xref: /linux/arch/powerpc/include/asm/nohash/32/pte-8xx.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PTE_8xx_H
3 #define _ASM_POWERPC_NOHASH_32_PTE_8xx_H
4 #ifdef __KERNEL__
5 
6 /*
7  * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
8  * We also use the two level tables, but we can put the real bits in them
9  * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
10  * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
11  * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
12  * based upon user/super access.  The TLB does not have accessed nor write
13  * protect.  We assume that if the TLB get loaded with an entry it is
14  * accessed, and overload the changed bit for write protect.  We use
15  * two bits in the software pte that are supposed to be set to zero in
16  * the TLB entry (24 and 25) for these indicators.  Although the level 1
17  * descriptor contains the guarded and writethrough/copyback bits, we can
18  * set these at the page level since they get copied from the Mx_TWC
19  * register when the TLB entry is loaded.  We will use bit 27 for guard, since
20  * that is where it exists in the MD_TWC, and bit 26 for writethrough.
21  * These will get masked from the level 2 descriptor at TLB load time, and
22  * copied to the MD_TWC before it gets loaded.
23  * Large page sizes added.  We currently support two sizes, 4K and 8M.
24  * This also allows a TLB hander optimization because we can directly
25  * load the PMD into MD_TWC.  The 8M pages are only used for kernel
26  * mapping of well known areas.  The PMD (PGD) entries contain control
27  * flags in addition to the address, so care must be taken that the
28  * software no longer assumes these are only pointers.
29  */
30 
31 /* Definitions for 8xx embedded chips. */
32 #define _PAGE_PRESENT	0x0001	/* V: Page is valid */
33 #define _PAGE_NO_CACHE	0x0002	/* CI: cache inhibit */
34 #define _PAGE_SH	0x0004	/* SH: No ASID (context) compare */
35 #define _PAGE_SPS	0x0008	/* SPS: Small Page Size (1 if 16k, 512k or 8M)*/
36 #define _PAGE_DIRTY	0x0100	/* C: page changed */
37 
38 /* These 4 software bits must be masked out when the L2 entry is loaded
39  * into the TLB.
40  */
41 #define _PAGE_GUARDED	0x0010	/* Copied to L1 G entry in DTLB */
42 #define _PAGE_ACCESSED	0x0020	/* Copied to L1 APG 1 entry in I/DTLB */
43 #define _PAGE_EXEC	0x0040	/* Copied to PP (bit 21) in ITLB */
44 #define _PAGE_SPECIAL	0x0080	/* SW entry */
45 
46 #define _PAGE_NA	0x0200	/* Supervisor NA, User no access */
47 #define _PAGE_RO	0x0600	/* Supervisor RO, User no access */
48 
49 #define _PAGE_HUGE	0x0800	/* Copied to L1 PS bit 29 */
50 
51 #define _PAGE_NAX	(_PAGE_NA | _PAGE_EXEC)
52 #define _PAGE_ROX	(_PAGE_RO | _PAGE_EXEC)
53 #define _PAGE_RW	0
54 #define _PAGE_RWX	_PAGE_EXEC
55 
56 /* cache related flags non existing on 8xx */
57 #define _PAGE_COHERENT	0
58 #define _PAGE_WRITETHRU	0
59 
60 #define _PAGE_KERNEL_RO		(_PAGE_SH | _PAGE_RO)
61 #define _PAGE_KERNEL_ROX	(_PAGE_SH | _PAGE_RO | _PAGE_EXEC)
62 #define _PAGE_KERNEL_RW		(_PAGE_SH | _PAGE_DIRTY)
63 #define _PAGE_KERNEL_RWX	(_PAGE_SH | _PAGE_DIRTY | _PAGE_EXEC)
64 
65 #define _PMD_PRESENT	0x0001
66 #define _PMD_PRESENT_MASK	_PMD_PRESENT
67 #define _PMD_BAD	0x0f90
68 #define _PMD_PAGE_MASK	0x000c
69 #define _PMD_PAGE_8M	0x000c
70 #define _PMD_PAGE_512K	0x0004
71 #define _PMD_ACCESSED	0x0020	/* APG 1 */
72 #define _PMD_USER	0x0040	/* APG 2 */
73 
74 #define _PTE_NONE_MASK	0
75 
76 #ifdef CONFIG_PPC_16K_PAGES
77 #define _PAGE_PSIZE	_PAGE_SPS
78 #else
79 #define _PAGE_PSIZE		0
80 #endif
81 
82 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
83 #define _PAGE_BASE	(_PAGE_BASE_NC)
84 
85 #include <asm/pgtable-masks.h>
86 
87 #ifndef __ASSEMBLY__
88 static inline pte_t pte_wrprotect(pte_t pte)
89 {
90 	return __pte(pte_val(pte) | _PAGE_RO);
91 }
92 
93 #define pte_wrprotect pte_wrprotect
94 
95 static inline int pte_read(pte_t pte)
96 {
97 	return (pte_val(pte) & _PAGE_RO) != _PAGE_NA;
98 }
99 
100 #define pte_read pte_read
101 
102 static inline int pte_write(pte_t pte)
103 {
104 	return !(pte_val(pte) & _PAGE_RO);
105 }
106 
107 #define pte_write pte_write
108 
109 static inline pte_t pte_mkwrite_novma(pte_t pte)
110 {
111 	return __pte(pte_val(pte) & ~_PAGE_RO);
112 }
113 
114 #define pte_mkwrite_novma pte_mkwrite_novma
115 
116 static inline pte_t pte_mkhuge(pte_t pte)
117 {
118 	return __pte(pte_val(pte) | _PAGE_SPS | _PAGE_HUGE);
119 }
120 
121 #define pte_mkhuge pte_mkhuge
122 
123 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
124 				     unsigned long clr, unsigned long set, int huge);
125 
126 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
127 {
128 	pte_update(mm, addr, ptep, 0, _PAGE_RO, 0);
129 }
130 #define ptep_set_wrprotect ptep_set_wrprotect
131 
132 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
133 					   pte_t entry, unsigned long address, int psize)
134 {
135 	unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_EXEC);
136 	unsigned long clr = ~pte_val(entry) & _PAGE_RO;
137 	int huge = psize > mmu_virtual_psize ? 1 : 0;
138 
139 	pte_update(vma->vm_mm, address, ptep, clr, set, huge);
140 
141 	flush_tlb_page(vma, address);
142 }
143 #define __ptep_set_access_flags __ptep_set_access_flags
144 
145 static inline unsigned long pgd_leaf_size(pgd_t pgd)
146 {
147 	if (pgd_val(pgd) & _PMD_PAGE_8M)
148 		return SZ_8M;
149 	return SZ_4M;
150 }
151 
152 #define pgd_leaf_size pgd_leaf_size
153 
154 static inline unsigned long pte_leaf_size(pte_t pte)
155 {
156 	pte_basic_t val = pte_val(pte);
157 
158 	if (val & _PAGE_HUGE)
159 		return SZ_512K;
160 	if (val & _PAGE_SPS)
161 		return SZ_16K;
162 	return SZ_4K;
163 }
164 
165 #define pte_leaf_size pte_leaf_size
166 
167 /*
168  * On the 8xx, the page tables are a bit special. For 16k pages, we have
169  * 4 identical entries. For 512k pages, we have 128 entries as if it was
170  * 4k pages, but they are flagged as 512k pages for the hardware.
171  * For other page sizes, we have a single entry in the table.
172  */
173 static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
174 static int hugepd_ok(hugepd_t hpd);
175 
176 static inline int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
177 {
178 	if (!huge)
179 		return PAGE_SIZE / SZ_4K;
180 	else if (hugepd_ok(*((hugepd_t *)pmd)))
181 		return 1;
182 	else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
183 		return SZ_16K / SZ_4K;
184 	else
185 		return SZ_512K / SZ_4K;
186 }
187 
188 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
189 				     unsigned long clr, unsigned long set, int huge)
190 {
191 	pte_basic_t *entry = (pte_basic_t *)p;
192 	pte_basic_t old = pte_val(*p);
193 	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
194 	int num, i;
195 	pmd_t *pmd = pmd_off(mm, addr);
196 
197 	num = number_of_cells_per_pte(pmd, new, huge);
198 
199 	for (i = 0; i < num; i += PAGE_SIZE / SZ_4K, new += PAGE_SIZE) {
200 		*entry++ = new;
201 		if (IS_ENABLED(CONFIG_PPC_16K_PAGES) && num != 1) {
202 			*entry++ = new;
203 			*entry++ = new;
204 			*entry++ = new;
205 		}
206 	}
207 
208 	return old;
209 }
210 
211 #define pte_update pte_update
212 
213 #ifdef CONFIG_PPC_16K_PAGES
214 #define ptep_get ptep_get
215 static inline pte_t ptep_get(pte_t *ptep)
216 {
217 	pte_basic_t val = READ_ONCE(ptep->pte);
218 	pte_t pte = {val, val, val, val};
219 
220 	return pte;
221 }
222 #endif /* CONFIG_PPC_16K_PAGES */
223 
224 #endif
225 
226 #endif /* __KERNEL__ */
227 #endif /*  _ASM_POWERPC_NOHASH_32_PTE_8xx_H */
228