_VF))
831 			eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
832 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
833 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
834 		break;
835 	case pcie_hot_reset:
836 		eeh_pe_mark_isolated(pe);
837 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
838 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
839 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
840 		if (!(pe->type & EEH_PE_VF))
841 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
842 		eeh_ops->reset(pe, EEH_RESET_HOT);
843 		break;
844 	case pcie_warm_reset:
845 		eeh_pe_mark_isolated(pe);
846 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, true);
847 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
848 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
849 		if (!(pe->type & EEH_PE_VF))
850 			eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
851 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
852 		break;
853 	default:
854 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED, true);
855 		return -EINVAL;
856 	};
857 
858 	return 0;
859 }
860 
861 /**
862  * eeh_set_pe_freset - Check the required reset for the indicated device
863  * @data: EEH device
864  * @flag: return value
865  *
866  * Each device might have its preferred reset type: fundamental or
867  * hot reset. The routine is used to collected the information for
868  * the indicated device and its children so that the bunch of the
869  * devices could be reset properly.
870  */
871 static void *eeh_set_dev_freset(struct eeh_dev *edev, void *flag)
872 {
873 	struct pci_dev *dev;
874 	unsigned int *freset = (unsigned int *)flag;
875 
876 	dev = eeh_dev_to_pci_dev(edev);
877 	if (dev)
878 		*freset |= dev->needs_freset;
879 
880 	return NULL;
881 }
882 
883 static void eeh_pe_refreeze_passed(struct eeh_pe *root)
884 {
885 	struct eeh_pe *pe;
886 	int state;
887 
888 	eeh_for_each_pe(root, pe) {
889 		if (eeh_pe_passed(pe)) {
890 			state = eeh_ops->get_state(pe, NULL);
891 			if (state &
892 			   (EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED)) {
893 				pr_info("EEH: Passed-through PE PHB#%x-PE#%x was thawed by reset, re-freezing for safety.\n",
894 					pe->phb->global_number, pe->addr);
895 				eeh_pe_set_option(pe, EEH_OPT_FREEZE_PE);
896 			}
897 		}
898 	}
899 }
900 
901 /**
902  * eeh_pe_reset_full - Complete a full reset process on the indicated PE
903  * @pe: EEH PE
904  *
905  * This function executes a full reset procedure on a PE, including setting
906  * the appropriate flags, performing a fundamental or hot reset, and then
907  * deactivating the reset status.  It is designed to be used within the EEH
908  * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
909  * only performs a single operation at a time.
910  *
911  * This function will attempt to reset a PE three times before failing.
912  */
913 int eeh_pe_reset_full(struct eeh_pe *pe, bool include_passed)
914 {
915 	int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
916 	int type = EEH_RESET_HOT;
917 	unsigned int freset = 0;
918 	int i, state = 0, ret;
919 
920 	/*
921 	 * Determine the type of reset to perform - hot or fundamental.
922 	 * Hot reset is the default operation, unless any device under the
923 	 * PE requires a fundamental reset.
924 	 */
925 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
926 
927 	if (freset)
928 		type = EEH_RESET_FUNDAMENTAL;
929 
930 	/* Mark the PE as in reset state and block config space accesses */
931 	eeh_pe_state_mark(pe, reset_state);
932 
933 	/* Make three attempts at resetting the bus */
934 	for (i = 0; i < 3; i++) {
935 		ret = eeh_pe_reset(pe, type, include_passed);
936 		if (!ret)
937 			ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE,
938 					   include_passed);
939 		if (ret) {
940 			ret = -EIO;
941 			pr_warn("EEH: Failure %d resetting PHB#%x-PE#%x (attempt %d)\n\n",
942 				state, pe->phb->global_number, pe->addr, i + 1);
943 			continue;
944 		}
945 		if (i)
946 			pr_warn("EEH: PHB#%x-PE#%x: Successful reset (attempt %d)\n",
947 				pe->phb->global_number, pe->addr, i + 1);
948 
949 		/* Wait until the PE is in a functioning state */
950 		state = eeh_wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
951 		if (state < 0) {
952 			pr_warn("EEH: Unrecoverable slot failure on PHB#%x-PE#%x",
953 				pe->phb->global_number, pe->addr);
954 			ret = -ENOTRECOVERABLE;
955 			break;
956 		}
957 		if (eeh_state_active(state))
958 			break;
959 		else
960 			pr_warn("EEH: PHB#%x-PE#%x: Slot inactive after reset: 0x%x (attempt %d)\n",
961 				pe->phb->global_number, pe->addr, state, i + 1);
962 	}
963 
964 	/* Resetting the PE may have unfrozen child PEs. If those PEs have been
965 	 * (potentially) passed through to a guest, re-freeze them:
966 	 */
967 	if (!include_passed)
968 		eeh_pe_refreeze_passed(pe);
969 
970 	eeh_pe_state_clear(pe, reset_state, true);
971 	return ret;
972 }
973 
974 /**
975  * eeh_save_bars - Save device bars
976  * @edev: PCI device associated EEH device
977  *
978  * Save the values of the device bars. Unlike the restore
979  * routine, this routine is *not* recursive. This is because
980  * PCI devices are added individually; but, for the restore,
981  * an entire slot is reset at a time.
982  */
983 void eeh_save_bars(struct eeh_dev *edev)
984 {
985 	struct pci_dn *pdn;
986 	int i;
987 
988 	pdn = eeh_dev_to_pdn(edev);
989 	if (!pdn)
990 		return;
991 
992 	for (i = 0; i < 16; i++)
993 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
994 
995 	/*
996 	 * For PCI bridges including root port, we need enable bus
997 	 * master explicitly. Otherwise, it can't fetch IODA table
998 	 * entries correctly. So we cache the bit in advance so that
999 	 * we can restore it after reset, either PHB range or PE range.
1000 	 */
1001 	if (edev->mode & EEH_DEV_BRIDGE)
1002 		edev->config_space[1] |= PCI_COMMAND_MASTER;
1003 }
1004 
1005 /**
1006  * eeh_ops_register - Register platform dependent EEH operations
1007  * @ops: platform dependent EEH operations
1008  *
1009  * Register the platform dependent EEH operation callback
1010  * functions. The platform should call this function before
1011  * any other EEH operations.
1012  */
1013 int __init eeh_ops_register(struct eeh_ops *ops)
1014 {
1015 	if (!ops->name) {
1016 		pr_warn("%s: Invalid EEH ops name for %p\n",
1017 			__func__, ops);
1018 		return -EINVAL;
1019 	}
1020 
1021 	if (eeh_ops && eeh_ops != ops) {
1022 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
1023 			__func__, eeh_ops->name, ops->name);
1024 		return -EEXIST;
1025 	}
1026 
1027 	eeh_ops = ops;
1028 
1029 	return 0;
1030 }
1031 
1032 /**
1033  * eeh_ops_unregister - Unreigster platform dependent EEH operations
1034  * @name: name of EEH platform operations
1035  *
1036  * Unregister the platform dependent EEH operation callback
1037  * functions.
1038  */
1039 int __exit eeh_ops_unregister(const char *name)
1040 {
1041 	if (!name || !strlen(name)) {
1042 		pr_warn("%s: Invalid EEH ops name\n",
1043 			__func__);
1044 		return -EINVAL;
1045 	}
1046 
1047 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
1048 		eeh_ops = NULL;
1049 		return 0;
1050 	}
1051 
1052 	return -EEXIST;
1053 }
1054 
1055 static int eeh_reboot_notifier(struct notifier_block *nb,
1056 			       unsigned long action, void *unused)
1057 {
1058 	eeh_clear_flag(EEH_ENABLED);
1059 	return NOTIFY_DONE;
1060 }
1061 
1062 static struct notifier_block eeh_reboot_nb = {
1063 	.notifier_call = eeh_reboot_notifier,
1064 };
1065 
1066 void eeh_probe_devices(void)
1067 {
1068 	struct pci_controller *hose, *tmp;
1069 	struct pci_dn *pdn;
1070 
1071 	/* Enable EEH for all adapters */
1072 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1073 		pdn = hose->pci_data;
1074 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1075 	}
1076 	if (eeh_enabled())
1077 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1078 	else
1079 		pr_info("EEH: No capable adapters found\n");
1080 
1081 }
1082 
1083 /**
1084  * eeh_init - EEH initialization
1085  *
1086  * Initialize EEH by trying to enable it for all of the adapters in the system.
1087  * As a side effect we can determine here if eeh is supported at all.
1088  * Note that we leave EEH on so failed config cycles won't cause a machine
1089  * check.  If a user turns off EEH for a particular adapter they are really
1090  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
1091  * grant access to a slot if EEH isn't enabled, and so we always enable
1092  * EEH for all slots/all devices.
1093  *
1094  * The eeh-force-off option disables EEH checking globally, for all slots.
1095  * Even if force-off is set, the EEH hardware is still enabled, so that
1096  * newer systems can boot.
1097  */
1098 static int eeh_init(void)
1099 {
1100 	struct pci_controller *hose, *tmp;
1101 	int ret = 0;
1102 
1103 	/* Register reboot notifier */
1104 	ret = register_reboot_notifier(&eeh_reboot_nb);
1105 	if (ret) {
1106 		pr_warn("%s: Failed to register notifier (%d)\n",
1107 			__func__, ret);
1108 		return ret;
1109 	}
1110 
1111 	/* call platform initialization function */
1112 	if (!eeh_ops) {
1113 		pr_warn("%s: Platform EEH operation not found\n",
1114 			__func__);
1115 		return -EEXIST;
1116 	} else if ((ret = eeh_ops->init()))
1117 		return ret;
1118 
1119 	/* Initialize PHB PEs */
1120 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
1121 		eeh_dev_phb_init_dynamic(hose);
1122 
1123 	/* Initialize EEH event */
1124 	return eeh_event_init();
1125 }
1126 
1127 core_initcall_sync(eeh_init);
1128 
1129 /**
1130  * eeh_add_device_early - Enable EEH for the indicated device node
1131  * @pdn: PCI device node for which to set up EEH
1132  *
1133  * This routine must be used to perform EEH initialization for PCI
1134  * devices that were added after system boot (e.g. hotplug, dlpar).
1135  * This routine must be called before any i/o is performed to the
1136  * adapter (inluding any config-space i/o).
1137  * Whether this actually enables EEH or not for this device depends
1138  * on the CEC architecture, type of the device, on earlier boot
1139  * command-line arguments & etc.
1140  */
1141 void eeh_add_device_early(struct pci_dn *pdn)
1142 {
1143 	struct pci_controller *phb = pdn ? pdn->phb : NULL;
1144 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1145 
1146 	if (!edev)
1147 		return;
1148 
1149 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1150 		return;
1151 
1152 	/* USB Bus children of PCI devices will not have BUID's */
1153 	if (NULL == phb ||
1154 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1155 		return;
1156 
1157 	eeh_ops->probe(pdn, NULL);
1158 }
1159 
1160 /**
1161  * eeh_add_device_tree_early - Enable EEH for the indicated device
1162  * @pdn: PCI device node
1163  *
1164  * This routine must be used to perform EEH initialization for the
1165  * indicated PCI device that was added after system boot (e.g.
1166  * hotplug, dlpar).
1167  */
1168 void eeh_add_device_tree_early(struct pci_dn *pdn)
1169 {
1170 	struct pci_dn *n;
1171 
1172 	if (!pdn)
1173 		return;
1174 
1175 	list_for_each_entry(n, &pdn->child_list, list)
1176 		eeh_add_device_tree_early(n);
1177 	eeh_add_device_early(pdn);
1178 }
1179 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1180 
1181 /**
1182  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1183  * @dev: pci device for which to set up EEH
1184  *
1185  * This routine must be used to complete EEH initialization for PCI
1186  * devices that were added after system boot (e.g. hotplug, dlpar).
1187  */
1188 void eeh_add_device_late(struct pci_dev *dev)
1189 {
1190 	struct pci_dn *pdn;
1191 	struct eeh_dev *edev;
1192 
1193 	if (!dev || !eeh_enabled())
1194 		return;
1195 
1196 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1197 
1198 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1199 	edev = pdn_to_eeh_dev(pdn);
1200 	if (edev->pdev == dev) {
1201 		pr_debug("EEH: Already referenced !\n");
1202 		return;
1203 	}
1204 
1205 	/*
1206 	 * The EEH cache might not be removed correctly because of
1207 	 * unbalanced kref to the device during unplug time, which
1208 	 * relies on pcibios_release_device(). So we have to remove
1209 	 * that here explicitly.
1210 	 */
1211 	if (edev->pdev) {
1212 		eeh_rmv_from_parent_pe(edev);
1213 		eeh_addr_cache_rmv_dev(edev->pdev);
1214 		eeh_sysfs_remove_device(edev->pdev);
1215 		edev->mode &= ~EEH_DEV_SYSFS;
1216 
1217 		/*
1218 		 * We definitely should have the PCI device removed
1219 		 * though it wasn't correctly. So we needn't call
1220 		 * into error handler afterwards.
1221 		 */
1222 		edev->mode |= EEH_DEV_NO_HANDLER;
1223 
1224 		edev->pdev = NULL;
1225 		dev->dev.archdata.edev = NULL;
1226 	}
1227 
1228 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1229 		eeh_ops->probe(pdn, NULL);
1230 
1231 	edev->pdev = dev;
1232 	dev->dev.archdata.edev = edev;
1233 
1234 	eeh_addr_cache_insert_dev(dev);
1235 }
1236 
1237 /**
1238  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1239  * @bus: PCI bus
1240  *
1241  * This routine must be used to perform EEH initialization for PCI
1242  * devices which are attached to the indicated PCI bus. The PCI bus
1243  * is added after system boot through hotplug or dlpar.
1244  */
1245 void eeh_add_device_tree_late(struct pci_bus *bus)
1246 {
1247 	struct pci_dev *dev;
1248 
1249 	list_for_each_entry(dev, &bus->devices, bus_list) {
1250 		eeh_add_device_late(dev);
1251 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1252 			struct pci_bus *subbus = dev->subordinate;
1253 			if (subbus)
1254 				eeh_add_device_tree_late(subbus);
1255 		}
1256 	}
1257 }
1258 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1259 
1260 /**
1261  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1262  * @bus: PCI bus
1263  *
1264  * This routine must be used to add EEH sysfs files for PCI
1265  * devices which are attached to the indicated PCI bus. The PCI bus
1266  * is added after system boot through hotplug or dlpar.
1267  */
1268 void eeh_add_sysfs_files(struct pci_bus *bus)
1269 {
1270 	struct pci_dev *dev;
1271 
1272 	list_for_each_entry(dev, &bus->devices, bus_list) {
1273 		eeh_sysfs_add_device(dev);
1274 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1275 			struct pci_bus *subbus = dev->subordinate;
1276 			if (subbus)
1277 				eeh_add_sysfs_files(subbus);
1278 		}
1279 	}
1280 }
1281 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1282 
1283 /**
1284  * eeh_remove_device - Undo EEH setup for the indicated pci device
1285  * @dev: pci device to be removed
1286  *
1287  * This routine should be called when a device is removed from
1288  * a running system (e.g. by hotplug or dlpar).  It unregisters
1289  * the PCI device from the EEH subsystem.  I/O errors affecting
1290  * this device will no longer be detected after this call; thus,
1291  * i/o errors affecting this slot may leave this device unusable.
1292  */
1293 void eeh_remove_device(struct pci_dev *dev)
1294 {
1295 	struct eeh_dev *edev;
1296 
1297 	if (!dev || !eeh_enabled())
1298 		return;
1299 	edev = pci_dev_to_eeh_dev(dev);
1300 
1301 	/* Unregister the device with the EEH/PCI address search system */
1302 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1303 
1304 	if (!edev || !edev->pdev || !edev->pe) {
1305 		pr_debug("EEH: Not referenced !\n");
1306 		return;
1307 	}
1308 
1309 	/*
1310 	 * During the hotplug for EEH error recovery, we need the EEH
1311 	 * device attached to the parent PE in order for BAR restore
1312 	 * a bit later. So we keep it for BAR restore and remove it
1313 	 * from the parent PE during the BAR resotre.
1314 	 */
1315 	edev->pdev = NULL;
1316 
1317 	/*
1318 	 * The flag "in_error" is used to trace EEH devices for VFs
1319 	 * in error state or not. It's set in eeh_report_error(). If
1320 	 * it's not set, eeh_report_{reset,resume}() won't be called
1321 	 * for the VF EEH device.
1322 	 */
1323 	edev->in_error = false;
1324 	dev->dev.archdata.edev = NULL;
1325 	if (!(edev->pe->state & EEH_PE_KEEP))
1326 		eeh_rmv_from_parent_pe(edev);
1327 	else
1328 		edev->mode |= EEH_DEV_DISCONNECTED;
1329 
1330 	/*
1331 	 * We're removing from the PCI subsystem, that means
1332 	 * the PCI device driver can't support EEH or not
1333 	 * well. So we rely on hotplug completely to do recovery
1334 	 * for the specific PCI device.
1335 	 */
1336 	edev->mode |= EEH_DEV_NO_HANDLER;
1337 
1338 	eeh_addr_cache_rmv_dev(dev);
1339 	eeh_sysfs_remove_device(dev);
1340 	edev->mode &= ~EEH_DEV_SYSFS;
1341 }
1342 
1343 int eeh_unfreeze_pe(struct eeh_pe *pe)
1344 {
1345 	int ret;
1346 
1347 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1348 	if (ret) {
1349 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1350 			__func__, ret, pe->phb->global_number, pe->addr);
1351 		return ret;
1352 	}
1353 
1354 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1355 	if (ret) {
1356 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1357 			__func__, ret, pe->phb->global_number, pe->addr);
1358 		return ret;
1359 	}
1360 
1361 	return ret;
1362 }
1363 
1364 
1365 static struct pci_device_id eeh_reset_ids[] = {
1366 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1367 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1368 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1369 	{ 0 }
1370 };
1371 
1372 static int eeh_pe_change_owner(struct eeh_pe *pe)
1373 {
1374 	struct eeh_dev *edev, *tmp;
1375 	struct pci_dev *pdev;
1376 	struct pci_device_id *id;
1377 	int ret;
1378 
1379 	/* Check PE state */
1380 	ret = eeh_ops->get_state(pe, NULL);
1381 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1382 		return 0;
1383 
1384 	/* Unfrozen PE, nothing to do */
1385 	if (eeh_state_active(ret))
1386 		return 0;
1387 
1388 	/* Frozen PE, check if it needs PE level reset */
1389 	eeh_pe_for_each_dev(pe, edev, tmp) {
1390 		pdev = eeh_dev_to_pci_dev(edev);
1391 		if (!pdev)
1392 			continue;
1393 
1394 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1395 			if (id->vendor != PCI_ANY_ID &&
1396 			    id->vendor != pdev->vendor)
1397 				continue;
1398 			if (id->device != PCI_ANY_ID &&
1399 			    id->device != pdev->device)
1400 				continue;
1401 			if (id->subvendor != PCI_ANY_ID &&
1402 			    id->subvendor != pdev->subsystem_vendor)
1403 				continue;
1404 			if (id->subdevice != PCI_ANY_ID &&
1405 			    id->subdevice != pdev->subsystem_device)
1406 				continue;
1407 
1408 			return eeh_pe_reset_and_recover(pe);
1409 		}
1410 	}
1411 
1412 	ret = eeh_unfreeze_pe(pe);
1413 	if (!ret)
1414 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, true);
1415 	return ret;
1416 }
1417 
1418 /**
1419  * eeh_dev_open - Increase count of pass through devices for PE
1420  * @pdev: PCI device
1421  *
1422  * Increase count of passed through devices for the indicated
1423  * PE. In the result, the EEH errors detected on the PE won't be
1424  * reported. The PE owner will be responsible for detection
1425  * and recovery.
1426  */
1427 int eeh_dev_open(struct pci_dev *pdev)
1428 {
1429 	struct eeh_dev *edev;
1430 	int ret = -ENODEV;
1431 
1432 	mutex_lock(&eeh_dev_mutex);
1433 
1434 	/* No PCI device ? */
1435 	if (!pdev)
1436 		goto out;
1437 
1438 	/* No EEH device or PE ? */
1439 	edev = pci_dev_to_eeh_dev(pdev);
1440 	if (!edev || !edev->pe)
1441 		goto out;
1442 
1443 	/*
1444 	 * The PE might have been put into frozen state, but we
1445 	 * didn't detect that yet. The passed through PCI devices
1446 	 * in frozen PE won't work properly. Clear the frozen state
1447 	 * in advance.
1448 	 */
1449 	ret = eeh_pe_change_owner(edev->pe);
1450 	if (ret)
1451 		goto out;
1452 
1453 	/* Increase PE's pass through count */
1454 	atomic_inc(&edev->pe->pass_dev_cnt);
1455 	mutex_unlock(&eeh_dev_mutex);
1456 
1457 	return 0;
1458 out:
1459 	mutex_unlock(&eeh_dev_mutex);
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL_GPL(eeh_dev_open);
1463 
1464 /**
1465  * eeh_dev_release - Decrease count of pass through devices for PE
1466  * @pdev: PCI device
1467  *
1468  * Decrease count of pass through devices for the indicated PE. If
1469  * there is no passed through device in PE, the EEH errors detected
1470  * on the PE will be reported and handled as usual.
1471  */
1472 void eeh_dev_release(struct pci_dev *pdev)
1473 {
1474 	struct eeh_dev *edev;
1475 
1476 	mutex_lock(&eeh_dev_mutex);
1477 
1478 	/* No PCI device ? */
1479 	if (!pdev)
1480 		goto out;
1481 
1482 	/* No EEH device ? */
1483 	edev = pci_dev_to_eeh_dev(pdev);
1484 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1485 		goto out;
1486 
1487 	/* Decrease PE's pass through count */
1488 	WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1489 	eeh_pe_change_owner(edev->pe);
1490 out:
1491 	mutex_unlock(&eeh_dev_mutex);
1492 }
1493 EXPORT_SYMBOL(eeh_dev_release);
1494 
1495 #ifdef CONFIG_IOMMU_API
1496 
1497 static int dev_has_iommu_table(struct device *dev, void *data)
1498 {
1499 	struct pci_dev *pdev = to_pci_dev(dev);
1500 	struct pci_dev **ppdev = data;
1501 
1502 	if (!dev)
1503 		return 0;
1504 
1505 	if (device_iommu_mapped(dev)) {
1506 		*ppdev = pdev;
1507 		return 1;
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 /**
1514  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1515  * @group: IOMMU group
1516  *
1517  * The routine is called to convert IOMMU group to EEH PE.
1518  */
1519 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1520 {
1521 	struct pci_dev *pdev = NULL;
1522 	struct eeh_dev *edev;
1523 	int ret;
1524 
1525 	/* No IOMMU group ? */
1526 	if (!group)
1527 		return NULL;
1528 
1529 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1530 	if (!ret || !pdev)
1531 		return NULL;
1532 
1533 	/* No EEH device or PE ? */
1534 	edev = pci_dev_to_eeh_dev(pdev);
1535 	if (!edev || !edev->pe)
1536 		return NULL;
1537 
1538 	return edev->pe;
1539 }
1540 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1541 
1542 #endif /* CONFIG_IOMMU_API */
1543 
1544 /**
1545  * eeh_pe_set_option - Set options for the indicated PE
1546  * @pe: EEH PE
1547  * @option: requested option
1548  *
1549  * The routine is called to enable or disable EEH functionality
1550  * on the indicated PE, to enable IO or DMA for the frozen PE.
1551  */
1552 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1553 {
1554 	int ret = 0;
1555 
1556 	/* Invalid PE ? */
1557 	if (!pe)
1558 		return -ENODEV;
1559 
1560 	/*
1561 	 * EEH functionality could possibly be disabled, just
1562 	 * return error for the case. And the EEH functinality
1563 	 * isn't expected to be disabled on one specific PE.
1564 	 */
1565 	switch (option) {
1566 	case EEH_OPT_ENABLE:
1567 		if (eeh_enabled()) {
1568 			ret = eeh_pe_change_owner(pe);
1569 			break;
1570 		}
1571 		ret = -EIO;
1572 		break;
1573 	case EEH_OPT_DISABLE:
1574 		break;
1575 	case EEH_OPT_THAW_MMIO:
1576 	case EEH_OPT_THAW_DMA:
1577 	case EEH_OPT_FREEZE_PE:
1578 		if (!eeh_ops || !eeh_ops->set_option) {
1579 			ret = -ENOENT;
1580 			break;
1581 		}
1582 
1583 		ret = eeh_pci_enable(pe, option);
1584 		break;
1585 	default:
1586 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1587 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1588 		ret = -EINVAL;
1589 	}
1590 
1591 	return ret;
1592 }
1593 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1594 
1595 /**
1596  * eeh_pe_get_state - Retrieve PE's state
1597  * @pe: EEH PE
1598  *
1599  * Retrieve the PE's state, which includes 3 aspects: enabled
1600  * DMA, enabled IO and asserted reset.
1601  */
1602 int eeh_pe_get_state(struct eeh_pe *pe)
1603 {
1604 	int result, ret = 0;
1605 	bool rst_active, dma_en, mmio_en;
1606 
1607 	/* Existing PE ? */
1608 	if (!pe)
1609 		return -ENODEV;
1610 
1611 	if (!eeh_ops || !eeh_ops->get_state)
1612 		return -ENOENT;
1613 
1614 	/*
1615 	 * If the parent PE is owned by the host kernel and is undergoing
1616 	 * error recovery, we should return the PE state as temporarily
1617 	 * unavailable so that the error recovery on the guest is suspended
1618 	 * until the recovery completes on the host.
1619 	 */
1620 	if (pe->parent &&
1621 	    !(pe->state & EEH_PE_REMOVED) &&
1622 	    (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1623 		return EEH_PE_STATE_UNAVAIL;
1624 
1625 	result = eeh_ops->get_state(pe, NULL);
1626 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1627 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1628 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1629 
1630 	if (rst_active)
1631 		ret = EEH_PE_STATE_RESET;
1632 	else if (dma_en && mmio_en)
1633 		ret = EEH_PE_STATE_NORMAL;
1634 	else if (!dma_en && !mmio_en)
1635 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1636 	else if (!dma_en && mmio_en)
1637 		ret = EEH_PE_STATE_STOPPED_DMA;
1638 	else
1639 		ret = EEH_PE_STATE_UNAVAIL;
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1644 
1645 static int eeh_pe_reenable_devices(struct eeh_pe *pe, bool include_passed)
1646 {
1647 	struct eeh_dev *edev, *tmp;
1648 	struct pci_dev *pdev;
1649 	int ret = 0;
1650 
1651 	eeh_pe_restore_bars(pe);
1652 
1653 	/*
1654 	 * Reenable PCI devices as the devices passed
1655 	 * through are always enabled before the reset.
1656 	 */
1657 	eeh_pe_for_each_dev(pe, edev, tmp) {
1658 		pdev = eeh_dev_to_pci_dev(edev);
1659 		if (!pdev)
1660 			continue;
1661 
1662 		ret = pci_reenable_device(pdev);
1663 		if (ret) {
1664 			pr_warn("%s: Failure %d reenabling %s\n",
1665 				__func__, ret, pci_name(pdev));
1666 			return ret;
1667 		}
1668 	}
1669 
1670 	/* The PE is still in frozen state */
1671 	if (include_passed || !eeh_pe_passed(pe)) {
1672 		ret = eeh_unfreeze_pe(pe);
1673 	} else
1674 		pr_info("EEH: Note: Leaving passthrough PHB#%x-PE#%x frozen.\n",
1675 			pe->phb->global_number, pe->addr);
1676 	if (!ret)
1677 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED, include_passed);
1678 	return ret;
1679 }
1680 
1681 
1682 /**
1683  * eeh_pe_reset - Issue PE reset according to specified type
1684  * @pe: EEH PE
1685  * @option: reset type
1686  *
1687  * The routine is called to reset the specified PE with the
1688  * indicated type, either fundamental reset or hot reset.
1689  * PE reset is the most important part for error recovery.
1690  */
1691 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed)
1692 {
1693 	int ret = 0;
1694 
1695 	/* Invalid PE ? */
1696 	if (!pe)
1697 		return -ENODEV;
1698 
1699 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1700 		return -ENOENT;
1701 
1702 	switch (option) {
1703 	case EEH_RESET_DEACTIVATE:
1704 		ret = eeh_ops->reset(pe, option);
1705 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED, include_passed);
1706 		if (ret)
1707 			break;
1708 
1709 		ret = eeh_pe_reenable_devices(pe, include_passed);
1710 		break;
1711 	case EEH_RESET_HOT:
1712 	case EEH_RESET_FUNDAMENTAL:
1713 		/*
1714 		 * Proactively freeze the PE to drop all MMIO access
1715 		 * during reset, which should be banned as it's always
1716 		 * cause recursive EEH error.
1717 		 */
1718 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1719 
1720 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1721 		ret = eeh_ops->reset(pe, option);
1722 		break;
1723 	default:
1724 		pr_debug("%s: Unsupported option %d\n",
1725 			__func__, option);
1726 		ret = -EINVAL;
1727 	}
1728 
1729 	return ret;
1730 }
1731 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1732 
1733 /**
1734  * eeh_pe_configure - Configure PCI bridges after PE reset
1735  * @pe: EEH PE
1736  *
1737  * The routine is called to restore the PCI config space for
1738  * those PCI devices, especially PCI bridges affected by PE
1739  * reset issued previously.
1740  */
1741 int eeh_pe_configure(struct eeh_pe *pe)
1742 {
1743 	int ret = 0;
1744 
1745 	/* Invalid PE ? */
1746 	if (!pe)
1747 		return -ENODEV;
1748 
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1752 
1753 /**
1754  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1755  * @pe: the indicated PE
1756  * @type: error type
1757  * @function: error function
1758  * @addr: address
1759  * @mask: address mask
1760  *
1761  * The routine is called to inject the specified PCI error, which
1762  * is determined by @type and @function, to the indicated PE for
1763  * testing purpose.
1764  */
1765 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1766 		      unsigned long addr, unsigned long mask)
1767 {
1768 	/* Invalid PE ? */
1769 	if (!pe)
1770 		return -ENODEV;
1771 
1772 	/* Unsupported operation ? */
1773 	if (!eeh_ops || !eeh_ops->err_inject)
1774 		return -ENOENT;
1775 
1776 	/* Check on PCI error type */
1777 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1778 		return -EINVAL;
1779 
1780 	/* Check on PCI error function */
1781 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1782 		return -EINVAL;
1783 
1784 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1785 }
1786 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1787 
1788 static int proc_eeh_show(struct seq_file *m, void *v)
1789 {
1790 	if (!eeh_enabled()) {
1791 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1792 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1793 	} else {
1794 		seq_printf(m, "EEH Subsystem is enabled\n");
1795 		seq_printf(m,
1796 				"no device=%llu\n"
1797 				"no device node=%llu\n"
1798 				"no config address=%llu\n"
1799 				"check not wanted=%llu\n"
1800 				"eeh_total_mmio_ffs=%llu\n"
1801 				"eeh_false_positives=%llu\n"
1802 				"eeh_slot_resets=%llu\n",
1803 				eeh_stats.no_device,
1804 				eeh_stats.no_dn,
1805 				eeh_stats.no_cfg_addr,
1806 				eeh_stats.ignored_check,
1807 				eeh_stats.total_mmio_ffs,
1808 				eeh_stats.false_positives,
1809 				eeh_stats.slot_resets);
1810 	}
1811 
1812 	return 0;
1813 }
1814 
1815 #ifdef CONFIG_DEBUG_FS
1816 static int eeh_enable_dbgfs_set(void *data, u64 val)
1817 {
1818 	if (val)
1819 		eeh_clear_flag(EEH_FORCE_DISABLED);
1820 	else
1821 		eeh_add_flag(EEH_FORCE_DISABLED);
1822 
1823 	return 0;
1824 }
1825 
1826 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1827 {
1828 	if (eeh_enabled())
1829 		*val = 0x1ul;
1830 	else
1831 		*val = 0x0ul;
1832 	return 0;
1833 }
1834 
1835 DEFINE_DEBUGFS_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1836 			 eeh_enable_dbgfs_set, "0x%llx\n");
1837 
1838 static ssize_t eeh_force_recover_write(struct file *filp,
1839 				const char __user *user_buf,
1840 				size_t count, loff_t *ppos)
1841 {
1842 	struct pci_controller *hose;
1843 	uint32_t phbid, pe_no;
1844 	struct eeh_pe *pe;
1845 	char buf[20];
1846 	int ret;
1847 
1848 	ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
1849 	if (!ret)
1850 		return -EFAULT;
1851 
1852 	/*
1853 	 * When PE is NULL the event is a "special" event. Rather than
1854 	 * recovering a specific PE it forces the EEH core to scan for failed
1855 	 * PHBs and recovers each. This needs to be done before any device
1856 	 * recoveries can occur.
1857 	 */
1858 	if (!strncmp(buf, "hwcheck", 7)) {
1859 		__eeh_send_failure_event(NULL);
1860 		return count;
1861 	}
1862 
1863 	ret = sscanf(buf, "%x:%x", &phbid, &pe_no);
1864 	if (ret != 2)
1865 		return -EINVAL;
1866 
1867 	hose = pci_find_controller_for_domain(phbid);
1868 	if (!hose)
1869 		return -ENODEV;
1870 
1871 	/* Retrieve PE */
1872 	pe = eeh_pe_get(hose, pe_no, 0);
1873 	if (!pe)
1874 		return -ENODEV;
1875 
1876 	/*
1877 	 * We don't do any state checking here since the detection
1878 	 * process is async to the recovery process. The recovery
1879 	 * thread *should* not break even if we schedule a recovery
1880 	 * from an odd state (e.g. PE removed, or recovery of a
1881 	 * non-isolated PE)
1882 	 */
1883 	__eeh_send_failure_event(pe);
1884 
1885 	return ret < 0 ? ret : count;
1886 }
1887 
1888 static const struct file_operations eeh_force_recover_fops = {
1889 	.open	= simple_open,
1890 	.llseek	= no_llseek,
1891 	.write	= eeh_force_recover_write,
1892 };
1893 #endif
1894 
1895 static int __init eeh_init_proc(void)
1896 {
1897 	if (machine_is(pseries) || machine_is(powernv)) {
1898 		proc_create_single("powerpc/eeh", 0, NULL, proc_eeh_show);
1899 #ifdef CONFIG_DEBUG_FS
1900 		debugfs_create_file_unsafe("eeh_enable", 0600,
1901 					   powerpc_debugfs_root, NULL,
1902 					   &eeh_enable_dbgfs_ops);
1903 		debugfs_create_u32("eeh_max_freezes", 0600,
1904 				powerpc_debugfs_root, &eeh_max_freezes);
1905 		debugfs_create_bool("eeh_disable_recovery", 0600,
1906 				powerpc_debugfs_root,
1907 				&eeh_debugfs_no_recover);
1908 		debugfs_create_file_unsafe("eeh_force_recover", 0600,
1909 				powerpc_debugfs_root, NULL,
1910 				&eeh_force_recover_fops);
1911 		eeh_cache_debugfs_init();
1912 #endif
1913 	}
1914 
1915 	return 0;
1916 }
1917 __initcall(eeh_init_proc);
1918