xref: /linux/arch/powerpc/include/asm/nohash/pgtable.h (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_PGTABLE_H
4 
5 #ifndef __ASSEMBLY__
6 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
7 				     unsigned long clr, unsigned long set, int huge);
8 #endif
9 
10 #if defined(CONFIG_PPC64)
11 #include <asm/nohash/64/pgtable.h>
12 #else
13 #include <asm/nohash/32/pgtable.h>
14 #endif
15 
16 /*
17  * _PAGE_CHG_MASK masks of bits that are to be preserved across
18  * pgprot changes.
19  */
20 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
21 
22 /* Permission masks used for kernel mappings */
23 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
24 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
25 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
26 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
27 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
28 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
29 
30 #ifndef __ASSEMBLY__
31 
32 extern int icache_44x_need_flush;
33 
34 /*
35  * PTE updates. This function is called whenever an existing
36  * valid PTE is updated. This does -not- include set_pte_at()
37  * which nowadays only sets a new PTE.
38  *
39  * Depending on the type of MMU, we may need to use atomic updates
40  * and the PTE may be either 32 or 64 bit wide. In the later case,
41  * when using atomic updates, only the low part of the PTE is
42  * accessed atomically.
43  *
44  * In addition, on 44x, we also maintain a global flag indicating
45  * that an executable user mapping was modified, which is needed
46  * to properly flush the virtually tagged instruction cache of
47  * those implementations.
48  */
49 #ifndef pte_update
50 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
51 				     unsigned long clr, unsigned long set, int huge)
52 {
53 	pte_basic_t old = pte_val(*p);
54 	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
55 
56 	if (new == old)
57 		return old;
58 
59 	*p = __pte(new);
60 
61 	if (IS_ENABLED(CONFIG_44x) && !is_kernel_addr(addr) && (old & _PAGE_EXEC))
62 		icache_44x_need_flush = 1;
63 
64 	/* huge pages use the old page table lock */
65 	if (!huge)
66 		assert_pte_locked(mm, addr);
67 
68 	return old;
69 }
70 #endif
71 
72 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
73 					    unsigned long addr, pte_t *ptep)
74 {
75 	unsigned long old;
76 
77 	old = pte_update(vma->vm_mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
78 
79 	return (old & _PAGE_ACCESSED) != 0;
80 }
81 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
82 
83 #ifndef ptep_set_wrprotect
84 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
85 				      pte_t *ptep)
86 {
87 	pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
88 }
89 #endif
90 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
91 
92 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
93 				       pte_t *ptep)
94 {
95 	return __pte(pte_update(mm, addr, ptep, ~0UL, 0, 0));
96 }
97 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
98 
99 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
100 {
101 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
102 }
103 
104 /* Set the dirty and/or accessed bits atomically in a linux PTE */
105 #ifndef __ptep_set_access_flags
106 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
107 					   pte_t *ptep, pte_t entry,
108 					   unsigned long address,
109 					   int psize)
110 {
111 	unsigned long set = pte_val(entry) &
112 			    (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
113 	int huge = psize > mmu_virtual_psize ? 1 : 0;
114 
115 	pte_update(vma->vm_mm, address, ptep, 0, set, huge);
116 
117 	flush_tlb_page(vma, address);
118 }
119 #endif
120 
121 /* Generic accessors to PTE bits */
122 #ifndef pte_mkwrite_novma
123 static inline pte_t pte_mkwrite_novma(pte_t pte)
124 {
125 	/*
126 	 * write implies read, hence set both
127 	 */
128 	return __pte(pte_val(pte) | _PAGE_RW);
129 }
130 #endif
131 
132 static inline pte_t pte_mkdirty(pte_t pte)
133 {
134 	return __pte(pte_val(pte) | _PAGE_DIRTY);
135 }
136 
137 static inline pte_t pte_mkyoung(pte_t pte)
138 {
139 	return __pte(pte_val(pte) | _PAGE_ACCESSED);
140 }
141 
142 #ifndef pte_wrprotect
143 static inline pte_t pte_wrprotect(pte_t pte)
144 {
145 	return __pte(pte_val(pte) & ~_PAGE_WRITE);
146 }
147 #endif
148 
149 #ifndef pte_mkexec
150 static inline pte_t pte_mkexec(pte_t pte)
151 {
152 	return __pte(pte_val(pte) | _PAGE_EXEC);
153 }
154 #endif
155 
156 #ifndef pte_write
157 static inline int pte_write(pte_t pte)
158 {
159 	return pte_val(pte) & _PAGE_WRITE;
160 }
161 #endif
162 static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
163 static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
164 static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
165 static inline bool pte_hashpte(pte_t pte)	{ return false; }
166 static inline bool pte_ci(pte_t pte)		{ return pte_val(pte) & _PAGE_NO_CACHE; }
167 static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
168 
169 static inline int pte_present(pte_t pte)
170 {
171 	return pte_val(pte) & _PAGE_PRESENT;
172 }
173 
174 static inline bool pte_hw_valid(pte_t pte)
175 {
176 	return pte_val(pte) & _PAGE_PRESENT;
177 }
178 
179 static inline int pte_young(pte_t pte)
180 {
181 	return pte_val(pte) & _PAGE_ACCESSED;
182 }
183 
184 /*
185  * Don't just check for any non zero bits in __PAGE_READ, since for book3e
186  * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
187  * _PAGE_READ.  Need to explicitly match _PAGE_BAP_UR bit in that case too.
188  */
189 #ifndef pte_read
190 static inline bool pte_read(pte_t pte)
191 {
192 	return (pte_val(pte) & _PAGE_READ) == _PAGE_READ;
193 }
194 #endif
195 
196 /*
197  * We only find page table entry in the last level
198  * Hence no need for other accessors
199  */
200 #define pte_access_permitted pte_access_permitted
201 static inline bool pte_access_permitted(pte_t pte, bool write)
202 {
203 	/*
204 	 * A read-only access is controlled by _PAGE_READ bit.
205 	 * We have _PAGE_READ set for WRITE
206 	 */
207 	if (!pte_present(pte) || !pte_read(pte))
208 		return false;
209 
210 	if (write && !pte_write(pte))
211 		return false;
212 
213 	return true;
214 }
215 
216 /* Conversion functions: convert a page and protection to a page entry,
217  * and a page entry and page directory to the page they refer to.
218  *
219  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
220  * long for now.
221  */
222 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
223 	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
224 		     pgprot_val(pgprot)); }
225 
226 /* Generic modifiers for PTE bits */
227 static inline pte_t pte_exprotect(pte_t pte)
228 {
229 	return __pte(pte_val(pte) & ~_PAGE_EXEC);
230 }
231 
232 static inline pte_t pte_mkclean(pte_t pte)
233 {
234 	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
235 }
236 
237 static inline pte_t pte_mkold(pte_t pte)
238 {
239 	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
240 }
241 
242 static inline pte_t pte_mkspecial(pte_t pte)
243 {
244 	return __pte(pte_val(pte) | _PAGE_SPECIAL);
245 }
246 
247 #ifndef pte_mkhuge
248 static inline pte_t pte_mkhuge(pte_t pte)
249 {
250 	return __pte(pte_val(pte));
251 }
252 #endif
253 
254 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
255 {
256 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
257 }
258 
259 static inline int pte_swp_exclusive(pte_t pte)
260 {
261 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
262 }
263 
264 static inline pte_t pte_swp_mkexclusive(pte_t pte)
265 {
266 	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
267 }
268 
269 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
270 {
271 	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
272 }
273 
274 /* This low level function performs the actual PTE insertion
275  * Setting the PTE depends on the MMU type and other factors. It's
276  * an horrible mess that I'm not going to try to clean up now but
277  * I'm keeping it in one place rather than spread around
278  */
279 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
280 				pte_t *ptep, pte_t pte, int percpu)
281 {
282 	/* Second case is 32-bit with 64-bit PTE.  In this case, we
283 	 * can just store as long as we do the two halves in the right order
284 	 * with a barrier in between.
285 	 * In the percpu case, we also fallback to the simple update
286 	 */
287 	if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
288 		__asm__ __volatile__("\
289 			stw%X0 %2,%0\n\
290 			mbar\n\
291 			stw%X1 %L2,%1"
292 		: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
293 		: "r" (pte) : "memory");
294 		return;
295 	}
296 	/* Anything else just stores the PTE normally. That covers all 64-bit
297 	 * cases, and 32-bit non-hash with 32-bit PTEs.
298 	 */
299 #if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
300 	ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte);
301 #else
302 	*ptep = pte;
303 #endif
304 
305 	/*
306 	 * With hardware tablewalk, a sync is needed to ensure that
307 	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
308 	 * mappings, we can't tolerate spurious faults, so make sure
309 	 * the new PTE will be seen the first time.
310 	 */
311 	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
312 		mb();
313 }
314 
315 /*
316  * Macro to mark a page protection value as "uncacheable".
317  */
318 
319 #define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
320 			 _PAGE_WRITETHRU)
321 
322 #define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
323 				            _PAGE_NO_CACHE | _PAGE_GUARDED))
324 
325 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
326 				            _PAGE_NO_CACHE))
327 
328 #define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
329 				            _PAGE_COHERENT))
330 
331 #if _PAGE_WRITETHRU != 0
332 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
333 				            _PAGE_COHERENT | _PAGE_WRITETHRU))
334 #else
335 #define pgprot_cached_wthru(prot)	pgprot_noncached(prot)
336 #endif
337 
338 #define pgprot_cached_noncoherent(prot) \
339 		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
340 
341 #define pgprot_writecombine pgprot_noncached_wc
342 
343 #ifdef CONFIG_HUGETLB_PAGE
344 static inline int hugepd_ok(hugepd_t hpd)
345 {
346 #ifdef CONFIG_PPC_8xx
347 	return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M);
348 #else
349 	/* We clear the top bit to indicate hugepd */
350 	return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
351 #endif
352 }
353 
354 static inline int pmd_huge(pmd_t pmd)
355 {
356 	return 0;
357 }
358 
359 static inline int pud_huge(pud_t pud)
360 {
361 	return 0;
362 }
363 
364 #define is_hugepd(hpd)		(hugepd_ok(hpd))
365 #endif
366 
367 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
368 void unmap_kernel_page(unsigned long va);
369 
370 #endif /* __ASSEMBLY__ */
371 #endif
372