xref: /linux/arch/powerpc/kernel/eeh.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright IBM Corporation 2001, 2005, 2006
3  * Copyright Dave Engebretsen & Todd Inglett 2001
4  * Copyright Linas Vepstas 2005, 2006
5  * Copyright 2001-2012 IBM Corporation.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38 
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48 
49 
50 /** Overview:
51  *  EEH, or "Extended Error Handling" is a PCI bridge technology for
52  *  dealing with PCI bus errors that can't be dealt with within the
53  *  usual PCI framework, except by check-stopping the CPU.  Systems
54  *  that are designed for high-availability/reliability cannot afford
55  *  to crash due to a "mere" PCI error, thus the need for EEH.
56  *  An EEH-capable bridge operates by converting a detected error
57  *  into a "slot freeze", taking the PCI adapter off-line, making
58  *  the slot behave, from the OS'es point of view, as if the slot
59  *  were "empty": all reads return 0xff's and all writes are silently
60  *  ignored.  EEH slot isolation events can be triggered by parity
61  *  errors on the address or data busses (e.g. during posted writes),
62  *  which in turn might be caused by low voltage on the bus, dust,
63  *  vibration, humidity, radioactivity or plain-old failed hardware.
64  *
65  *  Note, however, that one of the leading causes of EEH slot
66  *  freeze events are buggy device drivers, buggy device microcode,
67  *  or buggy device hardware.  This is because any attempt by the
68  *  device to bus-master data to a memory address that is not
69  *  assigned to the device will trigger a slot freeze.   (The idea
70  *  is to prevent devices-gone-wild from corrupting system memory).
71  *  Buggy hardware/drivers will have a miserable time co-existing
72  *  with EEH.
73  *
74  *  Ideally, a PCI device driver, when suspecting that an isolation
75  *  event has occurred (e.g. by reading 0xff's), will then ask EEH
76  *  whether this is the case, and then take appropriate steps to
77  *  reset the PCI slot, the PCI device, and then resume operations.
78  *  However, until that day,  the checking is done here, with the
79  *  eeh_check_failure() routine embedded in the MMIO macros.  If
80  *  the slot is found to be isolated, an "EEH Event" is synthesized
81  *  and sent out for processing.
82  */
83 
84 /* If a device driver keeps reading an MMIO register in an interrupt
85  * handler after a slot isolation event, it might be broken.
86  * This sets the threshold for how many read attempts we allow
87  * before printing an error message.
88  */
89 #define EEH_MAX_FAILS	2100000
90 
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93 
94 /*
95  * EEH probe mode support, which is part of the flags,
96  * is to support multiple platforms for EEH. Some platforms
97  * like pSeries do PCI emunation based on device tree.
98  * However, other platforms like powernv probe PCI devices
99  * from hardware. The flag is used to distinguish that.
100  * In addition, struct eeh_ops::probe would be invoked for
101  * particular OF node or PCI device so that the corresponding
102  * PE would be created there.
103  */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106 
107 /*
108  * EEH allowed maximal frozen times. If one particular PE's
109  * frozen count in last hour exceeds this limit, the PE will
110  * be forced to be offline permanently.
111  */
112 int eeh_max_freezes = 5;
113 
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116 
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122 
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124  * not dynamically alloced, so that it ends up in RMO where RTAS
125  * can access it.
126  */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129 
130 /*
131  * The struct is used to maintain the EEH global statistic
132  * information. Besides, the EEH global statistics will be
133  * exported to user space through procfs
134  */
135 struct eeh_stats {
136 	u64 no_device;		/* PCI device not found		*/
137 	u64 no_dn;		/* OF node not found		*/
138 	u64 no_cfg_addr;	/* Config address not found	*/
139 	u64 ignored_check;	/* EEH check skipped		*/
140 	u64 total_mmio_ffs;	/* Total EEH checks		*/
141 	u64 false_positives;	/* Unnecessary EEH checks	*/
142 	u64 slot_resets;	/* PE reset			*/
143 };
144 
145 static struct eeh_stats eeh_stats;
146 
147 static int __init eeh_setup(char *str)
148 {
149 	if (!strcmp(str, "off"))
150 		eeh_add_flag(EEH_FORCE_DISABLED);
151 	else if (!strcmp(str, "early_log"))
152 		eeh_add_flag(EEH_EARLY_DUMP_LOG);
153 
154 	return 1;
155 }
156 __setup("eeh=", eeh_setup);
157 
158 /*
159  * This routine captures assorted PCI configuration space data
160  * for the indicated PCI device, and puts them into a buffer
161  * for RTAS error logging.
162  */
163 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164 {
165 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 	u32 cfg;
167 	int cap, i;
168 	int n = 0, l = 0;
169 	char buffer[128];
170 
171 	n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 		       edev->phb->global_number, pdn->busno,
173 		       PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 	pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 		edev->phb->global_number, pdn->busno,
176 		PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177 
178 	eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 	n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 	pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181 
182 	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 	n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 	pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185 
186 	/* Gather bridge-specific registers */
187 	if (edev->mode & EEH_DEV_BRIDGE) {
188 		eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 		n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 		pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191 
192 		eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 		n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 		pr_warn("EEH: Bridge control: %04x\n", cfg);
195 	}
196 
197 	/* Dump out the PCI-X command and status regs */
198 	cap = edev->pcix_cap;
199 	if (cap) {
200 		eeh_ops->read_config(pdn, cap, 4, &cfg);
201 		n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 		pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203 
204 		eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 		n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 		pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 	}
208 
209 	/* If PCI-E capable, dump PCI-E cap 10 */
210 	cap = edev->pcie_cap;
211 	if (cap) {
212 		n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 		pr_warn("EEH: PCI-E capabilities and status follow:\n");
214 
215 		for (i=0; i<=8; i++) {
216 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218 
219 			if ((i % 4) == 0) {
220 				if (i != 0)
221 					pr_warn("%s\n", buffer);
222 
223 				l = scnprintf(buffer, sizeof(buffer),
224 					      "EEH: PCI-E %02x: %08x ",
225 					      4*i, cfg);
226 			} else {
227 				l += scnprintf(buffer+l, sizeof(buffer)-l,
228 					       "%08x ", cfg);
229 			}
230 
231 		}
232 
233 		pr_warn("%s\n", buffer);
234 	}
235 
236 	/* If AER capable, dump it */
237 	cap = edev->aer_cap;
238 	if (cap) {
239 		n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 		pr_warn("EEH: PCI-E AER capability register set follows:\n");
241 
242 		for (i=0; i<=13; i++) {
243 			eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 			n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245 
246 			if ((i % 4) == 0) {
247 				if (i != 0)
248 					pr_warn("%s\n", buffer);
249 
250 				l = scnprintf(buffer, sizeof(buffer),
251 					      "EEH: PCI-E AER %02x: %08x ",
252 					      4*i, cfg);
253 			} else {
254 				l += scnprintf(buffer+l, sizeof(buffer)-l,
255 					       "%08x ", cfg);
256 			}
257 		}
258 
259 		pr_warn("%s\n", buffer);
260 	}
261 
262 	return n;
263 }
264 
265 static void *eeh_dump_pe_log(void *data, void *flag)
266 {
267 	struct eeh_pe *pe = data;
268 	struct eeh_dev *edev, *tmp;
269 	size_t *plen = flag;
270 
271 	/* If the PE's config space is blocked, 0xFF's will be
272 	 * returned. It's pointless to collect the log in this
273 	 * case.
274 	 */
275 	if (pe->state & EEH_PE_CFG_BLOCKED)
276 		return NULL;
277 
278 	eeh_pe_for_each_dev(pe, edev, tmp)
279 		*plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
280 					  EEH_PCI_REGS_LOG_LEN - *plen);
281 
282 	return NULL;
283 }
284 
285 /**
286  * eeh_slot_error_detail - Generate combined log including driver log and error log
287  * @pe: EEH PE
288  * @severity: temporary or permanent error log
289  *
290  * This routine should be called to generate the combined log, which
291  * is comprised of driver log and error log. The driver log is figured
292  * out from the config space of the corresponding PCI device, while
293  * the error log is fetched through platform dependent function call.
294  */
295 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
296 {
297 	size_t loglen = 0;
298 
299 	/*
300 	 * When the PHB is fenced or dead, it's pointless to collect
301 	 * the data from PCI config space because it should return
302 	 * 0xFF's. For ER, we still retrieve the data from the PCI
303 	 * config space.
304 	 *
305 	 * For pHyp, we have to enable IO for log retrieval. Otherwise,
306 	 * 0xFF's is always returned from PCI config space.
307 	 */
308 	if (!(pe->type & EEH_PE_PHB)) {
309 		if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
310 			eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
311 		eeh_ops->configure_bridge(pe);
312 		eeh_pe_restore_bars(pe);
313 
314 		pci_regs_buf[0] = 0;
315 		eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
316 	}
317 
318 	eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
319 }
320 
321 /**
322  * eeh_token_to_phys - Convert EEH address token to phys address
323  * @token: I/O token, should be address in the form 0xA....
324  *
325  * This routine should be called to convert virtual I/O address
326  * to physical one.
327  */
328 static inline unsigned long eeh_token_to_phys(unsigned long token)
329 {
330 	pte_t *ptep;
331 	unsigned long pa;
332 	int hugepage_shift;
333 
334 	/*
335 	 * We won't find hugepages here(this is iomem). Hence we are not
336 	 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
337 	 * page table free, because of init_mm.
338 	 */
339 	ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
340 	if (!ptep)
341 		return token;
342 	WARN_ON(hugepage_shift);
343 	pa = pte_pfn(*ptep) << PAGE_SHIFT;
344 
345 	return pa | (token & (PAGE_SIZE-1));
346 }
347 
348 /*
349  * On PowerNV platform, we might already have fenced PHB there.
350  * For that case, it's meaningless to recover frozen PE. Intead,
351  * We have to handle fenced PHB firstly.
352  */
353 static int eeh_phb_check_failure(struct eeh_pe *pe)
354 {
355 	struct eeh_pe *phb_pe;
356 	unsigned long flags;
357 	int ret;
358 
359 	if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
360 		return -EPERM;
361 
362 	/* Find the PHB PE */
363 	phb_pe = eeh_phb_pe_get(pe->phb);
364 	if (!phb_pe) {
365 		pr_warn("%s Can't find PE for PHB#%d\n",
366 			__func__, pe->phb->global_number);
367 		return -EEXIST;
368 	}
369 
370 	/* If the PHB has been in problematic state */
371 	eeh_serialize_lock(&flags);
372 	if (phb_pe->state & EEH_PE_ISOLATED) {
373 		ret = 0;
374 		goto out;
375 	}
376 
377 	/* Check PHB state */
378 	ret = eeh_ops->get_state(phb_pe, NULL);
379 	if ((ret < 0) ||
380 	    (ret == EEH_STATE_NOT_SUPPORT) ||
381 	    (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
382 	    (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
383 		ret = 0;
384 		goto out;
385 	}
386 
387 	/* Isolate the PHB and send event */
388 	eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
389 	eeh_serialize_unlock(flags);
390 
391 	pr_err("EEH: PHB#%x failure detected, location: %s\n",
392 		phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
393 	dump_stack();
394 	eeh_send_failure_event(phb_pe);
395 
396 	return 1;
397 out:
398 	eeh_serialize_unlock(flags);
399 	return ret;
400 }
401 
402 /**
403  * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
404  * @edev: eeh device
405  *
406  * Check for an EEH failure for the given device node.  Call this
407  * routine if the result of a read was all 0xff's and you want to
408  * find out if this is due to an EEH slot freeze.  This routine
409  * will query firmware for the EEH status.
410  *
411  * Returns 0 if there has not been an EEH error; otherwise returns
412  * a non-zero value and queues up a slot isolation event notification.
413  *
414  * It is safe to call this routine in an interrupt context.
415  */
416 int eeh_dev_check_failure(struct eeh_dev *edev)
417 {
418 	int ret;
419 	int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
420 	unsigned long flags;
421 	struct pci_dn *pdn;
422 	struct pci_dev *dev;
423 	struct eeh_pe *pe, *parent_pe, *phb_pe;
424 	int rc = 0;
425 	const char *location = NULL;
426 
427 	eeh_stats.total_mmio_ffs++;
428 
429 	if (!eeh_enabled())
430 		return 0;
431 
432 	if (!edev) {
433 		eeh_stats.no_dn++;
434 		return 0;
435 	}
436 	dev = eeh_dev_to_pci_dev(edev);
437 	pe = eeh_dev_to_pe(edev);
438 
439 	/* Access to IO BARs might get this far and still not want checking. */
440 	if (!pe) {
441 		eeh_stats.ignored_check++;
442 		pr_debug("EEH: Ignored check for %s\n",
443 			eeh_pci_name(dev));
444 		return 0;
445 	}
446 
447 	if (!pe->addr && !pe->config_addr) {
448 		eeh_stats.no_cfg_addr++;
449 		return 0;
450 	}
451 
452 	/*
453 	 * On PowerNV platform, we might already have fenced PHB
454 	 * there and we need take care of that firstly.
455 	 */
456 	ret = eeh_phb_check_failure(pe);
457 	if (ret > 0)
458 		return ret;
459 
460 	/*
461 	 * If the PE isn't owned by us, we shouldn't check the
462 	 * state. Instead, let the owner handle it if the PE has
463 	 * been frozen.
464 	 */
465 	if (eeh_pe_passed(pe))
466 		return 0;
467 
468 	/* If we already have a pending isolation event for this
469 	 * slot, we know it's bad already, we don't need to check.
470 	 * Do this checking under a lock; as multiple PCI devices
471 	 * in one slot might report errors simultaneously, and we
472 	 * only want one error recovery routine running.
473 	 */
474 	eeh_serialize_lock(&flags);
475 	rc = 1;
476 	if (pe->state & EEH_PE_ISOLATED) {
477 		pe->check_count++;
478 		if (pe->check_count % EEH_MAX_FAILS == 0) {
479 			pdn = eeh_dev_to_pdn(edev);
480 			if (pdn->node)
481 				location = of_get_property(pdn->node, "ibm,loc-code", NULL);
482 			printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
483 				"location=%s driver=%s pci addr=%s\n",
484 				pe->check_count,
485 				location ? location : "unknown",
486 				eeh_driver_name(dev), eeh_pci_name(dev));
487 			printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
488 				eeh_driver_name(dev));
489 			dump_stack();
490 		}
491 		goto dn_unlock;
492 	}
493 
494 	/*
495 	 * Now test for an EEH failure.  This is VERY expensive.
496 	 * Note that the eeh_config_addr may be a parent device
497 	 * in the case of a device behind a bridge, or it may be
498 	 * function zero of a multi-function device.
499 	 * In any case they must share a common PHB.
500 	 */
501 	ret = eeh_ops->get_state(pe, NULL);
502 
503 	/* Note that config-io to empty slots may fail;
504 	 * they are empty when they don't have children.
505 	 * We will punt with the following conditions: Failure to get
506 	 * PE's state, EEH not support and Permanently unavailable
507 	 * state, PE is in good state.
508 	 */
509 	if ((ret < 0) ||
510 	    (ret == EEH_STATE_NOT_SUPPORT) ||
511 	    ((ret & active_flags) == active_flags)) {
512 		eeh_stats.false_positives++;
513 		pe->false_positives++;
514 		rc = 0;
515 		goto dn_unlock;
516 	}
517 
518 	/*
519 	 * It should be corner case that the parent PE has been
520 	 * put into frozen state as well. We should take care
521 	 * that at first.
522 	 */
523 	parent_pe = pe->parent;
524 	while (parent_pe) {
525 		/* Hit the ceiling ? */
526 		if (parent_pe->type & EEH_PE_PHB)
527 			break;
528 
529 		/* Frozen parent PE ? */
530 		ret = eeh_ops->get_state(parent_pe, NULL);
531 		if (ret > 0 &&
532 		    (ret & active_flags) != active_flags)
533 			pe = parent_pe;
534 
535 		/* Next parent level */
536 		parent_pe = parent_pe->parent;
537 	}
538 
539 	eeh_stats.slot_resets++;
540 
541 	/* Avoid repeated reports of this failure, including problems
542 	 * with other functions on this device, and functions under
543 	 * bridges.
544 	 */
545 	eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
546 	eeh_serialize_unlock(flags);
547 
548 	/* Most EEH events are due to device driver bugs.  Having
549 	 * a stack trace will help the device-driver authors figure
550 	 * out what happened.  So print that out.
551 	 */
552 	phb_pe = eeh_phb_pe_get(pe->phb);
553 	pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
554 	       pe->phb->global_number, pe->addr);
555 	pr_err("EEH: PE location: %s, PHB location: %s\n",
556 	       eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
557 	dump_stack();
558 
559 	eeh_send_failure_event(pe);
560 
561 	return 1;
562 
563 dn_unlock:
564 	eeh_serialize_unlock(flags);
565 	return rc;
566 }
567 
568 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
569 
570 /**
571  * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
572  * @token: I/O address
573  *
574  * Check for an EEH failure at the given I/O address. Call this
575  * routine if the result of a read was all 0xff's and you want to
576  * find out if this is due to an EEH slot freeze event. This routine
577  * will query firmware for the EEH status.
578  *
579  * Note this routine is safe to call in an interrupt context.
580  */
581 int eeh_check_failure(const volatile void __iomem *token)
582 {
583 	unsigned long addr;
584 	struct eeh_dev *edev;
585 
586 	/* Finding the phys addr + pci device; this is pretty quick. */
587 	addr = eeh_token_to_phys((unsigned long __force) token);
588 	edev = eeh_addr_cache_get_dev(addr);
589 	if (!edev) {
590 		eeh_stats.no_device++;
591 		return 0;
592 	}
593 
594 	return eeh_dev_check_failure(edev);
595 }
596 EXPORT_SYMBOL(eeh_check_failure);
597 
598 
599 /**
600  * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
601  * @pe: EEH PE
602  *
603  * This routine should be called to reenable frozen MMIO or DMA
604  * so that it would work correctly again. It's useful while doing
605  * recovery or log collection on the indicated device.
606  */
607 int eeh_pci_enable(struct eeh_pe *pe, int function)
608 {
609 	int active_flag, rc;
610 
611 	/*
612 	 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
613 	 * Also, it's pointless to enable them on unfrozen PE. So
614 	 * we have to check before enabling IO or DMA.
615 	 */
616 	switch (function) {
617 	case EEH_OPT_THAW_MMIO:
618 		active_flag = EEH_STATE_MMIO_ACTIVE;
619 		break;
620 	case EEH_OPT_THAW_DMA:
621 		active_flag = EEH_STATE_DMA_ACTIVE;
622 		break;
623 	case EEH_OPT_DISABLE:
624 	case EEH_OPT_ENABLE:
625 	case EEH_OPT_FREEZE_PE:
626 		active_flag = 0;
627 		break;
628 	default:
629 		pr_warn("%s: Invalid function %d\n",
630 			__func__, function);
631 		return -EINVAL;
632 	}
633 
634 	/*
635 	 * Check if IO or DMA has been enabled before
636 	 * enabling them.
637 	 */
638 	if (active_flag) {
639 		rc = eeh_ops->get_state(pe, NULL);
640 		if (rc < 0)
641 			return rc;
642 
643 		/* Needn't enable it at all */
644 		if (rc == EEH_STATE_NOT_SUPPORT)
645 			return 0;
646 
647 		/* It's already enabled */
648 		if (rc & active_flag)
649 			return 0;
650 	}
651 
652 
653 	/* Issue the request */
654 	rc = eeh_ops->set_option(pe, function);
655 	if (rc)
656 		pr_warn("%s: Unexpected state change %d on "
657 			"PHB#%d-PE#%x, err=%d\n",
658 			__func__, function, pe->phb->global_number,
659 			pe->addr, rc);
660 
661 	/* Check if the request is finished successfully */
662 	if (active_flag) {
663 		rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
664 		if (rc <= 0)
665 			return rc;
666 
667 		if (rc & active_flag)
668 			return 0;
669 
670 		return -EIO;
671 	}
672 
673 	return rc;
674 }
675 
676 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
677 {
678 	struct eeh_dev *edev = data;
679 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
680 	struct pci_dev *dev = userdata;
681 
682 	/*
683 	 * The caller should have disabled and saved the
684 	 * state for the specified device
685 	 */
686 	if (!pdev || pdev == dev)
687 		return NULL;
688 
689 	/* Ensure we have D0 power state */
690 	pci_set_power_state(pdev, PCI_D0);
691 
692 	/* Save device state */
693 	pci_save_state(pdev);
694 
695 	/*
696 	 * Disable device to avoid any DMA traffic and
697 	 * interrupt from the device
698 	 */
699 	pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
700 
701 	return NULL;
702 }
703 
704 static void *eeh_restore_dev_state(void *data, void *userdata)
705 {
706 	struct eeh_dev *edev = data;
707 	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
708 	struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
709 	struct pci_dev *dev = userdata;
710 
711 	if (!pdev)
712 		return NULL;
713 
714 	/* Apply customization from firmware */
715 	if (pdn && eeh_ops->restore_config)
716 		eeh_ops->restore_config(pdn);
717 
718 	/* The caller should restore state for the specified device */
719 	if (pdev != dev)
720 		pci_restore_state(pdev);
721 
722 	return NULL;
723 }
724 
725 /**
726  * pcibios_set_pcie_slot_reset - Set PCI-E reset state
727  * @dev: pci device struct
728  * @state: reset state to enter
729  *
730  * Return value:
731  * 	0 if success
732  */
733 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
734 {
735 	struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
736 	struct eeh_pe *pe = eeh_dev_to_pe(edev);
737 
738 	if (!pe) {
739 		pr_err("%s: No PE found on PCI device %s\n",
740 			__func__, pci_name(dev));
741 		return -EINVAL;
742 	}
743 
744 	switch (state) {
745 	case pcie_deassert_reset:
746 		eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
747 		eeh_unfreeze_pe(pe, false);
748 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
749 		eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
750 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
751 		break;
752 	case pcie_hot_reset:
753 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
754 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
755 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
756 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
757 		eeh_ops->reset(pe, EEH_RESET_HOT);
758 		break;
759 	case pcie_warm_reset:
760 		eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
761 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
762 		eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
763 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
764 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
765 		break;
766 	default:
767 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
768 		return -EINVAL;
769 	};
770 
771 	return 0;
772 }
773 
774 /**
775  * eeh_set_pe_freset - Check the required reset for the indicated device
776  * @data: EEH device
777  * @flag: return value
778  *
779  * Each device might have its preferred reset type: fundamental or
780  * hot reset. The routine is used to collected the information for
781  * the indicated device and its children so that the bunch of the
782  * devices could be reset properly.
783  */
784 static void *eeh_set_dev_freset(void *data, void *flag)
785 {
786 	struct pci_dev *dev;
787 	unsigned int *freset = (unsigned int *)flag;
788 	struct eeh_dev *edev = (struct eeh_dev *)data;
789 
790 	dev = eeh_dev_to_pci_dev(edev);
791 	if (dev)
792 		*freset |= dev->needs_freset;
793 
794 	return NULL;
795 }
796 
797 /**
798  * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
799  * @pe: EEH PE
800  *
801  * Assert the PCI #RST line for 1/4 second.
802  */
803 static void eeh_reset_pe_once(struct eeh_pe *pe)
804 {
805 	unsigned int freset = 0;
806 
807 	/* Determine type of EEH reset required for
808 	 * Partitionable Endpoint, a hot-reset (1)
809 	 * or a fundamental reset (3).
810 	 * A fundamental reset required by any device under
811 	 * Partitionable Endpoint trumps hot-reset.
812 	 */
813 	eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
814 
815 	if (freset)
816 		eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
817 	else
818 		eeh_ops->reset(pe, EEH_RESET_HOT);
819 
820 	eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
821 }
822 
823 /**
824  * eeh_reset_pe - Reset the indicated PE
825  * @pe: EEH PE
826  *
827  * This routine should be called to reset indicated device, including
828  * PE. A PE might include multiple PCI devices and sometimes PCI bridges
829  * might be involved as well.
830  */
831 int eeh_reset_pe(struct eeh_pe *pe)
832 {
833 	int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
834 	int i, state, ret;
835 
836 	/* Mark as reset and block config space */
837 	eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
838 
839 	/* Take three shots at resetting the bus */
840 	for (i = 0; i < 3; i++) {
841 		eeh_reset_pe_once(pe);
842 
843 		/*
844 		 * EEH_PE_ISOLATED is expected to be removed after
845 		 * BAR restore.
846 		 */
847 		state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
848 		if ((state & flags) == flags) {
849 			ret = 0;
850 			goto out;
851 		}
852 
853 		if (state < 0) {
854 			pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
855 				__func__, pe->phb->global_number, pe->addr);
856 			ret = -ENOTRECOVERABLE;
857 			goto out;
858 		}
859 
860 		/* We might run out of credits */
861 		ret = -EIO;
862 		pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
863 			__func__, state, pe->phb->global_number, pe->addr, (i + 1));
864 	}
865 
866 out:
867 	eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
868 	return ret;
869 }
870 
871 /**
872  * eeh_save_bars - Save device bars
873  * @edev: PCI device associated EEH device
874  *
875  * Save the values of the device bars. Unlike the restore
876  * routine, this routine is *not* recursive. This is because
877  * PCI devices are added individually; but, for the restore,
878  * an entire slot is reset at a time.
879  */
880 void eeh_save_bars(struct eeh_dev *edev)
881 {
882 	struct pci_dn *pdn;
883 	int i;
884 
885 	pdn = eeh_dev_to_pdn(edev);
886 	if (!pdn)
887 		return;
888 
889 	for (i = 0; i < 16; i++)
890 		eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
891 
892 	/*
893 	 * For PCI bridges including root port, we need enable bus
894 	 * master explicitly. Otherwise, it can't fetch IODA table
895 	 * entries correctly. So we cache the bit in advance so that
896 	 * we can restore it after reset, either PHB range or PE range.
897 	 */
898 	if (edev->mode & EEH_DEV_BRIDGE)
899 		edev->config_space[1] |= PCI_COMMAND_MASTER;
900 }
901 
902 /**
903  * eeh_ops_register - Register platform dependent EEH operations
904  * @ops: platform dependent EEH operations
905  *
906  * Register the platform dependent EEH operation callback
907  * functions. The platform should call this function before
908  * any other EEH operations.
909  */
910 int __init eeh_ops_register(struct eeh_ops *ops)
911 {
912 	if (!ops->name) {
913 		pr_warn("%s: Invalid EEH ops name for %p\n",
914 			__func__, ops);
915 		return -EINVAL;
916 	}
917 
918 	if (eeh_ops && eeh_ops != ops) {
919 		pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
920 			__func__, eeh_ops->name, ops->name);
921 		return -EEXIST;
922 	}
923 
924 	eeh_ops = ops;
925 
926 	return 0;
927 }
928 
929 /**
930  * eeh_ops_unregister - Unreigster platform dependent EEH operations
931  * @name: name of EEH platform operations
932  *
933  * Unregister the platform dependent EEH operation callback
934  * functions.
935  */
936 int __exit eeh_ops_unregister(const char *name)
937 {
938 	if (!name || !strlen(name)) {
939 		pr_warn("%s: Invalid EEH ops name\n",
940 			__func__);
941 		return -EINVAL;
942 	}
943 
944 	if (eeh_ops && !strcmp(eeh_ops->name, name)) {
945 		eeh_ops = NULL;
946 		return 0;
947 	}
948 
949 	return -EEXIST;
950 }
951 
952 static int eeh_reboot_notifier(struct notifier_block *nb,
953 			       unsigned long action, void *unused)
954 {
955 	eeh_clear_flag(EEH_ENABLED);
956 	return NOTIFY_DONE;
957 }
958 
959 static struct notifier_block eeh_reboot_nb = {
960 	.notifier_call = eeh_reboot_notifier,
961 };
962 
963 /**
964  * eeh_init - EEH initialization
965  *
966  * Initialize EEH by trying to enable it for all of the adapters in the system.
967  * As a side effect we can determine here if eeh is supported at all.
968  * Note that we leave EEH on so failed config cycles won't cause a machine
969  * check.  If a user turns off EEH for a particular adapter they are really
970  * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
971  * grant access to a slot if EEH isn't enabled, and so we always enable
972  * EEH for all slots/all devices.
973  *
974  * The eeh-force-off option disables EEH checking globally, for all slots.
975  * Even if force-off is set, the EEH hardware is still enabled, so that
976  * newer systems can boot.
977  */
978 int eeh_init(void)
979 {
980 	struct pci_controller *hose, *tmp;
981 	struct pci_dn *pdn;
982 	static int cnt = 0;
983 	int ret = 0;
984 
985 	/*
986 	 * We have to delay the initialization on PowerNV after
987 	 * the PCI hierarchy tree has been built because the PEs
988 	 * are figured out based on PCI devices instead of device
989 	 * tree nodes
990 	 */
991 	if (machine_is(powernv) && cnt++ <= 0)
992 		return ret;
993 
994 	/* Register reboot notifier */
995 	ret = register_reboot_notifier(&eeh_reboot_nb);
996 	if (ret) {
997 		pr_warn("%s: Failed to register notifier (%d)\n",
998 			__func__, ret);
999 		return ret;
1000 	}
1001 
1002 	/* call platform initialization function */
1003 	if (!eeh_ops) {
1004 		pr_warn("%s: Platform EEH operation not found\n",
1005 			__func__);
1006 		return -EEXIST;
1007 	} else if ((ret = eeh_ops->init()))
1008 		return ret;
1009 
1010 	/* Initialize EEH event */
1011 	ret = eeh_event_init();
1012 	if (ret)
1013 		return ret;
1014 
1015 	/* Enable EEH for all adapters */
1016 	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1017 		pdn = hose->pci_data;
1018 		traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1019 	}
1020 
1021 	/*
1022 	 * Call platform post-initialization. Actually, It's good chance
1023 	 * to inform platform that EEH is ready to supply service if the
1024 	 * I/O cache stuff has been built up.
1025 	 */
1026 	if (eeh_ops->post_init) {
1027 		ret = eeh_ops->post_init();
1028 		if (ret)
1029 			return ret;
1030 	}
1031 
1032 	if (eeh_enabled())
1033 		pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1034 	else
1035 		pr_warn("EEH: No capable adapters found\n");
1036 
1037 	return ret;
1038 }
1039 
1040 core_initcall_sync(eeh_init);
1041 
1042 /**
1043  * eeh_add_device_early - Enable EEH for the indicated device node
1044  * @pdn: PCI device node for which to set up EEH
1045  *
1046  * This routine must be used to perform EEH initialization for PCI
1047  * devices that were added after system boot (e.g. hotplug, dlpar).
1048  * This routine must be called before any i/o is performed to the
1049  * adapter (inluding any config-space i/o).
1050  * Whether this actually enables EEH or not for this device depends
1051  * on the CEC architecture, type of the device, on earlier boot
1052  * command-line arguments & etc.
1053  */
1054 void eeh_add_device_early(struct pci_dn *pdn)
1055 {
1056 	struct pci_controller *phb;
1057 	struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1058 
1059 	if (!edev || !eeh_enabled())
1060 		return;
1061 
1062 	if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1063 		return;
1064 
1065 	/* USB Bus children of PCI devices will not have BUID's */
1066 	phb = edev->phb;
1067 	if (NULL == phb ||
1068 	    (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1069 		return;
1070 
1071 	eeh_ops->probe(pdn, NULL);
1072 }
1073 
1074 /**
1075  * eeh_add_device_tree_early - Enable EEH for the indicated device
1076  * @pdn: PCI device node
1077  *
1078  * This routine must be used to perform EEH initialization for the
1079  * indicated PCI device that was added after system boot (e.g.
1080  * hotplug, dlpar).
1081  */
1082 void eeh_add_device_tree_early(struct pci_dn *pdn)
1083 {
1084 	struct pci_dn *n;
1085 
1086 	if (!pdn)
1087 		return;
1088 
1089 	list_for_each_entry(n, &pdn->child_list, list)
1090 		eeh_add_device_tree_early(n);
1091 	eeh_add_device_early(pdn);
1092 }
1093 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1094 
1095 /**
1096  * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1097  * @dev: pci device for which to set up EEH
1098  *
1099  * This routine must be used to complete EEH initialization for PCI
1100  * devices that were added after system boot (e.g. hotplug, dlpar).
1101  */
1102 void eeh_add_device_late(struct pci_dev *dev)
1103 {
1104 	struct pci_dn *pdn;
1105 	struct eeh_dev *edev;
1106 
1107 	if (!dev || !eeh_enabled())
1108 		return;
1109 
1110 	pr_debug("EEH: Adding device %s\n", pci_name(dev));
1111 
1112 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1113 	edev = pdn_to_eeh_dev(pdn);
1114 	if (edev->pdev == dev) {
1115 		pr_debug("EEH: Already referenced !\n");
1116 		return;
1117 	}
1118 
1119 	if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1120 		eeh_ops->probe(pdn, NULL);
1121 
1122 	/*
1123 	 * The EEH cache might not be removed correctly because of
1124 	 * unbalanced kref to the device during unplug time, which
1125 	 * relies on pcibios_release_device(). So we have to remove
1126 	 * that here explicitly.
1127 	 */
1128 	if (edev->pdev) {
1129 		eeh_rmv_from_parent_pe(edev);
1130 		eeh_addr_cache_rmv_dev(edev->pdev);
1131 		eeh_sysfs_remove_device(edev->pdev);
1132 		edev->mode &= ~EEH_DEV_SYSFS;
1133 
1134 		/*
1135 		 * We definitely should have the PCI device removed
1136 		 * though it wasn't correctly. So we needn't call
1137 		 * into error handler afterwards.
1138 		 */
1139 		edev->mode |= EEH_DEV_NO_HANDLER;
1140 
1141 		edev->pdev = NULL;
1142 		dev->dev.archdata.edev = NULL;
1143 	}
1144 
1145 	edev->pdev = dev;
1146 	dev->dev.archdata.edev = edev;
1147 
1148 	eeh_addr_cache_insert_dev(dev);
1149 }
1150 
1151 /**
1152  * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1153  * @bus: PCI bus
1154  *
1155  * This routine must be used to perform EEH initialization for PCI
1156  * devices which are attached to the indicated PCI bus. The PCI bus
1157  * is added after system boot through hotplug or dlpar.
1158  */
1159 void eeh_add_device_tree_late(struct pci_bus *bus)
1160 {
1161 	struct pci_dev *dev;
1162 
1163 	list_for_each_entry(dev, &bus->devices, bus_list) {
1164 		eeh_add_device_late(dev);
1165 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1166 			struct pci_bus *subbus = dev->subordinate;
1167 			if (subbus)
1168 				eeh_add_device_tree_late(subbus);
1169 		}
1170 	}
1171 }
1172 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1173 
1174 /**
1175  * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1176  * @bus: PCI bus
1177  *
1178  * This routine must be used to add EEH sysfs files for PCI
1179  * devices which are attached to the indicated PCI bus. The PCI bus
1180  * is added after system boot through hotplug or dlpar.
1181  */
1182 void eeh_add_sysfs_files(struct pci_bus *bus)
1183 {
1184 	struct pci_dev *dev;
1185 
1186 	list_for_each_entry(dev, &bus->devices, bus_list) {
1187 		eeh_sysfs_add_device(dev);
1188 		if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1189 			struct pci_bus *subbus = dev->subordinate;
1190 			if (subbus)
1191 				eeh_add_sysfs_files(subbus);
1192 		}
1193 	}
1194 }
1195 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1196 
1197 /**
1198  * eeh_remove_device - Undo EEH setup for the indicated pci device
1199  * @dev: pci device to be removed
1200  *
1201  * This routine should be called when a device is removed from
1202  * a running system (e.g. by hotplug or dlpar).  It unregisters
1203  * the PCI device from the EEH subsystem.  I/O errors affecting
1204  * this device will no longer be detected after this call; thus,
1205  * i/o errors affecting this slot may leave this device unusable.
1206  */
1207 void eeh_remove_device(struct pci_dev *dev)
1208 {
1209 	struct eeh_dev *edev;
1210 
1211 	if (!dev || !eeh_enabled())
1212 		return;
1213 	edev = pci_dev_to_eeh_dev(dev);
1214 
1215 	/* Unregister the device with the EEH/PCI address search system */
1216 	pr_debug("EEH: Removing device %s\n", pci_name(dev));
1217 
1218 	if (!edev || !edev->pdev || !edev->pe) {
1219 		pr_debug("EEH: Not referenced !\n");
1220 		return;
1221 	}
1222 
1223 	/*
1224 	 * During the hotplug for EEH error recovery, we need the EEH
1225 	 * device attached to the parent PE in order for BAR restore
1226 	 * a bit later. So we keep it for BAR restore and remove it
1227 	 * from the parent PE during the BAR resotre.
1228 	 */
1229 	edev->pdev = NULL;
1230 	dev->dev.archdata.edev = NULL;
1231 	if (!(edev->pe->state & EEH_PE_KEEP))
1232 		eeh_rmv_from_parent_pe(edev);
1233 	else
1234 		edev->mode |= EEH_DEV_DISCONNECTED;
1235 
1236 	/*
1237 	 * We're removing from the PCI subsystem, that means
1238 	 * the PCI device driver can't support EEH or not
1239 	 * well. So we rely on hotplug completely to do recovery
1240 	 * for the specific PCI device.
1241 	 */
1242 	edev->mode |= EEH_DEV_NO_HANDLER;
1243 
1244 	eeh_addr_cache_rmv_dev(dev);
1245 	eeh_sysfs_remove_device(dev);
1246 	edev->mode &= ~EEH_DEV_SYSFS;
1247 }
1248 
1249 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1250 {
1251 	int ret;
1252 
1253 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1254 	if (ret) {
1255 		pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1256 			__func__, ret, pe->phb->global_number, pe->addr);
1257 		return ret;
1258 	}
1259 
1260 	ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1261 	if (ret) {
1262 		pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1263 			__func__, ret, pe->phb->global_number, pe->addr);
1264 		return ret;
1265 	}
1266 
1267 	/* Clear software isolated state */
1268 	if (sw_state && (pe->state & EEH_PE_ISOLATED))
1269 		eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1270 
1271 	return ret;
1272 }
1273 
1274 
1275 static struct pci_device_id eeh_reset_ids[] = {
1276 	{ PCI_DEVICE(0x19a2, 0x0710) },	/* Emulex, BE     */
1277 	{ PCI_DEVICE(0x10df, 0xe220) },	/* Emulex, Lancer */
1278 	{ PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1279 	{ 0 }
1280 };
1281 
1282 static int eeh_pe_change_owner(struct eeh_pe *pe)
1283 {
1284 	struct eeh_dev *edev, *tmp;
1285 	struct pci_dev *pdev;
1286 	struct pci_device_id *id;
1287 	int flags, ret;
1288 
1289 	/* Check PE state */
1290 	flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1291 	ret = eeh_ops->get_state(pe, NULL);
1292 	if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1293 		return 0;
1294 
1295 	/* Unfrozen PE, nothing to do */
1296 	if ((ret & flags) == flags)
1297 		return 0;
1298 
1299 	/* Frozen PE, check if it needs PE level reset */
1300 	eeh_pe_for_each_dev(pe, edev, tmp) {
1301 		pdev = eeh_dev_to_pci_dev(edev);
1302 		if (!pdev)
1303 			continue;
1304 
1305 		for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1306 			if (id->vendor != PCI_ANY_ID &&
1307 			    id->vendor != pdev->vendor)
1308 				continue;
1309 			if (id->device != PCI_ANY_ID &&
1310 			    id->device != pdev->device)
1311 				continue;
1312 			if (id->subvendor != PCI_ANY_ID &&
1313 			    id->subvendor != pdev->subsystem_vendor)
1314 				continue;
1315 			if (id->subdevice != PCI_ANY_ID &&
1316 			    id->subdevice != pdev->subsystem_device)
1317 				continue;
1318 
1319 			goto reset;
1320 		}
1321 	}
1322 
1323 	return eeh_unfreeze_pe(pe, true);
1324 
1325 reset:
1326 	return eeh_pe_reset_and_recover(pe);
1327 }
1328 
1329 /**
1330  * eeh_dev_open - Increase count of pass through devices for PE
1331  * @pdev: PCI device
1332  *
1333  * Increase count of passed through devices for the indicated
1334  * PE. In the result, the EEH errors detected on the PE won't be
1335  * reported. The PE owner will be responsible for detection
1336  * and recovery.
1337  */
1338 int eeh_dev_open(struct pci_dev *pdev)
1339 {
1340 	struct eeh_dev *edev;
1341 	int ret = -ENODEV;
1342 
1343 	mutex_lock(&eeh_dev_mutex);
1344 
1345 	/* No PCI device ? */
1346 	if (!pdev)
1347 		goto out;
1348 
1349 	/* No EEH device or PE ? */
1350 	edev = pci_dev_to_eeh_dev(pdev);
1351 	if (!edev || !edev->pe)
1352 		goto out;
1353 
1354 	/*
1355 	 * The PE might have been put into frozen state, but we
1356 	 * didn't detect that yet. The passed through PCI devices
1357 	 * in frozen PE won't work properly. Clear the frozen state
1358 	 * in advance.
1359 	 */
1360 	ret = eeh_pe_change_owner(edev->pe);
1361 	if (ret)
1362 		goto out;
1363 
1364 	/* Increase PE's pass through count */
1365 	atomic_inc(&edev->pe->pass_dev_cnt);
1366 	mutex_unlock(&eeh_dev_mutex);
1367 
1368 	return 0;
1369 out:
1370 	mutex_unlock(&eeh_dev_mutex);
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL_GPL(eeh_dev_open);
1374 
1375 /**
1376  * eeh_dev_release - Decrease count of pass through devices for PE
1377  * @pdev: PCI device
1378  *
1379  * Decrease count of pass through devices for the indicated PE. If
1380  * there is no passed through device in PE, the EEH errors detected
1381  * on the PE will be reported and handled as usual.
1382  */
1383 void eeh_dev_release(struct pci_dev *pdev)
1384 {
1385 	struct eeh_dev *edev;
1386 
1387 	mutex_lock(&eeh_dev_mutex);
1388 
1389 	/* No PCI device ? */
1390 	if (!pdev)
1391 		goto out;
1392 
1393 	/* No EEH device ? */
1394 	edev = pci_dev_to_eeh_dev(pdev);
1395 	if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1396 		goto out;
1397 
1398 	/* Decrease PE's pass through count */
1399 	atomic_dec(&edev->pe->pass_dev_cnt);
1400 	WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1401 	eeh_pe_change_owner(edev->pe);
1402 out:
1403 	mutex_unlock(&eeh_dev_mutex);
1404 }
1405 EXPORT_SYMBOL(eeh_dev_release);
1406 
1407 #ifdef CONFIG_IOMMU_API
1408 
1409 static int dev_has_iommu_table(struct device *dev, void *data)
1410 {
1411 	struct pci_dev *pdev = to_pci_dev(dev);
1412 	struct pci_dev **ppdev = data;
1413 
1414 	if (!dev)
1415 		return 0;
1416 
1417 	if (dev->iommu_group) {
1418 		*ppdev = pdev;
1419 		return 1;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1427  * @group: IOMMU group
1428  *
1429  * The routine is called to convert IOMMU group to EEH PE.
1430  */
1431 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1432 {
1433 	struct pci_dev *pdev = NULL;
1434 	struct eeh_dev *edev;
1435 	int ret;
1436 
1437 	/* No IOMMU group ? */
1438 	if (!group)
1439 		return NULL;
1440 
1441 	ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1442 	if (!ret || !pdev)
1443 		return NULL;
1444 
1445 	/* No EEH device or PE ? */
1446 	edev = pci_dev_to_eeh_dev(pdev);
1447 	if (!edev || !edev->pe)
1448 		return NULL;
1449 
1450 	return edev->pe;
1451 }
1452 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1453 
1454 #endif /* CONFIG_IOMMU_API */
1455 
1456 /**
1457  * eeh_pe_set_option - Set options for the indicated PE
1458  * @pe: EEH PE
1459  * @option: requested option
1460  *
1461  * The routine is called to enable or disable EEH functionality
1462  * on the indicated PE, to enable IO or DMA for the frozen PE.
1463  */
1464 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1465 {
1466 	int ret = 0;
1467 
1468 	/* Invalid PE ? */
1469 	if (!pe)
1470 		return -ENODEV;
1471 
1472 	/*
1473 	 * EEH functionality could possibly be disabled, just
1474 	 * return error for the case. And the EEH functinality
1475 	 * isn't expected to be disabled on one specific PE.
1476 	 */
1477 	switch (option) {
1478 	case EEH_OPT_ENABLE:
1479 		if (eeh_enabled()) {
1480 			ret = eeh_pe_change_owner(pe);
1481 			break;
1482 		}
1483 		ret = -EIO;
1484 		break;
1485 	case EEH_OPT_DISABLE:
1486 		break;
1487 	case EEH_OPT_THAW_MMIO:
1488 	case EEH_OPT_THAW_DMA:
1489 		if (!eeh_ops || !eeh_ops->set_option) {
1490 			ret = -ENOENT;
1491 			break;
1492 		}
1493 
1494 		ret = eeh_pci_enable(pe, option);
1495 		break;
1496 	default:
1497 		pr_debug("%s: Option %d out of range (%d, %d)\n",
1498 			__func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1499 		ret = -EINVAL;
1500 	}
1501 
1502 	return ret;
1503 }
1504 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1505 
1506 /**
1507  * eeh_pe_get_state - Retrieve PE's state
1508  * @pe: EEH PE
1509  *
1510  * Retrieve the PE's state, which includes 3 aspects: enabled
1511  * DMA, enabled IO and asserted reset.
1512  */
1513 int eeh_pe_get_state(struct eeh_pe *pe)
1514 {
1515 	int result, ret = 0;
1516 	bool rst_active, dma_en, mmio_en;
1517 
1518 	/* Existing PE ? */
1519 	if (!pe)
1520 		return -ENODEV;
1521 
1522 	if (!eeh_ops || !eeh_ops->get_state)
1523 		return -ENOENT;
1524 
1525 	result = eeh_ops->get_state(pe, NULL);
1526 	rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1527 	dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1528 	mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1529 
1530 	if (rst_active)
1531 		ret = EEH_PE_STATE_RESET;
1532 	else if (dma_en && mmio_en)
1533 		ret = EEH_PE_STATE_NORMAL;
1534 	else if (!dma_en && !mmio_en)
1535 		ret = EEH_PE_STATE_STOPPED_IO_DMA;
1536 	else if (!dma_en && mmio_en)
1537 		ret = EEH_PE_STATE_STOPPED_DMA;
1538 	else
1539 		ret = EEH_PE_STATE_UNAVAIL;
1540 
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1544 
1545 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1546 {
1547 	struct eeh_dev *edev, *tmp;
1548 	struct pci_dev *pdev;
1549 	int ret = 0;
1550 
1551 	/* Restore config space */
1552 	eeh_pe_restore_bars(pe);
1553 
1554 	/*
1555 	 * Reenable PCI devices as the devices passed
1556 	 * through are always enabled before the reset.
1557 	 */
1558 	eeh_pe_for_each_dev(pe, edev, tmp) {
1559 		pdev = eeh_dev_to_pci_dev(edev);
1560 		if (!pdev)
1561 			continue;
1562 
1563 		ret = pci_reenable_device(pdev);
1564 		if (ret) {
1565 			pr_warn("%s: Failure %d reenabling %s\n",
1566 				__func__, ret, pci_name(pdev));
1567 			return ret;
1568 		}
1569 	}
1570 
1571 	/* The PE is still in frozen state */
1572 	return eeh_unfreeze_pe(pe, true);
1573 }
1574 
1575 /**
1576  * eeh_pe_reset - Issue PE reset according to specified type
1577  * @pe: EEH PE
1578  * @option: reset type
1579  *
1580  * The routine is called to reset the specified PE with the
1581  * indicated type, either fundamental reset or hot reset.
1582  * PE reset is the most important part for error recovery.
1583  */
1584 int eeh_pe_reset(struct eeh_pe *pe, int option)
1585 {
1586 	int ret = 0;
1587 
1588 	/* Invalid PE ? */
1589 	if (!pe)
1590 		return -ENODEV;
1591 
1592 	if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1593 		return -ENOENT;
1594 
1595 	switch (option) {
1596 	case EEH_RESET_DEACTIVATE:
1597 		ret = eeh_ops->reset(pe, option);
1598 		eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1599 		if (ret)
1600 			break;
1601 
1602 		ret = eeh_pe_reenable_devices(pe);
1603 		break;
1604 	case EEH_RESET_HOT:
1605 	case EEH_RESET_FUNDAMENTAL:
1606 		/*
1607 		 * Proactively freeze the PE to drop all MMIO access
1608 		 * during reset, which should be banned as it's always
1609 		 * cause recursive EEH error.
1610 		 */
1611 		eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1612 
1613 		eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1614 		ret = eeh_ops->reset(pe, option);
1615 		break;
1616 	default:
1617 		pr_debug("%s: Unsupported option %d\n",
1618 			__func__, option);
1619 		ret = -EINVAL;
1620 	}
1621 
1622 	return ret;
1623 }
1624 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1625 
1626 /**
1627  * eeh_pe_configure - Configure PCI bridges after PE reset
1628  * @pe: EEH PE
1629  *
1630  * The routine is called to restore the PCI config space for
1631  * those PCI devices, especially PCI bridges affected by PE
1632  * reset issued previously.
1633  */
1634 int eeh_pe_configure(struct eeh_pe *pe)
1635 {
1636 	int ret = 0;
1637 
1638 	/* Invalid PE ? */
1639 	if (!pe)
1640 		return -ENODEV;
1641 
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1645 
1646 /**
1647  * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1648  * @pe: the indicated PE
1649  * @type: error type
1650  * @function: error function
1651  * @addr: address
1652  * @mask: address mask
1653  *
1654  * The routine is called to inject the specified PCI error, which
1655  * is determined by @type and @function, to the indicated PE for
1656  * testing purpose.
1657  */
1658 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1659 		      unsigned long addr, unsigned long mask)
1660 {
1661 	/* Invalid PE ? */
1662 	if (!pe)
1663 		return -ENODEV;
1664 
1665 	/* Unsupported operation ? */
1666 	if (!eeh_ops || !eeh_ops->err_inject)
1667 		return -ENOENT;
1668 
1669 	/* Check on PCI error type */
1670 	if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1671 		return -EINVAL;
1672 
1673 	/* Check on PCI error function */
1674 	if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1675 		return -EINVAL;
1676 
1677 	return eeh_ops->err_inject(pe, type, func, addr, mask);
1678 }
1679 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1680 
1681 static int proc_eeh_show(struct seq_file *m, void *v)
1682 {
1683 	if (!eeh_enabled()) {
1684 		seq_printf(m, "EEH Subsystem is globally disabled\n");
1685 		seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1686 	} else {
1687 		seq_printf(m, "EEH Subsystem is enabled\n");
1688 		seq_printf(m,
1689 				"no device=%llu\n"
1690 				"no device node=%llu\n"
1691 				"no config address=%llu\n"
1692 				"check not wanted=%llu\n"
1693 				"eeh_total_mmio_ffs=%llu\n"
1694 				"eeh_false_positives=%llu\n"
1695 				"eeh_slot_resets=%llu\n",
1696 				eeh_stats.no_device,
1697 				eeh_stats.no_dn,
1698 				eeh_stats.no_cfg_addr,
1699 				eeh_stats.ignored_check,
1700 				eeh_stats.total_mmio_ffs,
1701 				eeh_stats.false_positives,
1702 				eeh_stats.slot_resets);
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 static int proc_eeh_open(struct inode *inode, struct file *file)
1709 {
1710 	return single_open(file, proc_eeh_show, NULL);
1711 }
1712 
1713 static const struct file_operations proc_eeh_operations = {
1714 	.open      = proc_eeh_open,
1715 	.read      = seq_read,
1716 	.llseek    = seq_lseek,
1717 	.release   = single_release,
1718 };
1719 
1720 #ifdef CONFIG_DEBUG_FS
1721 static int eeh_enable_dbgfs_set(void *data, u64 val)
1722 {
1723 	if (val)
1724 		eeh_clear_flag(EEH_FORCE_DISABLED);
1725 	else
1726 		eeh_add_flag(EEH_FORCE_DISABLED);
1727 
1728 	/* Notify the backend */
1729 	if (eeh_ops->post_init)
1730 		eeh_ops->post_init();
1731 
1732 	return 0;
1733 }
1734 
1735 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1736 {
1737 	if (eeh_enabled())
1738 		*val = 0x1ul;
1739 	else
1740 		*val = 0x0ul;
1741 	return 0;
1742 }
1743 
1744 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1745 {
1746 	eeh_max_freezes = val;
1747 	return 0;
1748 }
1749 
1750 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1751 {
1752 	*val = eeh_max_freezes;
1753 	return 0;
1754 }
1755 
1756 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1757 			eeh_enable_dbgfs_set, "0x%llx\n");
1758 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1759 			eeh_freeze_dbgfs_set, "0x%llx\n");
1760 #endif
1761 
1762 static int __init eeh_init_proc(void)
1763 {
1764 	if (machine_is(pseries) || machine_is(powernv)) {
1765 		proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1766 #ifdef CONFIG_DEBUG_FS
1767 		debugfs_create_file("eeh_enable", 0600,
1768                                     powerpc_debugfs_root, NULL,
1769                                     &eeh_enable_dbgfs_ops);
1770 		debugfs_create_file("eeh_max_freezes", 0600,
1771 				    powerpc_debugfs_root, NULL,
1772 				    &eeh_freeze_dbgfs_ops);
1773 #endif
1774 	}
1775 
1776 	return 0;
1777 }
1778 __initcall(eeh_init_proc);
1779