xref: /linux/arch/powerpc/include/asm/nohash/pgtable.h (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_PGTABLE_H
4 
5 #ifndef __ASSEMBLY__
6 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
7 				     unsigned long clr, unsigned long set, int huge);
8 #endif
9 
10 #if defined(CONFIG_PPC64)
11 #include <asm/nohash/64/pgtable.h>
12 #else
13 #include <asm/nohash/32/pgtable.h>
14 #endif
15 
16 /*
17  * _PAGE_CHG_MASK masks of bits that are to be preserved across
18  * pgprot changes.
19  */
20 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
21 
22 /* Permission masks used for kernel mappings */
23 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
24 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
25 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
26 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
27 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
28 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
29 
30 #ifndef __ASSEMBLY__
31 
32 extern int icache_44x_need_flush;
33 
34 #ifndef pte_huge_size
35 static inline unsigned long pte_huge_size(pte_t pte)
36 {
37 	return PAGE_SIZE;
38 }
39 #endif
40 
41 /*
42  * PTE updates. This function is called whenever an existing
43  * valid PTE is updated. This does -not- include set_pte_at()
44  * which nowadays only sets a new PTE.
45  *
46  * Depending on the type of MMU, we may need to use atomic updates
47  * and the PTE may be either 32 or 64 bit wide. In the later case,
48  * when using atomic updates, only the low part of the PTE is
49  * accessed atomically.
50  *
51  * In addition, on 44x, we also maintain a global flag indicating
52  * that an executable user mapping was modified, which is needed
53  * to properly flush the virtually tagged instruction cache of
54  * those implementations.
55  */
56 #ifndef pte_update
57 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
58 				     unsigned long clr, unsigned long set, int huge)
59 {
60 	pte_basic_t old = pte_val(*p);
61 	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
62 	unsigned long sz;
63 	unsigned long pdsize;
64 	int i;
65 
66 	if (new == old)
67 		return old;
68 
69 	if (huge)
70 		sz = pte_huge_size(__pte(old));
71 	else
72 		sz = PAGE_SIZE;
73 
74 	if (sz < PMD_SIZE)
75 		pdsize = PAGE_SIZE;
76 	else if (sz < PUD_SIZE)
77 		pdsize = PMD_SIZE;
78 	else if (sz < P4D_SIZE)
79 		pdsize = PUD_SIZE;
80 	else if (sz < PGDIR_SIZE)
81 		pdsize = P4D_SIZE;
82 	else
83 		pdsize = PGDIR_SIZE;
84 
85 	for (i = 0; i < sz / pdsize; i++, p++) {
86 		*p = __pte(new);
87 		if (new)
88 			new += (unsigned long long)(pdsize / PAGE_SIZE) << PTE_RPN_SHIFT;
89 	}
90 
91 	if (IS_ENABLED(CONFIG_44x) && !is_kernel_addr(addr) && (old & _PAGE_EXEC))
92 		icache_44x_need_flush = 1;
93 
94 	/* huge pages use the old page table lock */
95 	if (!huge)
96 		assert_pte_locked(mm, addr);
97 
98 	return old;
99 }
100 #endif
101 
102 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
103 					    unsigned long addr, pte_t *ptep)
104 {
105 	unsigned long old;
106 
107 	old = pte_update(vma->vm_mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
108 
109 	return (old & _PAGE_ACCESSED) != 0;
110 }
111 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
112 
113 #ifndef ptep_set_wrprotect
114 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
115 				      pte_t *ptep)
116 {
117 	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
118 }
119 #endif
120 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
121 
122 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
123 				       pte_t *ptep)
124 {
125 	return __pte(pte_update(mm, addr, ptep, ~0UL, 0, 0));
126 }
127 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
128 
129 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
130 {
131 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
132 }
133 
134 /* Set the dirty and/or accessed bits atomically in a linux PTE */
135 #ifndef __ptep_set_access_flags
136 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
137 					   pte_t *ptep, pte_t entry,
138 					   unsigned long address,
139 					   int psize)
140 {
141 	unsigned long set = pte_val(entry) &
142 			    (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
143 	int huge = psize > mmu_virtual_psize ? 1 : 0;
144 
145 	pte_update(vma->vm_mm, address, ptep, 0, set, huge);
146 
147 	flush_tlb_page(vma, address);
148 }
149 #endif
150 
151 /* Generic accessors to PTE bits */
152 #ifndef pte_mkwrite_novma
153 static inline pte_t pte_mkwrite_novma(pte_t pte)
154 {
155 	/*
156 	 * write implies read, hence set both
157 	 */
158 	return __pte(pte_val(pte) | _PAGE_RW);
159 }
160 #endif
161 
162 static inline pte_t pte_mkdirty(pte_t pte)
163 {
164 	return __pte(pte_val(pte) | _PAGE_DIRTY);
165 }
166 
167 static inline pte_t pte_mkyoung(pte_t pte)
168 {
169 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
170 }
171 
172 #ifndef pte_wrprotect
173 static inline pte_t pte_wrprotect(pte_t pte)
174 {
175 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
176 }
177 #endif
178 
179 #ifndef pte_mkexec
180 static inline pte_t pte_mkexec(pte_t pte)
181 {
182 	return __pte(pte_val(pte) | _PAGE_EXEC);
183 }
184 #endif
185 
186 #ifndef pte_write
187 static inline int pte_write(pte_t pte)
188 {
189 	return pte_val(pte) & _PAGE_WRITE;
190 }
191 #endif
192 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
193 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
194 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
195 static inline bool pte_hashpte(pte_t pte)	{ return false; }
196 static inline bool pte_ci(pte_t pte)		{ return pte_val(pte) & _PAGE_NO_CACHE; }
197 static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
198 
199 static inline int pte_present(pte_t pte)
200 {
201 	return pte_val(pte) & _PAGE_PRESENT;
202 }
203 
204 static inline bool pte_hw_valid(pte_t pte)
205 {
206 	return pte_val(pte) & _PAGE_PRESENT;
207 }
208 
209 static inline int pte_young(pte_t pte)
210 {
211 	return pte_val(pte) & _PAGE_ACCESSED;
212 }
213 
214 /*
215  * Don't just check for any non zero bits in __PAGE_READ, since for book3e
216  * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
217  * _PAGE_READ.  Need to explicitly match _PAGE_BAP_UR bit in that case too.
218  */
219 #ifndef pte_read
220 static inline bool pte_read(pte_t pte)
221 {
222 	return (pte_val(pte) & _PAGE_READ) == _PAGE_READ;
223 }
224 #endif
225 
226 /*
227  * We only find page table entry in the last level
228  * Hence no need for other accessors
229  */
230 #define pte_access_permitted pte_access_permitted
231 static inline bool pte_access_permitted(pte_t pte, bool write)
232 {
233 	/*
234 	 * A read-only access is controlled by _PAGE_READ bit.
235 	 * We have _PAGE_READ set for WRITE
236 	 */
237 	if (!pte_present(pte) || !pte_read(pte))
238 		return false;
239 
240 	if (write && !pte_write(pte))
241 		return false;
242 
243 	return true;
244 }
245 
246 /* Conversion functions: convert a page and protection to a page entry,
247  * and a page entry and page directory to the page they refer to.
248  *
249  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
250  * long for now.
251  */
252 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
253 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
254 		     pgprot_val(pgprot)); }
255 
256 /* Generic modifiers for PTE bits */
257 static inline pte_t pte_exprotect(pte_t pte)
258 {
259 	return __pte(pte_val(pte) & ~_PAGE_EXEC);
260 }
261 
262 static inline pte_t pte_mkclean(pte_t pte)
263 {
264 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
265 }
266 
267 static inline pte_t pte_mkold(pte_t pte)
268 {
269 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
270 }
271 
272 static inline pte_t pte_mkspecial(pte_t pte)
273 {
274 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
275 }
276 
277 #ifndef pte_mkhuge
278 static inline pte_t pte_mkhuge(pte_t pte)
279 {
280 	return __pte(pte_val(pte));
281 }
282 #endif
283 
284 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
285 {
286 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
287 }
288 
289 static inline int pte_swp_exclusive(pte_t pte)
290 {
291 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
292 }
293 
294 static inline pte_t pte_swp_mkexclusive(pte_t pte)
295 {
296 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
297 }
298 
299 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
300 {
301 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
302 }
303 
304 /* This low level function performs the actual PTE insertion
305  * Setting the PTE depends on the MMU type and other factors. It's
306  * an horrible mess that I'm not going to try to clean up now but
307  * I'm keeping it in one place rather than spread around
308  */
309 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
310 				pte_t *ptep, pte_t pte, int percpu)
311 {
312 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
313 	 * can just store as long as we do the two halves in the right order
314 	 * with a barrier in between.
315 	 * In the percpu case, we also fallback to the simple update
316 	 */
317 	if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
318 		__asm__ __volatile__("\
319 			stw%X0 %2,%0\n\
320 			mbar\n\
321 			stw%X1 %L2,%1"
322 		: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
323 		: "r" (pte) : "memory");
324 		return;
325 	}
326 	/* Anything else just stores the PTE normally. That covers all 64-bit
327 	 * cases, and 32-bit non-hash with 32-bit PTEs.
328 	 */
329 #if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
330 	ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte);
331 #else
332 	*ptep = pte;
333 #endif
334 
335 	/*
336 	 * With hardware tablewalk, a sync is needed to ensure that
337 	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
338 	 * mappings, we can't tolerate spurious faults, so make sure
339 	 * the new PTE will be seen the first time.
340 	 */
341 	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
342 		mb();
343 }
344 
345 /*
346  * Macro to mark a page protection value as "uncacheable".
347  */
348 
349 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
350 			 _PAGE_WRITETHRU)
351 
352 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
353 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
354 
355 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
356 				            _PAGE_NO_CACHE))
357 
358 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
359 				            _PAGE_COHERENT))
360 
361 #if _PAGE_WRITETHRU != 0
362 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
363 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
364 #else
365 #define pgprot_cached_wthru(prot)	pgprot_noncached(prot)
366 #endif
367 
368 #define pgprot_cached_noncoherent(prot) \
369 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
370 
371 #define pgprot_writecombine pgprot_noncached_wc
372 
373 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
374 void unmap_kernel_page(unsigned long va);
375 
376 #endif /* __ASSEMBLY__ */
377 #endif
378