xref: /linux/arch/powerpc/include/asm/pgtable.h (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
3 #ifdef __KERNEL__
4 
5 #ifndef __ASSEMBLY__
6 #include <asm/processor.h>		/* For TASK_SIZE */
7 #include <asm/mmu.h>
8 #include <asm/page.h>
9 
10 struct mm_struct;
11 
12 #endif /* !__ASSEMBLY__ */
13 
14 #if defined(CONFIG_PPC64)
15 #  include <asm/pgtable-ppc64.h>
16 #else
17 #  include <asm/pgtable-ppc32.h>
18 #endif
19 
20 #ifndef __ASSEMBLY__
21 
22 #include <asm/tlbflush.h>
23 
24 /* Generic accessors to PTE bits */
25 static inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
26 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
27 static inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
28 static inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
29 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
30 static inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_PRESENT; }
31 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
32 static inline pgprot_t pte_pgprot(pte_t pte)	{ return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
33 
34 /* Conversion functions: convert a page and protection to a page entry,
35  * and a page entry and page directory to the page they refer to.
36  *
37  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
38  * long for now.
39  */
40 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
41 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
42 		     pgprot_val(pgprot)); }
43 static inline unsigned long pte_pfn(pte_t pte)	{
44 	return pte_val(pte) >> PTE_RPN_SHIFT; }
45 
46 /* Keep these as a macros to avoid include dependency mess */
47 #define pte_page(x)		pfn_to_page(pte_pfn(x))
48 #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
49 
50 /* Generic modifiers for PTE bits */
51 static inline pte_t pte_wrprotect(pte_t pte) {
52 	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
53 static inline pte_t pte_mkclean(pte_t pte) {
54 	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
55 static inline pte_t pte_mkold(pte_t pte) {
56 	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
57 static inline pte_t pte_mkwrite(pte_t pte) {
58 	pte_val(pte) |= _PAGE_RW; return pte; }
59 static inline pte_t pte_mkdirty(pte_t pte) {
60 	pte_val(pte) |= _PAGE_DIRTY; return pte; }
61 static inline pte_t pte_mkyoung(pte_t pte) {
62 	pte_val(pte) |= _PAGE_ACCESSED; return pte; }
63 static inline pte_t pte_mkspecial(pte_t pte) {
64 	pte_val(pte) |= _PAGE_SPECIAL; return pte; }
65 static inline pte_t pte_mkhuge(pte_t pte) {
66 	return pte; }
67 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
68 {
69 	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
70 	return pte;
71 }
72 
73 
74 /* Insert a PTE, top-level function is out of line. It uses an inline
75  * low level function in the respective pgtable-* files
76  */
77 extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
78 		       pte_t pte);
79 
80 /* This low level function performs the actual PTE insertion
81  * Setting the PTE depends on the MMU type and other factors. It's
82  * an horrible mess that I'm not going to try to clean up now but
83  * I'm keeping it in one place rather than spread around
84  */
85 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
86 				pte_t *ptep, pte_t pte, int percpu)
87 {
88 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
89 	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
90 	 * helper pte_update() which does an atomic update. We need to do that
91 	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
92 	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
93 	 * the hash bits instead (ie, same as the non-SMP case)
94 	 */
95 	if (percpu)
96 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
97 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
98 	else
99 		pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
100 
101 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
102 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
103 	 * can just store as long as we do the two halves in the right order
104 	 * with a barrier in between. This is possible because we take care,
105 	 * in the hash code, to pre-invalidate if the PTE was already hashed,
106 	 * which synchronizes us with any concurrent invalidation.
107 	 * In the percpu case, we also fallback to the simple update preserving
108 	 * the hash bits
109 	 */
110 	if (percpu) {
111 		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
112 			      | (pte_val(pte) & ~_PAGE_HASHPTE));
113 		return;
114 	}
115 #if _PAGE_HASHPTE != 0
116 	if (pte_val(*ptep) & _PAGE_HASHPTE)
117 		flush_hash_entry(mm, ptep, addr);
118 #endif
119 	__asm__ __volatile__("\
120 		stw%U0%X0 %2,%0\n\
121 		eieio\n\
122 		stw%U0%X0 %L2,%1"
123 	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
124 	: "r" (pte) : "memory");
125 
126 #elif defined(CONFIG_PPC_STD_MMU_32)
127 	/* Third case is 32-bit hash table in UP mode, we need to preserve
128 	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
129 	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
130 	 * and see we need to keep track that this PTE needs invalidating
131 	 */
132 	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
133 		      | (pte_val(pte) & ~_PAGE_HASHPTE));
134 
135 #else
136 	/* Anything else just stores the PTE normally. That covers all 64-bit
137 	 * cases, and 32-bit non-hash with 32-bit PTEs.
138 	 */
139 	*ptep = pte;
140 #endif
141 }
142 
143 
144 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
145 extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
146 				 pte_t *ptep, pte_t entry, int dirty);
147 
148 /*
149  * Macro to mark a page protection value as "uncacheable".
150  */
151 
152 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
153 			 _PAGE_WRITETHRU)
154 
155 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
156 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
157 
158 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
159 				            _PAGE_NO_CACHE))
160 
161 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
162 				            _PAGE_COHERENT))
163 
164 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
165 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
166 
167 #define pgprot_cached_noncoherent(prot) \
168 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
169 
170 #define pgprot_writecombine pgprot_noncached_wc
171 
172 struct file;
173 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
174 				     unsigned long size, pgprot_t vma_prot);
175 #define __HAVE_PHYS_MEM_ACCESS_PROT
176 
177 /*
178  * ZERO_PAGE is a global shared page that is always zero: used
179  * for zero-mapped memory areas etc..
180  */
181 extern unsigned long empty_zero_page[];
182 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
183 
184 extern pgd_t swapper_pg_dir[];
185 
186 extern void paging_init(void);
187 
188 /*
189  * kern_addr_valid is intended to indicate whether an address is a valid
190  * kernel address.  Most 32-bit archs define it as always true (like this)
191  * but most 64-bit archs actually perform a test.  What should we do here?
192  */
193 #define kern_addr_valid(addr)	(1)
194 
195 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
196 		remap_pfn_range(vma, vaddr, pfn, size, prot)
197 
198 #include <asm-generic/pgtable.h>
199 
200 
201 /*
202  * This gets called at the end of handling a page fault, when
203  * the kernel has put a new PTE into the page table for the process.
204  * We use it to ensure coherency between the i-cache and d-cache
205  * for the page which has just been mapped in.
206  * On machines which use an MMU hash table, we use this to put a
207  * corresponding HPTE into the hash table ahead of time, instead of
208  * waiting for the inevitable extra hash-table miss exception.
209  */
210 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
211 
212 extern int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, unsigned long addr,
213 		      unsigned long end, int write, struct page **pages, int *nr);
214 
215 #endif /* __ASSEMBLY__ */
216 
217 #endif /* __KERNEL__ */
218 #endif /* _ASM_POWERPC_PGTABLE_H */
219