xref: /linux/arch/powerpc/include/asm/mmu_context.h (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 #ifndef __ASM_POWERPC_MMU_CONTEXT_H
2 #define __ASM_POWERPC_MMU_CONTEXT_H
3 #ifdef __KERNEL__
4 
5 #include <asm/mmu.h>
6 #include <asm/cputable.h>
7 #include <asm-generic/mm_hooks.h>
8 
9 #ifndef CONFIG_PPC64
10 #include <asm/atomic.h>
11 #include <linux/bitops.h>
12 
13 /*
14  * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs
15  * (virtual segment identifiers) for each context.  Although the
16  * hardware supports 24-bit VSIDs, and thus >1 million contexts,
17  * we only use 32,768 of them.  That is ample, since there can be
18  * at most around 30,000 tasks in the system anyway, and it means
19  * that we can use a bitmap to indicate which contexts are in use.
20  * Using a bitmap means that we entirely avoid all of the problems
21  * that we used to have when the context number overflowed,
22  * particularly on SMP systems.
23  *  -- paulus.
24  */
25 
26 /*
27  * This function defines the mapping from contexts to VSIDs (virtual
28  * segment IDs).  We use a skew on both the context and the high 4 bits
29  * of the 32-bit virtual address (the "effective segment ID") in order
30  * to spread out the entries in the MMU hash table.  Note, if this
31  * function is changed then arch/ppc/mm/hashtable.S will have to be
32  * changed to correspond.
33  */
34 #define CTX_TO_VSID(ctx, va)	(((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \
35 				 & 0xffffff)
36 
37 /*
38    The MPC8xx has only 16 contexts.  We rotate through them on each
39    task switch.  A better way would be to keep track of tasks that
40    own contexts, and implement an LRU usage.  That way very active
41    tasks don't always have to pay the TLB reload overhead.  The
42    kernel pages are mapped shared, so the kernel can run on behalf
43    of any task that makes a kernel entry.  Shared does not mean they
44    are not protected, just that the ASID comparison is not performed.
45         -- Dan
46 
47    The IBM4xx has 256 contexts, so we can just rotate through these
48    as a way of "switching" contexts.  If the TID of the TLB is zero,
49    the PID/TID comparison is disabled, so we can use a TID of zero
50    to represent all kernel pages as shared among all contexts.
51    	-- Dan
52  */
53 
54 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
55 {
56 }
57 
58 #ifdef CONFIG_8xx
59 #define NO_CONTEXT      	16
60 #define LAST_CONTEXT    	15
61 #define FIRST_CONTEXT    	0
62 
63 #elif defined(CONFIG_4xx)
64 #define NO_CONTEXT      	256
65 #define LAST_CONTEXT    	255
66 #define FIRST_CONTEXT    	1
67 
68 #elif defined(CONFIG_E200) || defined(CONFIG_E500)
69 #define NO_CONTEXT      	256
70 #define LAST_CONTEXT    	255
71 #define FIRST_CONTEXT    	1
72 
73 #else
74 
75 /* PPC 6xx, 7xx CPUs */
76 #define NO_CONTEXT      	((unsigned long) -1)
77 #define LAST_CONTEXT    	32767
78 #define FIRST_CONTEXT    	1
79 #endif
80 
81 /*
82  * Set the current MMU context.
83  * On 32-bit PowerPCs (other than the 8xx embedded chips), this is done by
84  * loading up the segment registers for the user part of the address space.
85  *
86  * Since the PGD is immediately available, it is much faster to simply
87  * pass this along as a second parameter, which is required for 8xx and
88  * can be used for debugging on all processors (if you happen to have
89  * an Abatron).
90  */
91 extern void set_context(unsigned long contextid, pgd_t *pgd);
92 
93 /*
94  * Bitmap of contexts in use.
95  * The size of this bitmap is LAST_CONTEXT + 1 bits.
96  */
97 extern unsigned long context_map[];
98 
99 /*
100  * This caches the next context number that we expect to be free.
101  * Its use is an optimization only, we can't rely on this context
102  * number to be free, but it usually will be.
103  */
104 extern unsigned long next_mmu_context;
105 
106 /*
107  * If we don't have sufficient contexts to give one to every task
108  * that could be in the system, we need to be able to steal contexts.
109  * These variables support that.
110  */
111 #if LAST_CONTEXT < 30000
112 #define FEW_CONTEXTS	1
113 extern atomic_t nr_free_contexts;
114 extern struct mm_struct *context_mm[LAST_CONTEXT+1];
115 extern void steal_context(void);
116 #endif
117 
118 /*
119  * Get a new mmu context for the address space described by `mm'.
120  */
121 static inline void get_mmu_context(struct mm_struct *mm)
122 {
123 	unsigned long ctx;
124 
125 	if (mm->context.id != NO_CONTEXT)
126 		return;
127 #ifdef FEW_CONTEXTS
128 	while (atomic_dec_if_positive(&nr_free_contexts) < 0)
129 		steal_context();
130 #endif
131 	ctx = next_mmu_context;
132 	while (test_and_set_bit(ctx, context_map)) {
133 		ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx);
134 		if (ctx > LAST_CONTEXT)
135 			ctx = 0;
136 	}
137 	next_mmu_context = (ctx + 1) & LAST_CONTEXT;
138 	mm->context.id = ctx;
139 #ifdef FEW_CONTEXTS
140 	context_mm[ctx] = mm;
141 #endif
142 }
143 
144 /*
145  * Set up the context for a new address space.
146  */
147 static inline int init_new_context(struct task_struct *t, struct mm_struct *mm)
148 {
149 	mm->context.id = NO_CONTEXT;
150 	return 0;
151 }
152 
153 /*
154  * We're finished using the context for an address space.
155  */
156 static inline void destroy_context(struct mm_struct *mm)
157 {
158 	preempt_disable();
159 	if (mm->context.id != NO_CONTEXT) {
160 		clear_bit(mm->context.id, context_map);
161 		mm->context.id = NO_CONTEXT;
162 #ifdef FEW_CONTEXTS
163 		atomic_inc(&nr_free_contexts);
164 #endif
165 	}
166 	preempt_enable();
167 }
168 
169 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
170 			     struct task_struct *tsk)
171 {
172 #ifdef CONFIG_ALTIVEC
173 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
174 	asm volatile ("dssall;\n"
175 #ifndef CONFIG_POWER4
176 	 "sync;\n" /* G4 needs a sync here, G5 apparently not */
177 #endif
178 	 : : );
179 #endif /* CONFIG_ALTIVEC */
180 
181 	tsk->thread.pgdir = next->pgd;
182 
183 	/* No need to flush userspace segments if the mm doesnt change */
184 	if (prev == next)
185 		return;
186 
187 	/* Setup new userspace context */
188 	get_mmu_context(next);
189 	set_context(next->context.id, next->pgd);
190 }
191 
192 #define deactivate_mm(tsk,mm)	do { } while (0)
193 
194 /*
195  * After we have set current->mm to a new value, this activates
196  * the context for the new mm so we see the new mappings.
197  */
198 #define activate_mm(active_mm, mm)   switch_mm(active_mm, mm, current)
199 
200 extern void mmu_context_init(void);
201 
202 
203 #else
204 
205 #include <linux/kernel.h>
206 #include <linux/mm.h>
207 #include <linux/sched.h>
208 
209 /*
210  * Copyright (C) 2001 PPC 64 Team, IBM Corp
211  *
212  * This program is free software; you can redistribute it and/or
213  * modify it under the terms of the GNU General Public License
214  * as published by the Free Software Foundation; either version
215  * 2 of the License, or (at your option) any later version.
216  */
217 
218 static inline void enter_lazy_tlb(struct mm_struct *mm,
219 				  struct task_struct *tsk)
220 {
221 }
222 
223 /*
224  * The proto-VSID space has 2^35 - 1 segments available for user mappings.
225  * Each segment contains 2^28 bytes.  Each context maps 2^44 bytes,
226  * so we can support 2^19-1 contexts (19 == 35 + 28 - 44).
227  */
228 #define NO_CONTEXT	0
229 #define MAX_CONTEXT	((1UL << 19) - 1)
230 
231 extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
232 extern void destroy_context(struct mm_struct *mm);
233 
234 extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm);
235 extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm);
236 
237 /*
238  * switch_mm is the entry point called from the architecture independent
239  * code in kernel/sched.c
240  */
241 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
242 			     struct task_struct *tsk)
243 {
244 	if (!cpu_isset(smp_processor_id(), next->cpu_vm_mask))
245 		cpu_set(smp_processor_id(), next->cpu_vm_mask);
246 
247 	/* No need to flush userspace segments if the mm doesnt change */
248 	if (prev == next)
249 		return;
250 
251 #ifdef CONFIG_ALTIVEC
252 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
253 		asm volatile ("dssall");
254 #endif /* CONFIG_ALTIVEC */
255 
256 	if (cpu_has_feature(CPU_FTR_SLB))
257 		switch_slb(tsk, next);
258 	else
259 		switch_stab(tsk, next);
260 }
261 
262 #define deactivate_mm(tsk,mm)	do { } while (0)
263 
264 /*
265  * After we have set current->mm to a new value, this activates
266  * the context for the new mm so we see the new mappings.
267  */
268 static inline void activate_mm(struct mm_struct *prev, struct mm_struct *next)
269 {
270 	unsigned long flags;
271 
272 	local_irq_save(flags);
273 	switch_mm(prev, next, current);
274 	local_irq_restore(flags);
275 }
276 
277 #endif /* CONFIG_PPC64 */
278 #endif /* __KERNEL__ */
279 #endif /* __ASM_POWERPC_MMU_CONTEXT_H */
280