xref: /linux/arch/powerpc/kernel/cacheinfo.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Processor cache information made available to userspace via sysfs;
4  * intended to be compatible with x86 intel_cacheinfo implementation.
5  *
6  * Copyright 2008 IBM Corporation
7  * Author: Nathan Lynch
8  */
9 
10 #define pr_fmt(fmt) "cacheinfo: " fmt
11 
12 #include <linux/cpu.h>
13 #include <linux/cpumask.h>
14 #include <linux/kernel.h>
15 #include <linux/kobject.h>
16 #include <linux/list.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/percpu.h>
20 #include <linux/slab.h>
21 #include <asm/prom.h>
22 #include <asm/cputhreads.h>
23 #include <asm/smp.h>
24 
25 #include "cacheinfo.h"
26 
27 /* per-cpu object for tracking:
28  * - a "cache" kobject for the top-level directory
29  * - a list of "index" objects representing the cpu's local cache hierarchy
30  */
31 struct cache_dir {
32 	struct kobject *kobj; /* bare (not embedded) kobject for cache
33 			       * directory */
34 	struct cache_index_dir *index; /* list of index objects */
35 };
36 
37 /* "index" object: each cpu's cache directory has an index
38  * subdirectory corresponding to a cache object associated with the
39  * cpu.  This object's lifetime is managed via the embedded kobject.
40  */
41 struct cache_index_dir {
42 	struct kobject kobj;
43 	struct cache_index_dir *next; /* next index in parent directory */
44 	struct cache *cache;
45 };
46 
47 /* Template for determining which OF properties to query for a given
48  * cache type */
49 struct cache_type_info {
50 	const char *name;
51 	const char *size_prop;
52 
53 	/* Allow for both [di]-cache-line-size and
54 	 * [di]-cache-block-size properties.  According to the PowerPC
55 	 * Processor binding, -line-size should be provided if it
56 	 * differs from the cache block size (that which is operated
57 	 * on by cache instructions), so we look for -line-size first.
58 	 * See cache_get_line_size(). */
59 
60 	const char *line_size_props[2];
61 	const char *nr_sets_prop;
62 };
63 
64 /* These are used to index the cache_type_info array. */
65 #define CACHE_TYPE_UNIFIED     0 /* cache-size, cache-block-size, etc. */
66 #define CACHE_TYPE_UNIFIED_D   1 /* d-cache-size, d-cache-block-size, etc */
67 #define CACHE_TYPE_INSTRUCTION 2
68 #define CACHE_TYPE_DATA        3
69 
70 static const struct cache_type_info cache_type_info[] = {
71 	{
72 		/* Embedded systems that use cache-size, cache-block-size,
73 		 * etc. for the Unified (typically L2) cache. */
74 		.name            = "Unified",
75 		.size_prop       = "cache-size",
76 		.line_size_props = { "cache-line-size",
77 				     "cache-block-size", },
78 		.nr_sets_prop    = "cache-sets",
79 	},
80 	{
81 		/* PowerPC Processor binding says the [di]-cache-*
82 		 * must be equal on unified caches, so just use
83 		 * d-cache properties. */
84 		.name            = "Unified",
85 		.size_prop       = "d-cache-size",
86 		.line_size_props = { "d-cache-line-size",
87 				     "d-cache-block-size", },
88 		.nr_sets_prop    = "d-cache-sets",
89 	},
90 	{
91 		.name            = "Instruction",
92 		.size_prop       = "i-cache-size",
93 		.line_size_props = { "i-cache-line-size",
94 				     "i-cache-block-size", },
95 		.nr_sets_prop    = "i-cache-sets",
96 	},
97 	{
98 		.name            = "Data",
99 		.size_prop       = "d-cache-size",
100 		.line_size_props = { "d-cache-line-size",
101 				     "d-cache-block-size", },
102 		.nr_sets_prop    = "d-cache-sets",
103 	},
104 };
105 
106 /* Cache object: each instance of this corresponds to a distinct cache
107  * in the system.  There are separate objects for Harvard caches: one
108  * each for instruction and data, and each refers to the same OF node.
109  * The refcount of the OF node is elevated for the lifetime of the
110  * cache object.  A cache object is released when its shared_cpu_map
111  * is cleared (see cache_cpu_clear).
112  *
113  * A cache object is on two lists: an unsorted global list
114  * (cache_list) of cache objects; and a singly-linked list
115  * representing the local cache hierarchy, which is ordered by level
116  * (e.g. L1d -> L1i -> L2 -> L3).
117  */
118 struct cache {
119 	struct device_node *ofnode;    /* OF node for this cache, may be cpu */
120 	struct cpumask shared_cpu_map; /* online CPUs using this cache */
121 	int type;                      /* split cache disambiguation */
122 	int level;                     /* level not explicit in device tree */
123 	int group_id;                  /* id of the group of threads that share this cache */
124 	struct list_head list;         /* global list of cache objects */
125 	struct cache *next_local;      /* next cache of >= level */
126 };
127 
128 static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu);
129 
130 /* traversal/modification of this list occurs only at cpu hotplug time;
131  * access is serialized by cpu hotplug locking
132  */
133 static LIST_HEAD(cache_list);
134 
135 static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k)
136 {
137 	return container_of(k, struct cache_index_dir, kobj);
138 }
139 
140 static const char *cache_type_string(const struct cache *cache)
141 {
142 	return cache_type_info[cache->type].name;
143 }
144 
145 static void cache_init(struct cache *cache, int type, int level,
146 		       struct device_node *ofnode, int group_id)
147 {
148 	cache->type = type;
149 	cache->level = level;
150 	cache->ofnode = of_node_get(ofnode);
151 	cache->group_id = group_id;
152 	INIT_LIST_HEAD(&cache->list);
153 	list_add(&cache->list, &cache_list);
154 }
155 
156 static struct cache *new_cache(int type, int level,
157 			       struct device_node *ofnode, int group_id)
158 {
159 	struct cache *cache;
160 
161 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
162 	if (cache)
163 		cache_init(cache, type, level, ofnode, group_id);
164 
165 	return cache;
166 }
167 
168 static void release_cache_debugcheck(struct cache *cache)
169 {
170 	struct cache *iter;
171 
172 	list_for_each_entry(iter, &cache_list, list)
173 		WARN_ONCE(iter->next_local == cache,
174 			  "cache for %pOFP(%s) refers to cache for %pOFP(%s)\n",
175 			  iter->ofnode,
176 			  cache_type_string(iter),
177 			  cache->ofnode,
178 			  cache_type_string(cache));
179 }
180 
181 static void release_cache(struct cache *cache)
182 {
183 	if (!cache)
184 		return;
185 
186 	pr_debug("freeing L%d %s cache for %pOFP\n", cache->level,
187 		 cache_type_string(cache), cache->ofnode);
188 
189 	release_cache_debugcheck(cache);
190 	list_del(&cache->list);
191 	of_node_put(cache->ofnode);
192 	kfree(cache);
193 }
194 
195 static void cache_cpu_set(struct cache *cache, int cpu)
196 {
197 	struct cache *next = cache;
198 
199 	while (next) {
200 		WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map),
201 			  "CPU %i already accounted in %pOFP(%s)\n",
202 			  cpu, next->ofnode,
203 			  cache_type_string(next));
204 		cpumask_set_cpu(cpu, &next->shared_cpu_map);
205 		next = next->next_local;
206 	}
207 }
208 
209 static int cache_size(const struct cache *cache, unsigned int *ret)
210 {
211 	const char *propname;
212 	const __be32 *cache_size;
213 
214 	propname = cache_type_info[cache->type].size_prop;
215 
216 	cache_size = of_get_property(cache->ofnode, propname, NULL);
217 	if (!cache_size)
218 		return -ENODEV;
219 
220 	*ret = of_read_number(cache_size, 1);
221 	return 0;
222 }
223 
224 static int cache_size_kb(const struct cache *cache, unsigned int *ret)
225 {
226 	unsigned int size;
227 
228 	if (cache_size(cache, &size))
229 		return -ENODEV;
230 
231 	*ret = size / 1024;
232 	return 0;
233 }
234 
235 /* not cache_line_size() because that's a macro in include/linux/cache.h */
236 static int cache_get_line_size(const struct cache *cache, unsigned int *ret)
237 {
238 	const __be32 *line_size;
239 	int i, lim;
240 
241 	lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props);
242 
243 	for (i = 0; i < lim; i++) {
244 		const char *propname;
245 
246 		propname = cache_type_info[cache->type].line_size_props[i];
247 		line_size = of_get_property(cache->ofnode, propname, NULL);
248 		if (line_size)
249 			break;
250 	}
251 
252 	if (!line_size)
253 		return -ENODEV;
254 
255 	*ret = of_read_number(line_size, 1);
256 	return 0;
257 }
258 
259 static int cache_nr_sets(const struct cache *cache, unsigned int *ret)
260 {
261 	const char *propname;
262 	const __be32 *nr_sets;
263 
264 	propname = cache_type_info[cache->type].nr_sets_prop;
265 
266 	nr_sets = of_get_property(cache->ofnode, propname, NULL);
267 	if (!nr_sets)
268 		return -ENODEV;
269 
270 	*ret = of_read_number(nr_sets, 1);
271 	return 0;
272 }
273 
274 static int cache_associativity(const struct cache *cache, unsigned int *ret)
275 {
276 	unsigned int line_size;
277 	unsigned int nr_sets;
278 	unsigned int size;
279 
280 	if (cache_nr_sets(cache, &nr_sets))
281 		goto err;
282 
283 	/* If the cache is fully associative, there is no need to
284 	 * check the other properties.
285 	 */
286 	if (nr_sets == 1) {
287 		*ret = 0;
288 		return 0;
289 	}
290 
291 	if (cache_get_line_size(cache, &line_size))
292 		goto err;
293 	if (cache_size(cache, &size))
294 		goto err;
295 
296 	if (!(nr_sets > 0 && size > 0 && line_size > 0))
297 		goto err;
298 
299 	*ret = (size / nr_sets) / line_size;
300 	return 0;
301 err:
302 	return -ENODEV;
303 }
304 
305 /* helper for dealing with split caches */
306 static struct cache *cache_find_first_sibling(struct cache *cache)
307 {
308 	struct cache *iter;
309 
310 	if (cache->type == CACHE_TYPE_UNIFIED ||
311 	    cache->type == CACHE_TYPE_UNIFIED_D)
312 		return cache;
313 
314 	list_for_each_entry(iter, &cache_list, list)
315 		if (iter->ofnode == cache->ofnode &&
316 		    iter->group_id == cache->group_id &&
317 		    iter->next_local == cache)
318 			return iter;
319 
320 	return cache;
321 }
322 
323 /* return the first cache on a local list matching node and thread-group id */
324 static struct cache *cache_lookup_by_node_group(const struct device_node *node,
325 						int group_id)
326 {
327 	struct cache *cache = NULL;
328 	struct cache *iter;
329 
330 	list_for_each_entry(iter, &cache_list, list) {
331 		if (iter->ofnode != node ||
332 		    iter->group_id != group_id)
333 			continue;
334 		cache = cache_find_first_sibling(iter);
335 		break;
336 	}
337 
338 	return cache;
339 }
340 
341 static bool cache_node_is_unified(const struct device_node *np)
342 {
343 	return of_get_property(np, "cache-unified", NULL);
344 }
345 
346 /*
347  * Unified caches can have two different sets of tags.  Most embedded
348  * use cache-size, etc. for the unified cache size, but open firmware systems
349  * use d-cache-size, etc.   Check on initialization for which type we have, and
350  * return the appropriate structure type.  Assume it's embedded if it isn't
351  * open firmware.  If it's yet a 3rd type, then there will be missing entries
352  * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need
353  * to be extended further.
354  */
355 static int cache_is_unified_d(const struct device_node *np)
356 {
357 	return of_get_property(np,
358 		cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ?
359 		CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED;
360 }
361 
362 static struct cache *cache_do_one_devnode_unified(struct device_node *node, int group_id,
363 						  int level)
364 {
365 	pr_debug("creating L%d ucache for %pOFP\n", level, node);
366 
367 	return new_cache(cache_is_unified_d(node), level, node, group_id);
368 }
369 
370 static struct cache *cache_do_one_devnode_split(struct device_node *node, int group_id,
371 						int level)
372 {
373 	struct cache *dcache, *icache;
374 
375 	pr_debug("creating L%d dcache and icache for %pOFP\n", level,
376 		 node);
377 
378 	dcache = new_cache(CACHE_TYPE_DATA, level, node, group_id);
379 	icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node, group_id);
380 
381 	if (!dcache || !icache)
382 		goto err;
383 
384 	dcache->next_local = icache;
385 
386 	return dcache;
387 err:
388 	release_cache(dcache);
389 	release_cache(icache);
390 	return NULL;
391 }
392 
393 static struct cache *cache_do_one_devnode(struct device_node *node, int group_id, int level)
394 {
395 	struct cache *cache;
396 
397 	if (cache_node_is_unified(node))
398 		cache = cache_do_one_devnode_unified(node, group_id, level);
399 	else
400 		cache = cache_do_one_devnode_split(node, group_id, level);
401 
402 	return cache;
403 }
404 
405 static struct cache *cache_lookup_or_instantiate(struct device_node *node,
406 						 int group_id,
407 						 int level)
408 {
409 	struct cache *cache;
410 
411 	cache = cache_lookup_by_node_group(node, group_id);
412 
413 	WARN_ONCE(cache && cache->level != level,
414 		  "cache level mismatch on lookup (got %d, expected %d)\n",
415 		  cache->level, level);
416 
417 	if (!cache)
418 		cache = cache_do_one_devnode(node, group_id, level);
419 
420 	return cache;
421 }
422 
423 static void link_cache_lists(struct cache *smaller, struct cache *bigger)
424 {
425 	while (smaller->next_local) {
426 		if (smaller->next_local == bigger)
427 			return; /* already linked */
428 		smaller = smaller->next_local;
429 	}
430 
431 	smaller->next_local = bigger;
432 
433 	/*
434 	 * The cache->next_local list sorts by level ascending:
435 	 * L1d -> L1i -> L2 -> L3 ...
436 	 */
437 	WARN_ONCE((smaller->level == 1 && bigger->level > 2) ||
438 		  (smaller->level > 1 && bigger->level != smaller->level + 1),
439 		  "linking L%i cache %pOFP to L%i cache %pOFP; skipped a level?\n",
440 		  smaller->level, smaller->ofnode, bigger->level, bigger->ofnode);
441 }
442 
443 static void do_subsidiary_caches_debugcheck(struct cache *cache)
444 {
445 	WARN_ONCE(cache->level != 1,
446 		  "instantiating cache chain from L%d %s cache for "
447 		  "%pOFP instead of an L1\n", cache->level,
448 		  cache_type_string(cache), cache->ofnode);
449 	WARN_ONCE(!of_node_is_type(cache->ofnode, "cpu"),
450 		  "instantiating cache chain from node %pOFP of type '%s' "
451 		  "instead of a cpu node\n", cache->ofnode,
452 		  of_node_get_device_type(cache->ofnode));
453 }
454 
455 /*
456  * If sub-groups of threads in a core containing @cpu_id share the
457  * L@level-cache (information obtained via "ibm,thread-groups"
458  * device-tree property), then we identify the group by the first
459  * thread-sibling in the group. We define this to be the group-id.
460  *
461  * In the absence of any thread-group information for L@level-cache,
462  * this function returns -1.
463  */
464 static int get_group_id(unsigned int cpu_id, int level)
465 {
466 	if (has_big_cores && level == 1)
467 		return cpumask_first(per_cpu(thread_group_l1_cache_map,
468 					     cpu_id));
469 	else if (thread_group_shares_l2 && level == 2)
470 		return cpumask_first(per_cpu(thread_group_l2_cache_map,
471 					     cpu_id));
472 	else if (thread_group_shares_l3 && level == 3)
473 		return cpumask_first(per_cpu(thread_group_l3_cache_map,
474 					     cpu_id));
475 	return -1;
476 }
477 
478 static void do_subsidiary_caches(struct cache *cache, unsigned int cpu_id)
479 {
480 	struct device_node *subcache_node;
481 	int level = cache->level;
482 
483 	do_subsidiary_caches_debugcheck(cache);
484 
485 	while ((subcache_node = of_find_next_cache_node(cache->ofnode))) {
486 		struct cache *subcache;
487 		int group_id;
488 
489 		level++;
490 		group_id = get_group_id(cpu_id, level);
491 		subcache = cache_lookup_or_instantiate(subcache_node, group_id, level);
492 		of_node_put(subcache_node);
493 		if (!subcache)
494 			break;
495 
496 		link_cache_lists(cache, subcache);
497 		cache = subcache;
498 	}
499 }
500 
501 static struct cache *cache_chain_instantiate(unsigned int cpu_id)
502 {
503 	struct device_node *cpu_node;
504 	struct cache *cpu_cache = NULL;
505 	int group_id;
506 
507 	pr_debug("creating cache object(s) for CPU %i\n", cpu_id);
508 
509 	cpu_node = of_get_cpu_node(cpu_id, NULL);
510 	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
511 	if (!cpu_node)
512 		goto out;
513 
514 	group_id = get_group_id(cpu_id, 1);
515 
516 	cpu_cache = cache_lookup_or_instantiate(cpu_node, group_id, 1);
517 	if (!cpu_cache)
518 		goto out;
519 
520 	do_subsidiary_caches(cpu_cache, cpu_id);
521 
522 	cache_cpu_set(cpu_cache, cpu_id);
523 out:
524 	of_node_put(cpu_node);
525 
526 	return cpu_cache;
527 }
528 
529 static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id)
530 {
531 	struct cache_dir *cache_dir;
532 	struct device *dev;
533 	struct kobject *kobj = NULL;
534 
535 	dev = get_cpu_device(cpu_id);
536 	WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id);
537 	if (!dev)
538 		goto err;
539 
540 	kobj = kobject_create_and_add("cache", &dev->kobj);
541 	if (!kobj)
542 		goto err;
543 
544 	cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL);
545 	if (!cache_dir)
546 		goto err;
547 
548 	cache_dir->kobj = kobj;
549 
550 	WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL);
551 
552 	per_cpu(cache_dir_pcpu, cpu_id) = cache_dir;
553 
554 	return cache_dir;
555 err:
556 	kobject_put(kobj);
557 	return NULL;
558 }
559 
560 static void cache_index_release(struct kobject *kobj)
561 {
562 	struct cache_index_dir *index;
563 
564 	index = kobj_to_cache_index_dir(kobj);
565 
566 	pr_debug("freeing index directory for L%d %s cache\n",
567 		 index->cache->level, cache_type_string(index->cache));
568 
569 	kfree(index);
570 }
571 
572 static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf)
573 {
574 	struct kobj_attribute *kobj_attr;
575 
576 	kobj_attr = container_of(attr, struct kobj_attribute, attr);
577 
578 	return kobj_attr->show(k, kobj_attr, buf);
579 }
580 
581 static struct cache *index_kobj_to_cache(struct kobject *k)
582 {
583 	struct cache_index_dir *index;
584 
585 	index = kobj_to_cache_index_dir(k);
586 
587 	return index->cache;
588 }
589 
590 static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
591 {
592 	unsigned int size_kb;
593 	struct cache *cache;
594 
595 	cache = index_kobj_to_cache(k);
596 
597 	if (cache_size_kb(cache, &size_kb))
598 		return -ENODEV;
599 
600 	return sprintf(buf, "%uK\n", size_kb);
601 }
602 
603 static struct kobj_attribute cache_size_attr =
604 	__ATTR(size, 0444, size_show, NULL);
605 
606 
607 static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
608 {
609 	unsigned int line_size;
610 	struct cache *cache;
611 
612 	cache = index_kobj_to_cache(k);
613 
614 	if (cache_get_line_size(cache, &line_size))
615 		return -ENODEV;
616 
617 	return sprintf(buf, "%u\n", line_size);
618 }
619 
620 static struct kobj_attribute cache_line_size_attr =
621 	__ATTR(coherency_line_size, 0444, line_size_show, NULL);
622 
623 static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
624 {
625 	unsigned int nr_sets;
626 	struct cache *cache;
627 
628 	cache = index_kobj_to_cache(k);
629 
630 	if (cache_nr_sets(cache, &nr_sets))
631 		return -ENODEV;
632 
633 	return sprintf(buf, "%u\n", nr_sets);
634 }
635 
636 static struct kobj_attribute cache_nr_sets_attr =
637 	__ATTR(number_of_sets, 0444, nr_sets_show, NULL);
638 
639 static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
640 {
641 	unsigned int associativity;
642 	struct cache *cache;
643 
644 	cache = index_kobj_to_cache(k);
645 
646 	if (cache_associativity(cache, &associativity))
647 		return -ENODEV;
648 
649 	return sprintf(buf, "%u\n", associativity);
650 }
651 
652 static struct kobj_attribute cache_assoc_attr =
653 	__ATTR(ways_of_associativity, 0444, associativity_show, NULL);
654 
655 static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
656 {
657 	struct cache *cache;
658 
659 	cache = index_kobj_to_cache(k);
660 
661 	return sprintf(buf, "%s\n", cache_type_string(cache));
662 }
663 
664 static struct kobj_attribute cache_type_attr =
665 	__ATTR(type, 0444, type_show, NULL);
666 
667 static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
668 {
669 	struct cache_index_dir *index;
670 	struct cache *cache;
671 
672 	index = kobj_to_cache_index_dir(k);
673 	cache = index->cache;
674 
675 	return sprintf(buf, "%d\n", cache->level);
676 }
677 
678 static struct kobj_attribute cache_level_attr =
679 	__ATTR(level, 0444, level_show, NULL);
680 
681 static ssize_t
682 show_shared_cpumap(struct kobject *k, struct kobj_attribute *attr, char *buf, bool list)
683 {
684 	struct cache_index_dir *index;
685 	struct cache *cache;
686 	const struct cpumask *mask;
687 
688 	index = kobj_to_cache_index_dir(k);
689 	cache = index->cache;
690 
691 	mask = &cache->shared_cpu_map;
692 
693 	return cpumap_print_to_pagebuf(list, buf, mask);
694 }
695 
696 static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
697 {
698 	return show_shared_cpumap(k, attr, buf, false);
699 }
700 
701 static ssize_t shared_cpu_list_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
702 {
703 	return show_shared_cpumap(k, attr, buf, true);
704 }
705 
706 static struct kobj_attribute cache_shared_cpu_map_attr =
707 	__ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL);
708 
709 static struct kobj_attribute cache_shared_cpu_list_attr =
710 	__ATTR(shared_cpu_list, 0444, shared_cpu_list_show, NULL);
711 
712 /* Attributes which should always be created -- the kobject/sysfs core
713  * does this automatically via kobj_type->default_groups.  This is the
714  * minimum data required to uniquely identify a cache.
715  */
716 static struct attribute *cache_index_default_attrs[] = {
717 	&cache_type_attr.attr,
718 	&cache_level_attr.attr,
719 	&cache_shared_cpu_map_attr.attr,
720 	&cache_shared_cpu_list_attr.attr,
721 	NULL,
722 };
723 ATTRIBUTE_GROUPS(cache_index_default);
724 
725 /* Attributes which should be created if the cache device node has the
726  * right properties -- see cacheinfo_create_index_opt_attrs
727  */
728 static struct kobj_attribute *cache_index_opt_attrs[] = {
729 	&cache_size_attr,
730 	&cache_line_size_attr,
731 	&cache_nr_sets_attr,
732 	&cache_assoc_attr,
733 };
734 
735 static const struct sysfs_ops cache_index_ops = {
736 	.show = cache_index_show,
737 };
738 
739 static struct kobj_type cache_index_type = {
740 	.release = cache_index_release,
741 	.sysfs_ops = &cache_index_ops,
742 	.default_groups = cache_index_default_groups,
743 };
744 
745 static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir)
746 {
747 	const char *cache_type;
748 	struct cache *cache;
749 	char *buf;
750 	int i;
751 
752 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
753 	if (!buf)
754 		return;
755 
756 	cache = dir->cache;
757 	cache_type = cache_type_string(cache);
758 
759 	/* We don't want to create an attribute that can't provide a
760 	 * meaningful value.  Check the return value of each optional
761 	 * attribute's ->show method before registering the
762 	 * attribute.
763 	 */
764 	for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) {
765 		struct kobj_attribute *attr;
766 		ssize_t rc;
767 
768 		attr = cache_index_opt_attrs[i];
769 
770 		rc = attr->show(&dir->kobj, attr, buf);
771 		if (rc <= 0) {
772 			pr_debug("not creating %s attribute for "
773 				 "%pOFP(%s) (rc = %zd)\n",
774 				 attr->attr.name, cache->ofnode,
775 				 cache_type, rc);
776 			continue;
777 		}
778 		if (sysfs_create_file(&dir->kobj, &attr->attr))
779 			pr_debug("could not create %s attribute for %pOFP(%s)\n",
780 				 attr->attr.name, cache->ofnode, cache_type);
781 	}
782 
783 	kfree(buf);
784 }
785 
786 static void cacheinfo_create_index_dir(struct cache *cache, int index,
787 				       struct cache_dir *cache_dir)
788 {
789 	struct cache_index_dir *index_dir;
790 	int rc;
791 
792 	index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL);
793 	if (!index_dir)
794 		return;
795 
796 	index_dir->cache = cache;
797 
798 	rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type,
799 				  cache_dir->kobj, "index%d", index);
800 	if (rc) {
801 		kobject_put(&index_dir->kobj);
802 		return;
803 	}
804 
805 	index_dir->next = cache_dir->index;
806 	cache_dir->index = index_dir;
807 
808 	cacheinfo_create_index_opt_attrs(index_dir);
809 }
810 
811 static void cacheinfo_sysfs_populate(unsigned int cpu_id,
812 				     struct cache *cache_list)
813 {
814 	struct cache_dir *cache_dir;
815 	struct cache *cache;
816 	int index = 0;
817 
818 	cache_dir = cacheinfo_create_cache_dir(cpu_id);
819 	if (!cache_dir)
820 		return;
821 
822 	cache = cache_list;
823 	while (cache) {
824 		cacheinfo_create_index_dir(cache, index, cache_dir);
825 		index++;
826 		cache = cache->next_local;
827 	}
828 }
829 
830 void cacheinfo_cpu_online(unsigned int cpu_id)
831 {
832 	struct cache *cache;
833 
834 	cache = cache_chain_instantiate(cpu_id);
835 	if (!cache)
836 		return;
837 
838 	cacheinfo_sysfs_populate(cpu_id, cache);
839 }
840 
841 /* functions needed to remove cache entry for cpu offline or suspend/resume */
842 
843 #if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \
844     defined(CONFIG_HOTPLUG_CPU)
845 
846 static struct cache *cache_lookup_by_cpu(unsigned int cpu_id)
847 {
848 	struct device_node *cpu_node;
849 	struct cache *cache;
850 	int group_id;
851 
852 	cpu_node = of_get_cpu_node(cpu_id, NULL);
853 	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
854 	if (!cpu_node)
855 		return NULL;
856 
857 	group_id = get_group_id(cpu_id, 1);
858 	cache = cache_lookup_by_node_group(cpu_node, group_id);
859 	of_node_put(cpu_node);
860 
861 	return cache;
862 }
863 
864 static void remove_index_dirs(struct cache_dir *cache_dir)
865 {
866 	struct cache_index_dir *index;
867 
868 	index = cache_dir->index;
869 
870 	while (index) {
871 		struct cache_index_dir *next;
872 
873 		next = index->next;
874 		kobject_put(&index->kobj);
875 		index = next;
876 	}
877 }
878 
879 static void remove_cache_dir(struct cache_dir *cache_dir)
880 {
881 	remove_index_dirs(cache_dir);
882 
883 	/* Remove cache dir from sysfs */
884 	kobject_del(cache_dir->kobj);
885 
886 	kobject_put(cache_dir->kobj);
887 
888 	kfree(cache_dir);
889 }
890 
891 static void cache_cpu_clear(struct cache *cache, int cpu)
892 {
893 	while (cache) {
894 		struct cache *next = cache->next_local;
895 
896 		WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map),
897 			  "CPU %i not accounted in %pOFP(%s)\n",
898 			  cpu, cache->ofnode,
899 			  cache_type_string(cache));
900 
901 		cpumask_clear_cpu(cpu, &cache->shared_cpu_map);
902 
903 		/* Release the cache object if all the cpus using it
904 		 * are offline */
905 		if (cpumask_empty(&cache->shared_cpu_map))
906 			release_cache(cache);
907 
908 		cache = next;
909 	}
910 }
911 
912 void cacheinfo_cpu_offline(unsigned int cpu_id)
913 {
914 	struct cache_dir *cache_dir;
915 	struct cache *cache;
916 
917 	/* Prevent userspace from seeing inconsistent state - remove
918 	 * the sysfs hierarchy first */
919 	cache_dir = per_cpu(cache_dir_pcpu, cpu_id);
920 
921 	/* careful, sysfs population may have failed */
922 	if (cache_dir)
923 		remove_cache_dir(cache_dir);
924 
925 	per_cpu(cache_dir_pcpu, cpu_id) = NULL;
926 
927 	/* clear the CPU's bit in its cache chain, possibly freeing
928 	 * cache objects */
929 	cache = cache_lookup_by_cpu(cpu_id);
930 	if (cache)
931 		cache_cpu_clear(cache, cpu_id);
932 }
933 
934 void cacheinfo_teardown(void)
935 {
936 	unsigned int cpu;
937 
938 	lockdep_assert_cpus_held();
939 
940 	for_each_online_cpu(cpu)
941 		cacheinfo_cpu_offline(cpu);
942 }
943 
944 void cacheinfo_rebuild(void)
945 {
946 	unsigned int cpu;
947 
948 	lockdep_assert_cpus_held();
949 
950 	for_each_online_cpu(cpu)
951 		cacheinfo_cpu_online(cpu);
952 }
953 
954 #endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */
955