xref: /linux/arch/powerpc/kernel/crash_dump.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Routines for doing kexec-based kdump.
4  *
5  * Copyright (C) 2005, IBM Corp.
6  *
7  * Created by: Michael Ellerman
8  */
9 
10 #undef DEBUG
11 
12 #include <linux/crash_dump.h>
13 #include <linux/io.h>
14 #include <linux/memblock.h>
15 #include <linux/of.h>
16 #include <asm/code-patching.h>
17 #include <asm/kdump.h>
18 #include <asm/firmware.h>
19 #include <linux/uio.h>
20 #include <asm/rtas.h>
21 #include <asm/inst.h>
22 #include <asm/fadump.h>
23 
24 #ifdef DEBUG
25 #include <asm/udbg.h>
26 #define DBG(fmt...) udbg_printf(fmt)
27 #else
28 #define DBG(fmt...)
29 #endif
30 
31 #ifndef CONFIG_NONSTATIC_KERNEL
32 void __init reserve_kdump_trampoline(void)
33 {
34 	memblock_reserve(0, KDUMP_RESERVE_LIMIT);
35 }
36 
37 static void __init create_trampoline(unsigned long addr)
38 {
39 	u32 *p = (u32 *)addr;
40 
41 	/* The maximum range of a single instruction branch, is the current
42 	 * instruction's address + (32 MB - 4) bytes. For the trampoline we
43 	 * need to branch to current address + 32 MB. So we insert a nop at
44 	 * the trampoline address, then the next instruction (+ 4 bytes)
45 	 * does a branch to (32 MB - 4). The net effect is that when we
46 	 * branch to "addr" we jump to ("addr" + 32 MB). Although it requires
47 	 * two instructions it doesn't require any registers.
48 	 */
49 	patch_instruction(p, ppc_inst(PPC_RAW_NOP()));
50 	patch_branch(p + 1, addr + PHYSICAL_START, 0);
51 }
52 
53 void __init setup_kdump_trampoline(void)
54 {
55 	unsigned long i;
56 
57 	DBG(" -> setup_kdump_trampoline()\n");
58 
59 	for (i = KDUMP_TRAMPOLINE_START; i < KDUMP_TRAMPOLINE_END; i += 8) {
60 		create_trampoline(i);
61 	}
62 
63 #ifdef CONFIG_PPC_PSERIES
64 	create_trampoline(__pa(system_reset_fwnmi) - PHYSICAL_START);
65 	create_trampoline(__pa(machine_check_fwnmi) - PHYSICAL_START);
66 #endif /* CONFIG_PPC_PSERIES */
67 
68 	DBG(" <- setup_kdump_trampoline()\n");
69 }
70 #endif /* CONFIG_NONSTATIC_KERNEL */
71 
72 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn,
73 			size_t csize, unsigned long offset)
74 {
75 	void  *vaddr;
76 	phys_addr_t paddr;
77 
78 	if (!csize)
79 		return 0;
80 
81 	csize = min_t(size_t, csize, PAGE_SIZE);
82 	paddr = pfn << PAGE_SHIFT;
83 
84 	if (memblock_is_region_memory(paddr, csize)) {
85 		vaddr = __va(paddr);
86 		csize = copy_to_iter(vaddr + offset, csize, iter);
87 	} else {
88 		vaddr = ioremap_cache(paddr, PAGE_SIZE);
89 		csize = copy_to_iter(vaddr + offset, csize, iter);
90 		iounmap(vaddr);
91 	}
92 
93 	return csize;
94 }
95 
96 /*
97  * Return true only when kexec based kernel dump capturing method is used.
98  * This ensures all restritions applied for kdump case are not automatically
99  * applied for fadump case.
100  */
101 bool is_kdump_kernel(void)
102 {
103 	return !is_fadump_active() && elfcorehdr_addr != ELFCORE_ADDR_MAX;
104 }
105 EXPORT_SYMBOL_GPL(is_kdump_kernel);
106 
107 #ifdef CONFIG_PPC_RTAS
108 /*
109  * The crashkernel region will almost always overlap the RTAS region, so
110  * we have to be careful when shrinking the crashkernel region.
111  */
112 void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
113 {
114 	unsigned long addr;
115 	const __be32 *basep, *sizep;
116 	unsigned int rtas_start = 0, rtas_end = 0;
117 
118 	basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
119 	sizep = of_get_property(rtas.dev, "rtas-size", NULL);
120 
121 	if (basep && sizep) {
122 		rtas_start = be32_to_cpup(basep);
123 		rtas_end = rtas_start + be32_to_cpup(sizep);
124 	}
125 
126 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
127 		/* Does this page overlap with the RTAS region? */
128 		if (addr <= rtas_end && ((addr + PAGE_SIZE) > rtas_start))
129 			continue;
130 
131 		free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
132 	}
133 }
134 #endif
135