xref: /linux/arch/powerpc/include/asm/ppc_asm.h (revision 1abd4986f4445b0280a07bc46aefa3d0d30258f9)
1 /*
2  * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
3  */
4 #ifndef _ASM_POWERPC_PPC_ASM_H
5 #define _ASM_POWERPC_PPC_ASM_H
6 
7 #include <linux/init.h>
8 #include <linux/stringify.h>
9 #include <asm/asm-compat.h>
10 #include <asm/processor.h>
11 #include <asm/ppc-opcode.h>
12 #include <asm/firmware.h>
13 
14 #ifndef __ASSEMBLY__
15 #error __FILE__ should only be used in assembler files
16 #else
17 
18 #define SZL			(BITS_PER_LONG/8)
19 
20 /*
21  * Stuff for accurate CPU time accounting.
22  * These macros handle transitions between user and system state
23  * in exception entry and exit and accumulate time to the
24  * user_time and system_time fields in the paca.
25  */
26 
27 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
28 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)
29 #define ACCOUNT_CPU_USER_EXIT(ra, rb)
30 #define ACCOUNT_STOLEN_TIME
31 #else
32 #define ACCOUNT_CPU_USER_ENTRY(ra, rb)					\
33 	MFTB(ra);			/* get timebase */		\
34 	ld	rb,PACA_STARTTIME_USER(r13);				\
35 	std	ra,PACA_STARTTIME(r13);					\
36 	subf	rb,rb,ra;		/* subtract start value */	\
37 	ld	ra,PACA_USER_TIME(r13);					\
38 	add	ra,ra,rb;		/* add on to user time */	\
39 	std	ra,PACA_USER_TIME(r13);					\
40 
41 #define ACCOUNT_CPU_USER_EXIT(ra, rb)					\
42 	MFTB(ra);			/* get timebase */		\
43 	ld	rb,PACA_STARTTIME(r13);					\
44 	std	ra,PACA_STARTTIME_USER(r13);				\
45 	subf	rb,rb,ra;		/* subtract start value */	\
46 	ld	ra,PACA_SYSTEM_TIME(r13);				\
47 	add	ra,ra,rb;		/* add on to system time */	\
48 	std	ra,PACA_SYSTEM_TIME(r13)
49 
50 #ifdef CONFIG_PPC_SPLPAR
51 #define ACCOUNT_STOLEN_TIME						\
52 BEGIN_FW_FTR_SECTION;							\
53 	beq	33f;							\
54 	/* from user - see if there are any DTL entries to process */	\
55 	ld	r10,PACALPPACAPTR(r13);	/* get ptr to VPA */		\
56 	ld	r11,PACA_DTL_RIDX(r13);	/* get log read index */	\
57 	addi	r10,r10,LPPACA_DTLIDX;					\
58 	LDX_BE	r10,0,r10;		/* get log write index */	\
59 	cmpd	cr1,r11,r10;						\
60 	beq+	cr1,33f;						\
61 	bl	.accumulate_stolen_time;				\
62 	ld	r12,_MSR(r1);						\
63 	andi.	r10,r12,MSR_PR;		/* Restore cr0 (coming from user) */ \
64 33:									\
65 END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
66 
67 #else  /* CONFIG_PPC_SPLPAR */
68 #define ACCOUNT_STOLEN_TIME
69 
70 #endif /* CONFIG_PPC_SPLPAR */
71 
72 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
73 
74 /*
75  * Macros for storing registers into and loading registers from
76  * exception frames.
77  */
78 #ifdef __powerpc64__
79 #define SAVE_GPR(n, base)	std	n,GPR0+8*(n)(base)
80 #define REST_GPR(n, base)	ld	n,GPR0+8*(n)(base)
81 #define SAVE_NVGPRS(base)	SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
82 #define REST_NVGPRS(base)	REST_8GPRS(14, base); REST_10GPRS(22, base)
83 #else
84 #define SAVE_GPR(n, base)	stw	n,GPR0+4*(n)(base)
85 #define REST_GPR(n, base)	lwz	n,GPR0+4*(n)(base)
86 #define SAVE_NVGPRS(base)	SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
87 				SAVE_10GPRS(22, base)
88 #define REST_NVGPRS(base)	REST_GPR(13, base); REST_8GPRS(14, base); \
89 				REST_10GPRS(22, base)
90 #endif
91 
92 #define SAVE_2GPRS(n, base)	SAVE_GPR(n, base); SAVE_GPR(n+1, base)
93 #define SAVE_4GPRS(n, base)	SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
94 #define SAVE_8GPRS(n, base)	SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
95 #define SAVE_10GPRS(n, base)	SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
96 #define REST_2GPRS(n, base)	REST_GPR(n, base); REST_GPR(n+1, base)
97 #define REST_4GPRS(n, base)	REST_2GPRS(n, base); REST_2GPRS(n+2, base)
98 #define REST_8GPRS(n, base)	REST_4GPRS(n, base); REST_4GPRS(n+4, base)
99 #define REST_10GPRS(n, base)	REST_8GPRS(n, base); REST_2GPRS(n+8, base)
100 
101 #define SAVE_FPR(n, base)	stfd	n,8*TS_FPRWIDTH*(n)(base)
102 #define SAVE_2FPRS(n, base)	SAVE_FPR(n, base); SAVE_FPR(n+1, base)
103 #define SAVE_4FPRS(n, base)	SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
104 #define SAVE_8FPRS(n, base)	SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
105 #define SAVE_16FPRS(n, base)	SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
106 #define SAVE_32FPRS(n, base)	SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
107 #define REST_FPR(n, base)	lfd	n,8*TS_FPRWIDTH*(n)(base)
108 #define REST_2FPRS(n, base)	REST_FPR(n, base); REST_FPR(n+1, base)
109 #define REST_4FPRS(n, base)	REST_2FPRS(n, base); REST_2FPRS(n+2, base)
110 #define REST_8FPRS(n, base)	REST_4FPRS(n, base); REST_4FPRS(n+4, base)
111 #define REST_16FPRS(n, base)	REST_8FPRS(n, base); REST_8FPRS(n+8, base)
112 #define REST_32FPRS(n, base)	REST_16FPRS(n, base); REST_16FPRS(n+16, base)
113 
114 #define SAVE_VR(n,b,base)	li b,16*(n);  stvx n,base,b
115 #define SAVE_2VRS(n,b,base)	SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
116 #define SAVE_4VRS(n,b,base)	SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
117 #define SAVE_8VRS(n,b,base)	SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
118 #define SAVE_16VRS(n,b,base)	SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
119 #define SAVE_32VRS(n,b,base)	SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
120 #define REST_VR(n,b,base)	li b,16*(n); lvx n,base,b
121 #define REST_2VRS(n,b,base)	REST_VR(n,b,base); REST_VR(n+1,b,base)
122 #define REST_4VRS(n,b,base)	REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
123 #define REST_8VRS(n,b,base)	REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
124 #define REST_16VRS(n,b,base)	REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
125 #define REST_32VRS(n,b,base)	REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
126 
127 #ifdef __BIG_ENDIAN__
128 #define STXVD2X_ROT(n,b,base)		STXVD2X(n,b,base)
129 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base)
130 #else
131 #define STXVD2X_ROT(n,b,base)		XXSWAPD(n,n);		\
132 					STXVD2X(n,b,base);	\
133 					XXSWAPD(n,n)
134 
135 #define LXVD2X_ROT(n,b,base)		LXVD2X(n,b,base);	\
136 					XXSWAPD(n,n)
137 #endif
138 /* Save the lower 32 VSRs in the thread VSR region */
139 #define SAVE_VSR(n,b,base)	li b,16*(n);  STXVD2X_ROT(n,R##base,R##b)
140 #define SAVE_2VSRS(n,b,base)	SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
141 #define SAVE_4VSRS(n,b,base)	SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
142 #define SAVE_8VSRS(n,b,base)	SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
143 #define SAVE_16VSRS(n,b,base)	SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
144 #define SAVE_32VSRS(n,b,base)	SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
145 #define REST_VSR(n,b,base)	li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
146 #define REST_2VSRS(n,b,base)	REST_VSR(n,b,base); REST_VSR(n+1,b,base)
147 #define REST_4VSRS(n,b,base)	REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
148 #define REST_8VSRS(n,b,base)	REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
149 #define REST_16VSRS(n,b,base)	REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
150 #define REST_32VSRS(n,b,base)	REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
151 
152 /*
153  * b = base register for addressing, o = base offset from register of 1st EVR
154  * n = first EVR, s = scratch
155  */
156 #define SAVE_EVR(n,s,b,o)	evmergehi s,s,n; stw s,o+4*(n)(b)
157 #define SAVE_2EVRS(n,s,b,o)	SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
158 #define SAVE_4EVRS(n,s,b,o)	SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
159 #define SAVE_8EVRS(n,s,b,o)	SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
160 #define SAVE_16EVRS(n,s,b,o)	SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
161 #define SAVE_32EVRS(n,s,b,o)	SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
162 #define REST_EVR(n,s,b,o)	lwz s,o+4*(n)(b); evmergelo n,s,n
163 #define REST_2EVRS(n,s,b,o)	REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
164 #define REST_4EVRS(n,s,b,o)	REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
165 #define REST_8EVRS(n,s,b,o)	REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
166 #define REST_16EVRS(n,s,b,o)	REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
167 #define REST_32EVRS(n,s,b,o)	REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
168 
169 /* Macros to adjust thread priority for hardware multithreading */
170 #define HMT_VERY_LOW	or	31,31,31	# very low priority
171 #define HMT_LOW		or	1,1,1
172 #define HMT_MEDIUM_LOW  or	6,6,6		# medium low priority
173 #define HMT_MEDIUM	or	2,2,2
174 #define HMT_MEDIUM_HIGH or	5,5,5		# medium high priority
175 #define HMT_HIGH	or	3,3,3
176 #define HMT_EXTRA_HIGH	or	7,7,7		# power7 only
177 
178 #ifdef CONFIG_PPC64
179 #define ULONG_SIZE 	8
180 #else
181 #define ULONG_SIZE	4
182 #endif
183 #define __VCPU_GPR(n)	(VCPU_GPRS + (n * ULONG_SIZE))
184 #define VCPU_GPR(n)	__VCPU_GPR(__REG_##n)
185 
186 #ifdef __KERNEL__
187 #ifdef CONFIG_PPC64
188 
189 #define STACKFRAMESIZE 256
190 #define __STK_REG(i)   (112 + ((i)-14)*8)
191 #define STK_REG(i)     __STK_REG(__REG_##i)
192 
193 #define __STK_PARAM(i)	(48 + ((i)-3)*8)
194 #define STK_PARAM(i)	__STK_PARAM(__REG_##i)
195 
196 #define XGLUE(a,b) a##b
197 #define GLUE(a,b) XGLUE(a,b)
198 
199 #define _GLOBAL(name) \
200 	.section ".text"; \
201 	.align 2 ; \
202 	.globl name; \
203 	.globl GLUE(.,name); \
204 	.section ".opd","aw"; \
205 name: \
206 	.quad GLUE(.,name); \
207 	.quad .TOC.@tocbase; \
208 	.quad 0; \
209 	.previous; \
210 	.type GLUE(.,name),@function; \
211 GLUE(.,name):
212 
213 #define _INIT_GLOBAL(name) \
214 	__REF; \
215 	.align 2 ; \
216 	.globl name; \
217 	.globl GLUE(.,name); \
218 	.section ".opd","aw"; \
219 name: \
220 	.quad GLUE(.,name); \
221 	.quad .TOC.@tocbase; \
222 	.quad 0; \
223 	.previous; \
224 	.type GLUE(.,name),@function; \
225 GLUE(.,name):
226 
227 #define _KPROBE(name) \
228 	.section ".kprobes.text","a"; \
229 	.align 2 ; \
230 	.globl name; \
231 	.globl GLUE(.,name); \
232 	.section ".opd","aw"; \
233 name: \
234 	.quad GLUE(.,name); \
235 	.quad .TOC.@tocbase; \
236 	.quad 0; \
237 	.previous; \
238 	.type GLUE(.,name),@function; \
239 GLUE(.,name):
240 
241 #define _STATIC(name) \
242 	.section ".text"; \
243 	.align 2 ; \
244 	.section ".opd","aw"; \
245 name: \
246 	.quad GLUE(.,name); \
247 	.quad .TOC.@tocbase; \
248 	.quad 0; \
249 	.previous; \
250 	.type GLUE(.,name),@function; \
251 GLUE(.,name):
252 
253 #define _INIT_STATIC(name) \
254 	__REF; \
255 	.align 2 ; \
256 	.section ".opd","aw"; \
257 name: \
258 	.quad GLUE(.,name); \
259 	.quad .TOC.@tocbase; \
260 	.quad 0; \
261 	.previous; \
262 	.type GLUE(.,name),@function; \
263 GLUE(.,name):
264 
265 #else /* 32-bit */
266 
267 #define _ENTRY(n)	\
268 	.globl n;	\
269 n:
270 
271 #define _GLOBAL(n)	\
272 	.text;		\
273 	.stabs __stringify(n:F-1),N_FUN,0,0,n;\
274 	.globl n;	\
275 n:
276 
277 #define _KPROBE(n)	\
278 	.section ".kprobes.text","a";	\
279 	.globl	n;	\
280 n:
281 
282 #endif
283 
284 /*
285  * LOAD_REG_IMMEDIATE(rn, expr)
286  *   Loads the value of the constant expression 'expr' into register 'rn'
287  *   using immediate instructions only.  Use this when it's important not
288  *   to reference other data (i.e. on ppc64 when the TOC pointer is not
289  *   valid) and when 'expr' is a constant or absolute address.
290  *
291  * LOAD_REG_ADDR(rn, name)
292  *   Loads the address of label 'name' into register 'rn'.  Use this when
293  *   you don't particularly need immediate instructions only, but you need
294  *   the whole address in one register (e.g. it's a structure address and
295  *   you want to access various offsets within it).  On ppc32 this is
296  *   identical to LOAD_REG_IMMEDIATE.
297  *
298  * LOAD_REG_ADDRBASE(rn, name)
299  * ADDROFF(name)
300  *   LOAD_REG_ADDRBASE loads part of the address of label 'name' into
301  *   register 'rn'.  ADDROFF(name) returns the remainder of the address as
302  *   a constant expression.  ADDROFF(name) is a signed expression < 16 bits
303  *   in size, so is suitable for use directly as an offset in load and store
304  *   instructions.  Use this when loading/storing a single word or less as:
305  *      LOAD_REG_ADDRBASE(rX, name)
306  *      ld	rY,ADDROFF(name)(rX)
307  */
308 #ifdef __powerpc64__
309 #define LOAD_REG_IMMEDIATE(reg,expr)		\
310 	lis     reg,(expr)@highest;		\
311 	ori     reg,reg,(expr)@higher;	\
312 	rldicr  reg,reg,32,31;		\
313 	oris    reg,reg,(expr)@h;		\
314 	ori     reg,reg,(expr)@l;
315 
316 #define LOAD_REG_ADDR(reg,name)			\
317 	ld	reg,name@got(r2)
318 
319 #define LOAD_REG_ADDRBASE(reg,name)	LOAD_REG_ADDR(reg,name)
320 #define ADDROFF(name)			0
321 
322 /* offsets for stack frame layout */
323 #define LRSAVE	16
324 
325 #else /* 32-bit */
326 
327 #define LOAD_REG_IMMEDIATE(reg,expr)		\
328 	lis	reg,(expr)@ha;		\
329 	addi	reg,reg,(expr)@l;
330 
331 #define LOAD_REG_ADDR(reg,name)		LOAD_REG_IMMEDIATE(reg, name)
332 
333 #define LOAD_REG_ADDRBASE(reg, name)	lis	reg,name@ha
334 #define ADDROFF(name)			name@l
335 
336 /* offsets for stack frame layout */
337 #define LRSAVE	4
338 
339 #endif
340 
341 /* various errata or part fixups */
342 #ifdef CONFIG_PPC601_SYNC_FIX
343 #define SYNC				\
344 BEGIN_FTR_SECTION			\
345 	sync;				\
346 	isync;				\
347 END_FTR_SECTION_IFSET(CPU_FTR_601)
348 #define SYNC_601			\
349 BEGIN_FTR_SECTION			\
350 	sync;				\
351 END_FTR_SECTION_IFSET(CPU_FTR_601)
352 #define ISYNC_601			\
353 BEGIN_FTR_SECTION			\
354 	isync;				\
355 END_FTR_SECTION_IFSET(CPU_FTR_601)
356 #else
357 #define	SYNC
358 #define SYNC_601
359 #define ISYNC_601
360 #endif
361 
362 #if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
363 #define MFTB(dest)			\
364 90:	mfspr dest, SPRN_TBRL;		\
365 BEGIN_FTR_SECTION_NESTED(96);		\
366 	cmpwi dest,0;			\
367 	beq-  90b;			\
368 END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
369 #else
370 #define MFTB(dest)			mfspr dest, SPRN_TBRL
371 #endif
372 
373 #ifndef CONFIG_SMP
374 #define TLBSYNC
375 #else /* CONFIG_SMP */
376 /* tlbsync is not implemented on 601 */
377 #define TLBSYNC				\
378 BEGIN_FTR_SECTION			\
379 	tlbsync;			\
380 	sync;				\
381 END_FTR_SECTION_IFCLR(CPU_FTR_601)
382 #endif
383 
384 #ifdef CONFIG_PPC64
385 #define MTOCRF(FXM, RS)			\
386 	BEGIN_FTR_SECTION_NESTED(848);	\
387 	mtcrf	(FXM), RS;		\
388 	FTR_SECTION_ELSE_NESTED(848);	\
389 	mtocrf (FXM), RS;		\
390 	ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
391 
392 /*
393  * PPR restore macros used in entry_64.S
394  * Used for P7 or later processors
395  */
396 #define HMT_MEDIUM_LOW_HAS_PPR						\
397 BEGIN_FTR_SECTION_NESTED(944)						\
398 	HMT_MEDIUM_LOW;							\
399 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
400 
401 #define SET_DEFAULT_THREAD_PPR(ra, rb)					\
402 BEGIN_FTR_SECTION_NESTED(945)						\
403 	lis	ra,INIT_PPR@highest;	/* default ppr=3 */		\
404 	ld	rb,PACACURRENT(r13);					\
405 	sldi	ra,ra,32;	/* 11- 13 bits are used for ppr */	\
406 	std	ra,TASKTHREADPPR(rb);					\
407 END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
408 
409 #endif
410 
411 /*
412  * This instruction is not implemented on the PPC 603 or 601; however, on
413  * the 403GCX and 405GP tlbia IS defined and tlbie is not.
414  * All of these instructions exist in the 8xx, they have magical powers,
415  * and they must be used.
416  */
417 
418 #if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
419 #define tlbia					\
420 	li	r4,1024;			\
421 	mtctr	r4;				\
422 	lis	r4,KERNELBASE@h;		\
423 0:	tlbie	r4;				\
424 	addi	r4,r4,0x1000;			\
425 	bdnz	0b
426 #endif
427 
428 
429 #ifdef CONFIG_IBM440EP_ERR42
430 #define PPC440EP_ERR42 isync
431 #else
432 #define PPC440EP_ERR42
433 #endif
434 
435 /* The following stops all load and store data streams associated with stream
436  * ID (ie. streams created explicitly).  The embedded and server mnemonics for
437  * dcbt are different so we use machine "power4" here explicitly.
438  */
439 #define DCBT_STOP_ALL_STREAM_IDS(scratch)	\
440 .machine push ;					\
441 .machine "power4" ;				\
442        lis     scratch,0x60000000@h;		\
443        dcbt    r0,scratch,0b01010;		\
444 .machine pop
445 
446 /*
447  * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
448  * keep the address intact to be compatible with code shared with
449  * 32-bit classic.
450  *
451  * On the other hand, I find it useful to have them behave as expected
452  * by their name (ie always do the addition) on 64-bit BookE
453  */
454 #if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
455 #define toreal(rd)
456 #define fromreal(rd)
457 
458 /*
459  * We use addis to ensure compatibility with the "classic" ppc versions of
460  * these macros, which use rs = 0 to get the tophys offset in rd, rather than
461  * converting the address in r0, and so this version has to do that too
462  * (i.e. set register rd to 0 when rs == 0).
463  */
464 #define tophys(rd,rs)				\
465 	addis	rd,rs,0
466 
467 #define tovirt(rd,rs)				\
468 	addis	rd,rs,0
469 
470 #elif defined(CONFIG_PPC64)
471 #define toreal(rd)		/* we can access c000... in real mode */
472 #define fromreal(rd)
473 
474 #define tophys(rd,rs)                           \
475 	clrldi	rd,rs,2
476 
477 #define tovirt(rd,rs)                           \
478 	rotldi	rd,rs,16;			\
479 	ori	rd,rd,((KERNELBASE>>48)&0xFFFF);\
480 	rotldi	rd,rd,48
481 #else
482 /*
483  * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
484  * physical base address of RAM at compile time.
485  */
486 #define toreal(rd)	tophys(rd,rd)
487 #define fromreal(rd)	tovirt(rd,rd)
488 
489 #define tophys(rd,rs)				\
490 0:	addis	rd,rs,-PAGE_OFFSET@h;		\
491 	.section ".vtop_fixup","aw";		\
492 	.align  1;				\
493 	.long   0b;				\
494 	.previous
495 
496 #define tovirt(rd,rs)				\
497 0:	addis	rd,rs,PAGE_OFFSET@h;		\
498 	.section ".ptov_fixup","aw";		\
499 	.align  1;				\
500 	.long   0b;				\
501 	.previous
502 #endif
503 
504 #ifdef CONFIG_PPC_BOOK3S_64
505 #define RFI		rfid
506 #define MTMSRD(r)	mtmsrd	r
507 #define MTMSR_EERI(reg)	mtmsrd	reg,1
508 #else
509 #define FIX_SRR1(ra, rb)
510 #ifndef CONFIG_40x
511 #define	RFI		rfi
512 #else
513 #define RFI		rfi; b .	/* Prevent prefetch past rfi */
514 #endif
515 #define MTMSRD(r)	mtmsr	r
516 #define MTMSR_EERI(reg)	mtmsr	reg
517 #define CLR_TOP32(r)
518 #endif
519 
520 #endif /* __KERNEL__ */
521 
522 /* The boring bits... */
523 
524 /* Condition Register Bit Fields */
525 
526 #define	cr0	0
527 #define	cr1	1
528 #define	cr2	2
529 #define	cr3	3
530 #define	cr4	4
531 #define	cr5	5
532 #define	cr6	6
533 #define	cr7	7
534 
535 
536 /*
537  * General Purpose Registers (GPRs)
538  *
539  * The lower case r0-r31 should be used in preference to the upper
540  * case R0-R31 as they provide more error checking in the assembler.
541  * Use R0-31 only when really nessesary.
542  */
543 
544 #define	r0	%r0
545 #define	r1	%r1
546 #define	r2	%r2
547 #define	r3	%r3
548 #define	r4	%r4
549 #define	r5	%r5
550 #define	r6	%r6
551 #define	r7	%r7
552 #define	r8	%r8
553 #define	r9	%r9
554 #define	r10	%r10
555 #define	r11	%r11
556 #define	r12	%r12
557 #define	r13	%r13
558 #define	r14	%r14
559 #define	r15	%r15
560 #define	r16	%r16
561 #define	r17	%r17
562 #define	r18	%r18
563 #define	r19	%r19
564 #define	r20	%r20
565 #define	r21	%r21
566 #define	r22	%r22
567 #define	r23	%r23
568 #define	r24	%r24
569 #define	r25	%r25
570 #define	r26	%r26
571 #define	r27	%r27
572 #define	r28	%r28
573 #define	r29	%r29
574 #define	r30	%r30
575 #define	r31	%r31
576 
577 
578 /* Floating Point Registers (FPRs) */
579 
580 #define	fr0	0
581 #define	fr1	1
582 #define	fr2	2
583 #define	fr3	3
584 #define	fr4	4
585 #define	fr5	5
586 #define	fr6	6
587 #define	fr7	7
588 #define	fr8	8
589 #define	fr9	9
590 #define	fr10	10
591 #define	fr11	11
592 #define	fr12	12
593 #define	fr13	13
594 #define	fr14	14
595 #define	fr15	15
596 #define	fr16	16
597 #define	fr17	17
598 #define	fr18	18
599 #define	fr19	19
600 #define	fr20	20
601 #define	fr21	21
602 #define	fr22	22
603 #define	fr23	23
604 #define	fr24	24
605 #define	fr25	25
606 #define	fr26	26
607 #define	fr27	27
608 #define	fr28	28
609 #define	fr29	29
610 #define	fr30	30
611 #define	fr31	31
612 
613 /* AltiVec Registers (VPRs) */
614 
615 #define	vr0	0
616 #define	vr1	1
617 #define	vr2	2
618 #define	vr3	3
619 #define	vr4	4
620 #define	vr5	5
621 #define	vr6	6
622 #define	vr7	7
623 #define	vr8	8
624 #define	vr9	9
625 #define	vr10	10
626 #define	vr11	11
627 #define	vr12	12
628 #define	vr13	13
629 #define	vr14	14
630 #define	vr15	15
631 #define	vr16	16
632 #define	vr17	17
633 #define	vr18	18
634 #define	vr19	19
635 #define	vr20	20
636 #define	vr21	21
637 #define	vr22	22
638 #define	vr23	23
639 #define	vr24	24
640 #define	vr25	25
641 #define	vr26	26
642 #define	vr27	27
643 #define	vr28	28
644 #define	vr29	29
645 #define	vr30	30
646 #define	vr31	31
647 
648 /* VSX Registers (VSRs) */
649 
650 #define	vsr0	0
651 #define	vsr1	1
652 #define	vsr2	2
653 #define	vsr3	3
654 #define	vsr4	4
655 #define	vsr5	5
656 #define	vsr6	6
657 #define	vsr7	7
658 #define	vsr8	8
659 #define	vsr9	9
660 #define	vsr10	10
661 #define	vsr11	11
662 #define	vsr12	12
663 #define	vsr13	13
664 #define	vsr14	14
665 #define	vsr15	15
666 #define	vsr16	16
667 #define	vsr17	17
668 #define	vsr18	18
669 #define	vsr19	19
670 #define	vsr20	20
671 #define	vsr21	21
672 #define	vsr22	22
673 #define	vsr23	23
674 #define	vsr24	24
675 #define	vsr25	25
676 #define	vsr26	26
677 #define	vsr27	27
678 #define	vsr28	28
679 #define	vsr29	29
680 #define	vsr30	30
681 #define	vsr31	31
682 #define	vsr32	32
683 #define	vsr33	33
684 #define	vsr34	34
685 #define	vsr35	35
686 #define	vsr36	36
687 #define	vsr37	37
688 #define	vsr38	38
689 #define	vsr39	39
690 #define	vsr40	40
691 #define	vsr41	41
692 #define	vsr42	42
693 #define	vsr43	43
694 #define	vsr44	44
695 #define	vsr45	45
696 #define	vsr46	46
697 #define	vsr47	47
698 #define	vsr48	48
699 #define	vsr49	49
700 #define	vsr50	50
701 #define	vsr51	51
702 #define	vsr52	52
703 #define	vsr53	53
704 #define	vsr54	54
705 #define	vsr55	55
706 #define	vsr56	56
707 #define	vsr57	57
708 #define	vsr58	58
709 #define	vsr59	59
710 #define	vsr60	60
711 #define	vsr61	61
712 #define	vsr62	62
713 #define	vsr63	63
714 
715 /* SPE Registers (EVPRs) */
716 
717 #define	evr0	0
718 #define	evr1	1
719 #define	evr2	2
720 #define	evr3	3
721 #define	evr4	4
722 #define	evr5	5
723 #define	evr6	6
724 #define	evr7	7
725 #define	evr8	8
726 #define	evr9	9
727 #define	evr10	10
728 #define	evr11	11
729 #define	evr12	12
730 #define	evr13	13
731 #define	evr14	14
732 #define	evr15	15
733 #define	evr16	16
734 #define	evr17	17
735 #define	evr18	18
736 #define	evr19	19
737 #define	evr20	20
738 #define	evr21	21
739 #define	evr22	22
740 #define	evr23	23
741 #define	evr24	24
742 #define	evr25	25
743 #define	evr26	26
744 #define	evr27	27
745 #define	evr28	28
746 #define	evr29	29
747 #define	evr30	30
748 #define	evr31	31
749 
750 /* some stab codes */
751 #define N_FUN	36
752 #define N_RSYM	64
753 #define N_SLINE	68
754 #define N_SO	100
755 
756 /*
757  * Create an endian fixup trampoline
758  *
759  * This starts with a "tdi 0,0,0x48" instruction which is
760  * essentially a "trap never", and thus akin to a nop.
761  *
762  * The opcode for this instruction read with the wrong endian
763  * however results in a b . + 8
764  *
765  * So essentially we use that trick to execute the following
766  * trampoline in "reverse endian" if we are running with the
767  * MSR_LE bit set the "wrong" way for whatever endianness the
768  * kernel is built for.
769  */
770 
771 #ifdef CONFIG_PPC_BOOK3E
772 #define FIXUP_ENDIAN
773 #else
774 #define FIXUP_ENDIAN						   \
775 	tdi   0,0,0x48;	  /* Reverse endian of b . + 8		*/ \
776 	b     $+36;	  /* Skip trampoline if endian is good	*/ \
777 	.long 0x05009f42; /* bcl 20,31,$+4			*/ \
778 	.long 0xa602487d; /* mflr r10				*/ \
779 	.long 0x1c004a39; /* addi r10,r10,28			*/ \
780 	.long 0xa600607d; /* mfmsr r11				*/ \
781 	.long 0x01006b69; /* xori r11,r11,1			*/ \
782 	.long 0xa6035a7d; /* mtsrr0 r10				*/ \
783 	.long 0xa6037b7d; /* mtsrr1 r11				*/ \
784 	.long 0x2400004c  /* rfid				*/
785 #endif /* !CONFIG_PPC_BOOK3E */
786 #endif /*  __ASSEMBLY__ */
787 #endif /* _ASM_POWERPC_PPC_ASM_H */
788