1 #ifndef _ASM_POWERPC_PGTABLE_H 2 #define _ASM_POWERPC_PGTABLE_H 3 #ifdef __KERNEL__ 4 5 #ifndef __ASSEMBLY__ 6 #include <linux/mmdebug.h> 7 #include <linux/mmzone.h> 8 #include <asm/processor.h> /* For TASK_SIZE */ 9 #include <asm/mmu.h> 10 #include <asm/page.h> 11 12 struct mm_struct; 13 14 #endif /* !__ASSEMBLY__ */ 15 16 #if defined(CONFIG_PPC64) 17 # include <asm/pgtable-ppc64.h> 18 #else 19 # include <asm/pgtable-ppc32.h> 20 #endif 21 22 /* 23 * We save the slot number & secondary bit in the second half of the 24 * PTE page. We use the 8 bytes per each pte entry. 25 */ 26 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8) 27 28 #ifndef __ASSEMBLY__ 29 30 #include <asm/tlbflush.h> 31 32 /* Generic accessors to PTE bits */ 33 static inline int pte_write(pte_t pte) 34 { return (pte_val(pte) & (_PAGE_RW | _PAGE_RO)) != _PAGE_RO; } 35 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 36 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 37 static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } 38 static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } 39 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } 40 41 #ifdef CONFIG_NUMA_BALANCING 42 /* 43 * These work without NUMA balancing but the kernel does not care. See the 44 * comment in include/asm-generic/pgtable.h . On powerpc, this will only 45 * work for user pages and always return true for kernel pages. 46 */ 47 static inline int pte_protnone(pte_t pte) 48 { 49 return (pte_val(pte) & 50 (_PAGE_PRESENT | _PAGE_USER)) == _PAGE_PRESENT; 51 } 52 53 static inline int pmd_protnone(pmd_t pmd) 54 { 55 return pte_protnone(pmd_pte(pmd)); 56 } 57 #endif /* CONFIG_NUMA_BALANCING */ 58 59 static inline int pte_present(pte_t pte) 60 { 61 return pte_val(pte) & _PAGE_PRESENT; 62 } 63 64 /* Conversion functions: convert a page and protection to a page entry, 65 * and a page entry and page directory to the page they refer to. 66 * 67 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 68 * long for now. 69 */ 70 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { 71 return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | 72 pgprot_val(pgprot)); } 73 static inline unsigned long pte_pfn(pte_t pte) { 74 return pte_val(pte) >> PTE_RPN_SHIFT; } 75 76 /* Keep these as a macros to avoid include dependency mess */ 77 #define pte_page(x) pfn_to_page(pte_pfn(x)) 78 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 79 80 /* Generic modifiers for PTE bits */ 81 static inline pte_t pte_wrprotect(pte_t pte) { 82 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); 83 pte_val(pte) |= _PAGE_RO; return pte; } 84 static inline pte_t pte_mkclean(pte_t pte) { 85 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 86 static inline pte_t pte_mkold(pte_t pte) { 87 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 88 static inline pte_t pte_mkwrite(pte_t pte) { 89 pte_val(pte) &= ~_PAGE_RO; 90 pte_val(pte) |= _PAGE_RW; return pte; } 91 static inline pte_t pte_mkdirty(pte_t pte) { 92 pte_val(pte) |= _PAGE_DIRTY; return pte; } 93 static inline pte_t pte_mkyoung(pte_t pte) { 94 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 95 static inline pte_t pte_mkspecial(pte_t pte) { 96 pte_val(pte) |= _PAGE_SPECIAL; return pte; } 97 static inline pte_t pte_mkhuge(pte_t pte) { 98 return pte; } 99 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 100 { 101 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 102 return pte; 103 } 104 105 106 /* Insert a PTE, top-level function is out of line. It uses an inline 107 * low level function in the respective pgtable-* files 108 */ 109 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 110 pte_t pte); 111 112 /* This low level function performs the actual PTE insertion 113 * Setting the PTE depends on the MMU type and other factors. It's 114 * an horrible mess that I'm not going to try to clean up now but 115 * I'm keeping it in one place rather than spread around 116 */ 117 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 118 pte_t *ptep, pte_t pte, int percpu) 119 { 120 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT) 121 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the 122 * helper pte_update() which does an atomic update. We need to do that 123 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a 124 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving 125 * the hash bits instead (ie, same as the non-SMP case) 126 */ 127 if (percpu) 128 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 129 | (pte_val(pte) & ~_PAGE_HASHPTE)); 130 else 131 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte)); 132 133 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) 134 /* Second case is 32-bit with 64-bit PTE. In this case, we 135 * can just store as long as we do the two halves in the right order 136 * with a barrier in between. This is possible because we take care, 137 * in the hash code, to pre-invalidate if the PTE was already hashed, 138 * which synchronizes us with any concurrent invalidation. 139 * In the percpu case, we also fallback to the simple update preserving 140 * the hash bits 141 */ 142 if (percpu) { 143 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 144 | (pte_val(pte) & ~_PAGE_HASHPTE)); 145 return; 146 } 147 #if _PAGE_HASHPTE != 0 148 if (pte_val(*ptep) & _PAGE_HASHPTE) 149 flush_hash_entry(mm, ptep, addr); 150 #endif 151 __asm__ __volatile__("\ 152 stw%U0%X0 %2,%0\n\ 153 eieio\n\ 154 stw%U0%X0 %L2,%1" 155 : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) 156 : "r" (pte) : "memory"); 157 158 #elif defined(CONFIG_PPC_STD_MMU_32) 159 /* Third case is 32-bit hash table in UP mode, we need to preserve 160 * the _PAGE_HASHPTE bit since we may not have invalidated the previous 161 * translation in the hash yet (done in a subsequent flush_tlb_xxx()) 162 * and see we need to keep track that this PTE needs invalidating 163 */ 164 *ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) 165 | (pte_val(pte) & ~_PAGE_HASHPTE)); 166 167 #else 168 /* Anything else just stores the PTE normally. That covers all 64-bit 169 * cases, and 32-bit non-hash with 32-bit PTEs. 170 */ 171 *ptep = pte; 172 173 #ifdef CONFIG_PPC_BOOK3E_64 174 /* 175 * With hardware tablewalk, a sync is needed to ensure that 176 * subsequent accesses see the PTE we just wrote. Unlike userspace 177 * mappings, we can't tolerate spurious faults, so make sure 178 * the new PTE will be seen the first time. 179 */ 180 if (is_kernel_addr(addr)) 181 mb(); 182 #endif 183 #endif 184 } 185 186 187 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 188 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, 189 pte_t *ptep, pte_t entry, int dirty); 190 191 /* 192 * Macro to mark a page protection value as "uncacheable". 193 */ 194 195 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ 196 _PAGE_WRITETHRU) 197 198 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 199 _PAGE_NO_CACHE | _PAGE_GUARDED)) 200 201 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 202 _PAGE_NO_CACHE)) 203 204 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 205 _PAGE_COHERENT)) 206 207 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ 208 _PAGE_COHERENT | _PAGE_WRITETHRU)) 209 210 #define pgprot_cached_noncoherent(prot) \ 211 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) 212 213 #define pgprot_writecombine pgprot_noncached_wc 214 215 struct file; 216 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 217 unsigned long size, pgprot_t vma_prot); 218 #define __HAVE_PHYS_MEM_ACCESS_PROT 219 220 /* 221 * ZERO_PAGE is a global shared page that is always zero: used 222 * for zero-mapped memory areas etc.. 223 */ 224 extern unsigned long empty_zero_page[]; 225 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 226 227 extern pgd_t swapper_pg_dir[]; 228 229 void limit_zone_pfn(enum zone_type zone, unsigned long max_pfn); 230 int dma_pfn_limit_to_zone(u64 pfn_limit); 231 extern void paging_init(void); 232 233 /* 234 * kern_addr_valid is intended to indicate whether an address is a valid 235 * kernel address. Most 32-bit archs define it as always true (like this) 236 * but most 64-bit archs actually perform a test. What should we do here? 237 */ 238 #define kern_addr_valid(addr) (1) 239 240 #include <asm-generic/pgtable.h> 241 242 243 /* 244 * This gets called at the end of handling a page fault, when 245 * the kernel has put a new PTE into the page table for the process. 246 * We use it to ensure coherency between the i-cache and d-cache 247 * for the page which has just been mapped in. 248 * On machines which use an MMU hash table, we use this to put a 249 * corresponding HPTE into the hash table ahead of time, instead of 250 * waiting for the inevitable extra hash-table miss exception. 251 */ 252 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); 253 254 extern int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 255 unsigned long end, int write, 256 struct page **pages, int *nr); 257 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 258 #define pmd_large(pmd) 0 259 #define has_transparent_hugepage() 0 260 #endif 261 pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 262 unsigned *shift); 263 static inline pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, 264 unsigned *shift) 265 { 266 if (!arch_irqs_disabled()) { 267 pr_info("%s called with irq enabled\n", __func__); 268 dump_stack(); 269 } 270 return __find_linux_pte_or_hugepte(pgdir, ea, shift); 271 } 272 #endif /* __ASSEMBLY__ */ 273 274 #endif /* __KERNEL__ */ 275 #endif /* _ASM_POWERPC_PGTABLE_H */ 276