xref: /linux/arch/powerpc/include/asm/ppc_asm.h (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/stringify.h>
8 #include <asm/asm-compat.h>
9 #include <asm/processor.h>
10 #include <asm/ppc-opcode.h>
11 #include <asm/firmware.h>
12 
13 #ifndef __ASSEMBLY__
14 #error __FILE__ should only be used in assembler files
15 #else
16 
17 #define SZL			(BITS_PER_LONG/8)
18 
19 /*
20  * Stuff for accurate CPU time accounting.
21  * These macros handle transitions between user and system state
22  * in exception entry and exit and accumulate time to the
23  * user_time and system_time fields in the paca.
24  */
25 
26 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
27 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)
28 #define ACCOUNT_CPU_USER_EXIT(ra, rb)
29 #define ACCOUNT_STOLEN_TIME
30 #else
31 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)					\
32 	MFTB(ra);			/* get timebase */		\
33 	ld	rb,PACA_STARTTIME_USER(r13);				\
34 	std	ra,PACA_STARTTIME(r13);					\
35 	subf	rb,rb,ra;		/* subtract start value */	\
36 	ld	ra,PACA_USER_TIME(r13);					\
37 	add	ra,ra,rb;		/* add on to user time */	\
38 	std	ra,PACA_USER_TIME(r13);					\
39 
40 #define ACCOUNT_CPU_USER_EXIT(ra, rb)					\
41 	MFTB(ra);			/* get timebase */		\
42 	ld	rb,PACA_STARTTIME(r13);					\
43 	std	ra,PACA_STARTTIME_USER(r13);				\
44 	subf	rb,rb,ra;		/* subtract start value */	\
45 	ld	ra,PACA_SYSTEM_TIME(r13);				\
46 	add	ra,ra,rb;		/* add on to system time */	\
47 	std	ra,PACA_SYSTEM_TIME(r13)
48 
49 #ifdef CONFIG_PPC_SPLPAR
50 #define ACCOUNT_STOLEN_TIME						\
51 BEGIN_FW_FTR_SECTION;							\
52 	beq	33f;							\
53 	/* from user - see if there are any DTL entries to process */	\
54 	ld	r10,PACALPPACAPTR(r13);	/* get ptr to VPA */		\
55 	ld	r11,PACA_DTL_RIDX(r13);	/* get log read index */	\
56 	addi	r10,r10,LPPACA_DTLIDX;					\
57 	LDX_BE	r10,0,r10;		/* get log write index */	\
58 	cmpd	cr1,r11,r10;						\
59 	beq+	cr1,33f;						\
60 	bl	accumulate_stolen_time;				\
61 	ld	r12,_MSR(r1);						\
62 	andi.	r10,r12,MSR_PR;		/* Restore cr0 (coming from user) */ \
63 33:									\
64 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
65 
66 #else  /* CONFIG_PPC_SPLPAR */
67 #define ACCOUNT_STOLEN_TIME
68 
69 #endif /* CONFIG_PPC_SPLPAR */
70 
71 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
72 
73 /*
74  * Macros for storing registers into and loading registers from
75  * exception frames.
76  */
77 #ifdef __powerpc64__
78 #define SAVE_GPR(n, base)	std	n,GPR0+8*(n)(base)
79 #define REST_GPR(n, base)	ld	n,GPR0+8*(n)(base)
80 #define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
81 #define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
82 #else
83 #define SAVE_GPR(n, base)	stw	n,GPR0+4*(n)(base)
84 #define REST_GPR(n, base)	lwz	n,GPR0+4*(n)(base)
85 #define SAVE_NVGPRS(base)	SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
86 				SAVE_10GPRS(22, base)
87 #define REST_NVGPRS(base)	REST_GPR(13, base); REST_8GPRS(14, base); \
88 				REST_10GPRS(22, base)
89 #endif
90 
91 #define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)
92 #define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
93 #define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
94 #define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
95 #define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)
96 #define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)
97 #define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)
98 #define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)
99 
100 #define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
101 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
102 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
103 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
104 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
105 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
106 #define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
107 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
108 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
109 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
110 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
111 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
112 
113 #define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
114 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
115 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
116 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
117 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
118 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
119 #define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
120 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
121 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
122 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
123 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
124 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
125 
126 #ifdef __BIG_ENDIAN__
127 #define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
128 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
129 #else
130 #define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
131 					STXVD2X(n,b,base);	\
132 					XXSWAPD(n,n)
133 
134 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
135 					XXSWAPD(n,n)
136 #endif
137 /* Save the lower 32 VSRs in the thread VSR region */
138 #define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
139 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
140 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
141 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
142 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
143 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
144 #define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
145 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
146 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
147 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
148 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
149 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
150 
151 /*
152  * b = base register for addressing, o = base offset from register of 1st EVR
153  * n = first EVR, s = scratch
154  */
155 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
156 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
157 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
158 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
159 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
160 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
161 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
162 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
163 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
164 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
165 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
166 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
167 
168 /* Macros to adjust thread priority for hardware multithreading */
169 #define HMT_VERY_LOW	or	31,31,31	# very low priority
170 #define HMT_LOW		or	1,1,1
171 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
172 #define HMT_MEDIUM	or	2,2,2
173 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
174 #define HMT_HIGH	or	3,3,3
175 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
176 
177 #ifdef CONFIG_PPC64
178 #define ULONG_SIZE 	8
179 #else
180 #define ULONG_SIZE	4
181 #endif
182 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
183 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
184 
185 #ifdef __KERNEL__
186 #ifdef CONFIG_PPC64
187 
188 #define STACKFRAMESIZE 256
189 #define __STK_REG(i)   (112 + ((i)-14)*8)
190 #define STK_REG(i)     __STK_REG(__REG_##i)
191 
192 #if defined(_CALL_ELF) && _CALL_ELF == 2
193 #define STK_GOT		24
194 #define __STK_PARAM(i)	(32 + ((i)-3)*8)
195 #else
196 #define STK_GOT		40
197 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
198 #endif
199 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
200 
201 #if defined(_CALL_ELF) && _CALL_ELF == 2
202 
203 #define _GLOBAL(name) \
204 	.section ".text"; \
205 	.align 2 ; \
206 	.type name,@function; \
207 	.globl name; \
208 name:
209 
210 #define _GLOBAL_TOC(name) \
211 	.section ".text"; \
212 	.align 2 ; \
213 	.type name,@function; \
214 	.globl name; \
215 name: \
216 0:	addis r2,r12,(.TOC.-0b)@ha; \
217 	addi r2,r2,(.TOC.-0b)@l; \
218 	.localentry name,.-name
219 
220 #define _KPROBE(name) \
221 	.section ".kprobes.text","a"; \
222 	.align 2 ; \
223 	.type name,@function; \
224 	.globl name; \
225 name:
226 
227 #define DOTSYM(a)	a
228 
229 #else
230 
231 #define XGLUE(a,b) a##b
232 #define GLUE(a,b) XGLUE(a,b)
233 
234 #define _GLOBAL(name) \
235 	.section ".text"; \
236 	.align 2 ; \
237 	.globl name; \
238 	.globl GLUE(.,name); \
239 	.section ".opd","aw"; \
240 name: \
241 	.quad GLUE(.,name); \
242 	.quad .TOC.@tocbase; \
243 	.quad 0; \
244 	.previous; \
245 	.type GLUE(.,name),@function; \
246 GLUE(.,name):
247 
248 #define _GLOBAL_TOC(name) _GLOBAL(name)
249 
250 #define _KPROBE(name) \
251 	.section ".kprobes.text","a"; \
252 	.align 2 ; \
253 	.globl name; \
254 	.globl GLUE(.,name); \
255 	.section ".opd","aw"; \
256 name: \
257 	.quad GLUE(.,name); \
258 	.quad .TOC.@tocbase; \
259 	.quad 0; \
260 	.previous; \
261 	.type GLUE(.,name),@function; \
262 GLUE(.,name):
263 
264 #define DOTSYM(a)	GLUE(.,a)
265 
266 #endif
267 
268 #else /* 32-bit */
269 
270 #define _ENTRY(n)	\
271 	.globl n;	\
272 n:
273 
274 #define _GLOBAL(n)	\
275 	.text;		\
276 	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
277 	.globl n;	\
278 n:
279 
280 #define _GLOBAL_TOC(name) _GLOBAL(name)
281 
282 #define _KPROBE(n)	\
283 	.section ".kprobes.text","a";	\
284 	.globl	n;	\
285 n:
286 
287 #endif
288 
289 /*
290  * LOAD_REG_IMMEDIATE(rn, expr)
291  *   Loads the value of the constant expression 'expr' into register 'rn'
292  *   using immediate instructions only.  Use this when it's important not
293  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
294  *   valid) and when 'expr' is a constant or absolute address.
295  *
296  * LOAD_REG_ADDR(rn, name)
297  *   Loads the address of label 'name' into register 'rn'.  Use this when
298  *   you don't particularly need immediate instructions only, but you need
299  *   the whole address in one register (e.g. it's a structure address and
300  *   you want to access various offsets within it).  On ppc32 this is
301  *   identical to LOAD_REG_IMMEDIATE.
302  *
303  * LOAD_REG_ADDR_PIC(rn, name)
304  *   Loads the address of label 'name' into register 'run'. Use this when
305  *   the kernel doesn't run at the linked or relocated address. Please
306  *   note that this macro will clobber the lr register.
307  *
308  * LOAD_REG_ADDRBASE(rn, name)
309  * ADDROFF(name)
310  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
311  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
312  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
313  *   in size, so is suitable for use directly as an offset in load and store
314  *   instructions.  Use this when loading/storing a single word or less as:
315  *      LOAD_REG_ADDRBASE(rX, name)
316  *      ld	rY,ADDROFF(name)(rX)
317  */
318 
319 /* Be careful, this will clobber the lr register. */
320 #define LOAD_REG_ADDR_PIC(reg, name)		\
321 	bl	0f;				\
322 0:	mflr	reg;				\
323 	addis	reg,reg,(name - 0b)@ha;		\
324 	addi	reg,reg,(name - 0b)@l;
325 
326 #ifdef __powerpc64__
327 #ifdef HAVE_AS_ATHIGH
328 #define __AS_ATHIGH high
329 #else
330 #define __AS_ATHIGH h
331 #endif
332 #define LOAD_REG_IMMEDIATE(reg,expr)		\
333 	lis     reg,(expr)@highest;		\
334 	ori     reg,reg,(expr)@higher;	\
335 	rldicr  reg,reg,32,31;		\
336 	oris    reg,reg,(expr)@__AS_ATHIGH;	\
337 	ori     reg,reg,(expr)@l;
338 
339 #define LOAD_REG_ADDR(reg,name)			\
340 	ld	reg,name@got(r2)
341 
342 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
343 #define ADDROFF(name)			0
344 
345 /* offsets for stack frame layout */
346 #define LRSAVE	16
347 
348 #else /* 32-bit */
349 
350 #define LOAD_REG_IMMEDIATE(reg,expr)		\
351 	lis	reg,(expr)@ha;		\
352 	addi	reg,reg,(expr)@l;
353 
354 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE(reg, name)
355 
356 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
357 #define ADDROFF(name)			name@l
358 
359 /* offsets for stack frame layout */
360 #define LRSAVE	4
361 
362 #endif
363 
364 /* various errata or part fixups */
365 #ifdef CONFIG_PPC601_SYNC_FIX
366 #define SYNC				\
367 BEGIN_FTR_SECTION			\
368 	sync;				\
369 	isync;				\
370 END_FTR_SECTION_IFSET(CPU_FTR_601)
371 #define SYNC_601			\
372 BEGIN_FTR_SECTION			\
373 	sync;				\
374 END_FTR_SECTION_IFSET(CPU_FTR_601)
375 #define ISYNC_601			\
376 BEGIN_FTR_SECTION			\
377 	isync;				\
378 END_FTR_SECTION_IFSET(CPU_FTR_601)
379 #else
380 #define	SYNC
381 #define SYNC_601
382 #define ISYNC_601
383 #endif
384 
385 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
386 #define MFTB(dest)			\
387 90:	mfspr dest, SPRN_TBRL;		\
388 BEGIN_FTR_SECTION_NESTED(96);		\
389 	cmpwi dest,0;			\
390 	beq-  90b;			\
391 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
392 #elif defined(CONFIG_8xx)
393 #define MFTB(dest)			mftb dest
394 #else
395 #define MFTB(dest)			mfspr dest, SPRN_TBRL
396 #endif
397 
398 #ifndef CONFIG_SMP
399 #define TLBSYNC
400 #else /* CONFIG_SMP */
401 /* tlbsync is not implemented on 601 */
402 #define TLBSYNC				\
403 BEGIN_FTR_SECTION			\
404 	tlbsync;			\
405 	sync;				\
406 END_FTR_SECTION_IFCLR(CPU_FTR_601)
407 #endif
408 
409 #ifdef CONFIG_PPC64
410 #define MTOCRF(FXM, RS)			\
411 	BEGIN_FTR_SECTION_NESTED(848);	\
412 	mtcrf	(FXM), RS;		\
413 	FTR_SECTION_ELSE_NESTED(848);	\
414 	mtocrf (FXM), RS;		\
415 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
416 
417 /*
418  * PPR restore macros used in entry_64.S
419  * Used for P7 or later processors
420  */
421 #define HMT_MEDIUM_LOW_HAS_PPR						\
422 BEGIN_FTR_SECTION_NESTED(944)						\
423 	HMT_MEDIUM_LOW;							\
424 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
425 
426 #define SET_DEFAULT_THREAD_PPR(ra, rb)					\
427 BEGIN_FTR_SECTION_NESTED(945)						\
428 	lis	ra,INIT_PPR@highest;	/* default ppr=3 */		\
429 	ld	rb,PACACURRENT(r13);					\
430 	sldi	ra,ra,32;	/* 11- 13 bits are used for ppr */	\
431 	std	ra,TASKTHREADPPR(rb);					\
432 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
433 
434 #endif
435 
436 /*
437  * This instruction is not implemented on the PPC 603 or 601; however, on
438  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
439  * All of these instructions exist in the 8xx, they have magical powers,
440  * and they must be used.
441  */
442 
443 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
444 #define tlbia					\
445 	li	r4,1024;			\
446 	mtctr	r4;				\
447 	lis	r4,KERNELBASE@h;		\
448 0:	tlbie	r4;				\
449 	addi	r4,r4,0x1000;			\
450 	bdnz	0b
451 #endif
452 
453 
454 #ifdef CONFIG_IBM440EP_ERR42
455 #define PPC440EP_ERR42 isync
456 #else
457 #define PPC440EP_ERR42
458 #endif
459 
460 /* The following stops all load and store data streams associated with stream
461  * ID (ie. streams created explicitly).  The embedded and server mnemonics for
462  * dcbt are different so we use machine "power4" here explicitly.
463  */
464 #define DCBT_STOP_ALL_STREAM_IDS(scratch)	\
465 .machine push ;					\
466 .machine "power4" ;				\
467        lis     scratch,0x60000000@h;		\
468        dcbt    r0,scratch,0b01010;		\
469 .machine pop
470 
471 /*
472  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
473  * keep the address intact to be compatible with code shared with
474  * 32-bit classic.
475  *
476  * On the other hand, I find it useful to have them behave as expected
477  * by their name (ie always do the addition) on 64-bit BookE
478  */
479 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
480 #define toreal(rd)
481 #define fromreal(rd)
482 
483 /*
484  * We use addis to ensure compatibility with the "classic" ppc versions of
485  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
486  * converting the address in r0, and so this version has to do that too
487  * (i.e. set register rd to 0 when rs == 0).
488  */
489 #define tophys(rd,rs)				\
490 	addis	rd,rs,0
491 
492 #define tovirt(rd,rs)				\
493 	addis	rd,rs,0
494 
495 #elif defined(CONFIG_PPC64)
496 #define toreal(rd)		/* we can access c000... in real mode */
497 #define fromreal(rd)
498 
499 #define tophys(rd,rs)                           \
500 	clrldi	rd,rs,2
501 
502 #define tovirt(rd,rs)                           \
503 	rotldi	rd,rs,16;			\
504 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
505 	rotldi	rd,rd,48
506 #else
507 /*
508  * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
509  * physical base address of RAM at compile time.
510  */
511 #define toreal(rd)	tophys(rd,rd)
512 #define fromreal(rd)	tovirt(rd,rd)
513 
514 #define tophys(rd,rs)				\
515 0:	addis	rd,rs,-PAGE_OFFSET@h;		\
516 	.section ".vtop_fixup","aw";		\
517 	.align  1;				\
518 	.long   0b;				\
519 	.previous
520 
521 #define tovirt(rd,rs)				\
522 0:	addis	rd,rs,PAGE_OFFSET@h;		\
523 	.section ".ptov_fixup","aw";		\
524 	.align  1;				\
525 	.long   0b;				\
526 	.previous
527 #endif
528 
529 #ifdef CONFIG_PPC_BOOK3S_64
530 #define RFI		rfid
531 #define MTMSRD(r)	mtmsrd	r
532 #define MTMSR_EERI(reg)	mtmsrd	reg,1
533 #else
534 #define FIX_SRR1(ra, rb)
535 #ifndef CONFIG_40x
536 #define	RFI		rfi
537 #else
538 #define RFI		rfi; b .	/* Prevent prefetch past rfi */
539 #endif
540 #define MTMSRD(r)	mtmsr	r
541 #define MTMSR_EERI(reg)	mtmsr	reg
542 #define CLR_TOP32(r)
543 #endif
544 
545 #endif /* __KERNEL__ */
546 
547 /* The boring bits... */
548 
549 /* Condition Register Bit Fields */
550 
551 #define	cr0	0
552 #define	cr1	1
553 #define	cr2	2
554 #define	cr3	3
555 #define	cr4	4
556 #define	cr5	5
557 #define	cr6	6
558 #define	cr7	7
559 
560 
561 /*
562  * General Purpose Registers (GPRs)
563  *
564  * The lower case r0-r31 should be used in preference to the upper
565  * case R0-R31 as they provide more error checking in the assembler.
566  * Use R0-31 only when really nessesary.
567  */
568 
569 #define	r0	%r0
570 #define	r1	%r1
571 #define	r2	%r2
572 #define	r3	%r3
573 #define	r4	%r4
574 #define	r5	%r5
575 #define	r6	%r6
576 #define	r7	%r7
577 #define	r8	%r8
578 #define	r9	%r9
579 #define	r10	%r10
580 #define	r11	%r11
581 #define	r12	%r12
582 #define	r13	%r13
583 #define	r14	%r14
584 #define	r15	%r15
585 #define	r16	%r16
586 #define	r17	%r17
587 #define	r18	%r18
588 #define	r19	%r19
589 #define	r20	%r20
590 #define	r21	%r21
591 #define	r22	%r22
592 #define	r23	%r23
593 #define	r24	%r24
594 #define	r25	%r25
595 #define	r26	%r26
596 #define	r27	%r27
597 #define	r28	%r28
598 #define	r29	%r29
599 #define	r30	%r30
600 #define	r31	%r31
601 
602 
603 /* Floating Point Registers (FPRs) */
604 
605 #define	fr0	0
606 #define	fr1	1
607 #define	fr2	2
608 #define	fr3	3
609 #define	fr4	4
610 #define	fr5	5
611 #define	fr6	6
612 #define	fr7	7
613 #define	fr8	8
614 #define	fr9	9
615 #define	fr10	10
616 #define	fr11	11
617 #define	fr12	12
618 #define	fr13	13
619 #define	fr14	14
620 #define	fr15	15
621 #define	fr16	16
622 #define	fr17	17
623 #define	fr18	18
624 #define	fr19	19
625 #define	fr20	20
626 #define	fr21	21
627 #define	fr22	22
628 #define	fr23	23
629 #define	fr24	24
630 #define	fr25	25
631 #define	fr26	26
632 #define	fr27	27
633 #define	fr28	28
634 #define	fr29	29
635 #define	fr30	30
636 #define	fr31	31
637 
638 /* AltiVec Registers (VPRs) */
639 
640 #define	v0	0
641 #define	v1	1
642 #define	v2	2
643 #define	v3	3
644 #define	v4	4
645 #define	v5	5
646 #define	v6	6
647 #define	v7	7
648 #define	v8	8
649 #define	v9	9
650 #define	v10	10
651 #define	v11	11
652 #define	v12	12
653 #define	v13	13
654 #define	v14	14
655 #define	v15	15
656 #define	v16	16
657 #define	v17	17
658 #define	v18	18
659 #define	v19	19
660 #define	v20	20
661 #define	v21	21
662 #define	v22	22
663 #define	v23	23
664 #define	v24	24
665 #define	v25	25
666 #define	v26	26
667 #define	v27	27
668 #define	v28	28
669 #define	v29	29
670 #define	v30	30
671 #define	v31	31
672 
673 /* VSX Registers (VSRs) */
674 
675 #define	vs0	0
676 #define	vs1	1
677 #define	vs2	2
678 #define	vs3	3
679 #define	vs4	4
680 #define	vs5	5
681 #define	vs6	6
682 #define	vs7	7
683 #define	vs8	8
684 #define	vs9	9
685 #define	vs10	10
686 #define	vs11	11
687 #define	vs12	12
688 #define	vs13	13
689 #define	vs14	14
690 #define	vs15	15
691 #define	vs16	16
692 #define	vs17	17
693 #define	vs18	18
694 #define	vs19	19
695 #define	vs20	20
696 #define	vs21	21
697 #define	vs22	22
698 #define	vs23	23
699 #define	vs24	24
700 #define	vs25	25
701 #define	vs26	26
702 #define	vs27	27
703 #define	vs28	28
704 #define	vs29	29
705 #define	vs30	30
706 #define	vs31	31
707 #define	vs32	32
708 #define	vs33	33
709 #define	vs34	34
710 #define	vs35	35
711 #define	vs36	36
712 #define	vs37	37
713 #define	vs38	38
714 #define	vs39	39
715 #define	vs40	40
716 #define	vs41	41
717 #define	vs42	42
718 #define	vs43	43
719 #define	vs44	44
720 #define	vs45	45
721 #define	vs46	46
722 #define	vs47	47
723 #define	vs48	48
724 #define	vs49	49
725 #define	vs50	50
726 #define	vs51	51
727 #define	vs52	52
728 #define	vs53	53
729 #define	vs54	54
730 #define	vs55	55
731 #define	vs56	56
732 #define	vs57	57
733 #define	vs58	58
734 #define	vs59	59
735 #define	vs60	60
736 #define	vs61	61
737 #define	vs62	62
738 #define	vs63	63
739 
740 /* SPE Registers (EVPRs) */
741 
742 #define	evr0	0
743 #define	evr1	1
744 #define	evr2	2
745 #define	evr3	3
746 #define	evr4	4
747 #define	evr5	5
748 #define	evr6	6
749 #define	evr7	7
750 #define	evr8	8
751 #define	evr9	9
752 #define	evr10	10
753 #define	evr11	11
754 #define	evr12	12
755 #define	evr13	13
756 #define	evr14	14
757 #define	evr15	15
758 #define	evr16	16
759 #define	evr17	17
760 #define	evr18	18
761 #define	evr19	19
762 #define	evr20	20
763 #define	evr21	21
764 #define	evr22	22
765 #define	evr23	23
766 #define	evr24	24
767 #define	evr25	25
768 #define	evr26	26
769 #define	evr27	27
770 #define	evr28	28
771 #define	evr29	29
772 #define	evr30	30
773 #define	evr31	31
774 
775 /* some stab codes */
776 #define N_FUN	36
777 #define N_RSYM	64
778 #define N_SLINE	68
779 #define N_SO	100
780 
781 /*
782  * Create an endian fixup trampoline
783  *
784  * This starts with a "tdi 0,0,0x48" instruction which is
785  * essentially a "trap never", and thus akin to a nop.
786  *
787  * The opcode for this instruction read with the wrong endian
788  * however results in a b . + 8
789  *
790  * So essentially we use that trick to execute the following
791  * trampoline in "reverse endian" if we are running with the
792  * MSR_LE bit set the "wrong" way for whatever endianness the
793  * kernel is built for.
794  */
795 
796 #ifdef CONFIG_PPC_BOOK3E
797 #define FIXUP_ENDIAN
798 #else
799 #define FIXUP_ENDIAN						   \
800 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
801 	b     $+36;	  /* Skip trampoline if endian is good	*/ \
802 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
803 	.long 0xa602487d; /* mflr r10				*/ \
804 	.long 0x1c004a39; /* addi r10,r10,28			*/ \
805 	.long 0xa600607d; /* mfmsr r11				*/ \
806 	.long 0x01006b69; /* xori r11,r11,1			*/ \
807 	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
808 	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
809 	.long 0x2400004c  /* rfid				*/
810 #endif /* !CONFIG_PPC_BOOK3E */
811 #endif /*  __ASSEMBLY__ */
812 #endif /* _ASM_POWERPC_PPC_ASM_H */
813