xref: /linux/arch/powerpc/kernel/crash_dump.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * Routines for doing kexec-based kdump.
3  *
4  * Copyright (C) 2005, IBM Corp.
5  *
6  * Created by: Michael Ellerman
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #undef DEBUG
13 
14 #include <linux/crash_dump.h>
15 #include <linux/bootmem.h>
16 #include <asm/kdump.h>
17 #include <asm/lmb.h>
18 #include <asm/firmware.h>
19 #include <asm/uaccess.h>
20 
21 #ifdef DEBUG
22 #include <asm/udbg.h>
23 #define DBG(fmt...) udbg_printf(fmt)
24 #else
25 #define DBG(fmt...)
26 #endif
27 
28 static void __init create_trampoline(unsigned long addr)
29 {
30 	/* The maximum range of a single instruction branch, is the current
31 	 * instruction's address + (32 MB - 4) bytes. For the trampoline we
32 	 * need to branch to current address + 32 MB. So we insert a nop at
33 	 * the trampoline address, then the next instruction (+ 4 bytes)
34 	 * does a branch to (32 MB - 4). The net effect is that when we
35 	 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
36 	 * two instructions it doesn't require any registers.
37 	 */
38 	create_instruction(addr, 0x60000000); /* nop */
39 	create_branch(addr + 4, addr + PHYSICAL_START, 0);
40 }
41 
42 void __init kdump_setup(void)
43 {
44 	unsigned long i;
45 
46 	DBG(" -> kdump_setup()\n");
47 
48 	for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
49 		create_trampoline(i);
50 	}
51 
52 	create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
53 	create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
54 
55 	DBG(" <- kdump_setup()\n");
56 }
57 
58 #ifdef CONFIG_PROC_VMCORE
59 static int __init parse_elfcorehdr(char *p)
60 {
61 	if (p)
62 		elfcorehdr_addr = memparse(p, &p);
63 
64 	return 0;
65 }
66 __setup("elfcorehdr=", parse_elfcorehdr);
67 #endif
68 
69 static int __init parse_savemaxmem(char *p)
70 {
71 	if (p)
72 		saved_max_pfn = (memparse(p, &p) >> PAGE_SHIFT) - 1;
73 
74 	return 0;
75 }
76 __setup("savemaxmem=", parse_savemaxmem);
77 
78 /*
79  * copy_oldmem_page - copy one page from "oldmem"
80  * @pfn: page frame number to be copied
81  * @buf: target memory address for the copy; this can be in kernel address
82  *      space or user address space (see @userbuf)
83  * @csize: number of bytes to copy
84  * @offset: offset in bytes into the page (based on pfn) to begin the copy
85  * @userbuf: if set, @buf is in user address space, use copy_to_user(),
86  *      otherwise @buf is in kernel address space, use memcpy().
87  *
88  * Copy a page from "oldmem". For this page, there is no pte mapped
89  * in the current kernel. We stitch up a pte, similar to kmap_atomic.
90  */
91 ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
92 			size_t csize, unsigned long offset, int userbuf)
93 {
94 	void  *vaddr;
95 
96 	if (!csize)
97 		return 0;
98 
99 	vaddr = __ioremap(pfn << PAGE_SHIFT, PAGE_SIZE, 0);
100 
101 	if (userbuf) {
102 		if (copy_to_user((char __user *)buf, (vaddr + offset), csize)) {
103 			iounmap(vaddr);
104 			return -EFAULT;
105 		}
106 	} else
107 		memcpy(buf, (vaddr + offset), csize);
108 
109 	iounmap(vaddr);
110 	return csize;
111 }
112