xref: /linux/arch/powerpc/include/asm/kvm_book3s_64.h (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright SUSE Linux Products GmbH 2010
5  *
6  * Authors: Alexander Graf <agraf@suse.de>
7  */
8 
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11 
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18 
19 #ifdef CONFIG_PPC_PSERIES
20 static inline bool kvmhv_on_pseries(void)
21 {
22 	return !cpu_has_feature(CPU_FTR_HVMODE);
23 }
24 #else
25 static inline bool kvmhv_on_pseries(void)
26 {
27 	return false;
28 }
29 #endif
30 
31 /*
32  * Structure for a nested guest, that is, for a guest that is managed by
33  * one of our guests.
34  */
35 struct kvm_nested_guest {
36 	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
37 	int l1_lpid;			/* lpid L1 guest thinks this guest is */
38 	int shadow_lpid;		/* real lpid of this nested guest */
39 	pgd_t *shadow_pgtable;		/* our page table for this guest */
40 	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
41 	u64 process_table;		/* process table entry for this guest */
42 	long refcnt;			/* number of pointers to this struct */
43 	struct mutex tlb_lock;		/* serialize page faults and tlbies */
44 	struct kvm_nested_guest *next;
45 	cpumask_t need_tlb_flush;
46 	short prev_cpu[NR_CPUS];
47 	u8 radix;			/* is this nested guest radix */
48 };
49 
50 /*
51  * We define a nested rmap entry as a single 64-bit quantity
52  * 0xFFF0000000000000	12-bit lpid field
53  * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
54  * 0x0000000000000001	1-bit  single entry flag
55  */
56 #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
57 #define RMAP_NESTED_LPID_SHIFT		(52)
58 #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
59 #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
60 
61 /* Structure for a nested guest rmap entry */
62 struct rmap_nested {
63 	struct llist_node list;
64 	u64 rmap;
65 };
66 
67 /*
68  * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
69  *			     safe against removal of the list entry or NULL list
70  * @pos:	a (struct rmap_nested *) to use as a loop cursor
71  * @node:	pointer to the first entry
72  *		NOTE: this can be NULL
73  * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
74  *		iteration
75  *		NOTE: this must point to already allocated memory
76  *
77  * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
78  * rmap entry in the memslot. The list is always terminated by a "single entry"
79  * stored in the list element of the final entry of the llist. If there is ONLY
80  * a single entry then this is itself in the rmap entry of the memslot, not a
81  * llist head pointer.
82  *
83  * Note that the iterator below assumes that a nested rmap entry is always
84  * non-zero.  This is true for our usage because the LPID field is always
85  * non-zero (zero is reserved for the host).
86  *
87  * This should be used to iterate over the list of rmap_nested entries with
88  * processing done on the u64 rmap value given by each iteration. This is safe
89  * against removal of list entries and it is always safe to call free on (pos).
90  *
91  * e.g.
92  * struct rmap_nested *cursor;
93  * struct llist_node *first;
94  * unsigned long rmap;
95  * for_each_nest_rmap_safe(cursor, first, &rmap) {
96  *	do_something(rmap);
97  *	free(cursor);
98  * }
99  */
100 #define for_each_nest_rmap_safe(pos, node, rmapp)			       \
101 	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
102 	     (node) &&							       \
103 	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
104 			  ((u64) (node)) : ((pos)->rmap))) &&		       \
105 	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
106 			 ((struct llist_node *) ((pos) = NULL)) :	       \
107 			 (pos)->list.next)), true);			       \
108 	     (pos) = llist_entry((node), typeof(*(pos)), list))
109 
110 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
111 					  bool create);
112 void kvmhv_put_nested(struct kvm_nested_guest *gp);
113 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
114 
115 /* Encoding of first parameter for H_TLB_INVALIDATE */
116 #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
117 					 ___PPC_R(r))
118 
119 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
120 #define PPC_MIN_HPT_ORDER	18
121 #define PPC_MAX_HPT_ORDER	46
122 
123 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
124 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
125 {
126 	preempt_disable();
127 	return &get_paca()->shadow_vcpu;
128 }
129 
130 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
131 {
132 	preempt_enable();
133 }
134 #endif
135 
136 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
137 
138 static inline bool kvm_is_radix(struct kvm *kvm)
139 {
140 	return kvm->arch.radix;
141 }
142 
143 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
144 {
145 	bool radix;
146 
147 	if (vcpu->arch.nested)
148 		radix = vcpu->arch.nested->radix;
149 	else
150 		radix = kvm_is_radix(vcpu->kvm);
151 
152 	return radix;
153 }
154 
155 unsigned long kvmppc_msr_hard_disable_set_facilities(struct kvm_vcpu *vcpu, unsigned long msr);
156 
157 int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb);
158 
159 #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
160 #endif
161 
162 /*
163  * Invalid HDSISR value which is used to indicate when HW has not set the reg.
164  * Used to work around an errata.
165  */
166 #define HDSISR_CANARY	0x7fff
167 
168 /*
169  * We use a lock bit in HPTE dword 0 to synchronize updates and
170  * accesses to each HPTE, and another bit to indicate non-present
171  * HPTEs.
172  */
173 #define HPTE_V_HVLOCK	0x40UL
174 #define HPTE_V_ABSENT	0x20UL
175 
176 /*
177  * We use this bit in the guest_rpte field of the revmap entry
178  * to indicate a modified HPTE.
179  */
180 #define HPTE_GR_MODIFIED	(1ul << 62)
181 
182 /* These bits are reserved in the guest view of the HPTE */
183 #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
184 
185 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
186 {
187 	unsigned long tmp, old;
188 	__be64 be_lockbit, be_bits;
189 
190 	/*
191 	 * We load/store in native endian, but the HTAB is in big endian. If
192 	 * we byte swap all data we apply on the PTE we're implicitly correct
193 	 * again.
194 	 */
195 	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
196 	be_bits = cpu_to_be64(bits);
197 
198 	asm volatile("	ldarx	%0,0,%2\n"
199 		     "	and.	%1,%0,%3\n"
200 		     "	bne	2f\n"
201 		     "	or	%0,%0,%4\n"
202 		     "  stdcx.	%0,0,%2\n"
203 		     "	beq+	2f\n"
204 		     "	mr	%1,%3\n"
205 		     "2:	isync"
206 		     : "=&r" (tmp), "=&r" (old)
207 		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
208 		     : "cc", "memory");
209 	return old == 0;
210 }
211 
212 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
213 {
214 	hpte_v &= ~HPTE_V_HVLOCK;
215 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
216 	hpte[0] = cpu_to_be64(hpte_v);
217 }
218 
219 /* Without barrier */
220 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
221 {
222 	hpte_v &= ~HPTE_V_HVLOCK;
223 	hpte[0] = cpu_to_be64(hpte_v);
224 }
225 
226 /*
227  * These functions encode knowledge of the POWER7/8/9 hardware
228  * interpretations of the HPTE LP (large page size) field.
229  */
230 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
231 {
232 	unsigned int lphi;
233 
234 	if (!(h & HPTE_V_LARGE))
235 		return 12;	/* 4kB */
236 	lphi = (l >> 16) & 0xf;
237 	switch ((l >> 12) & 0xf) {
238 	case 0:
239 		return !lphi ? 24 : 0;		/* 16MB */
240 		break;
241 	case 1:
242 		return 16;			/* 64kB */
243 		break;
244 	case 3:
245 		return !lphi ? 34 : 0;		/* 16GB */
246 		break;
247 	case 7:
248 		return (16 << 8) + 12;		/* 64kB in 4kB */
249 		break;
250 	case 8:
251 		if (!lphi)
252 			return (24 << 8) + 16;	/* 16MB in 64kkB */
253 		if (lphi == 3)
254 			return (24 << 8) + 12;	/* 16MB in 4kB */
255 		break;
256 	}
257 	return 0;
258 }
259 
260 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
261 {
262 	return kvmppc_hpte_page_shifts(h, l) & 0xff;
263 }
264 
265 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
266 {
267 	int tmp = kvmppc_hpte_page_shifts(h, l);
268 
269 	if (tmp >= 0x100)
270 		tmp >>= 8;
271 	return tmp;
272 }
273 
274 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
275 {
276 	int shift = kvmppc_hpte_actual_page_shift(v, r);
277 
278 	if (shift)
279 		return 1ul << shift;
280 	return 0;
281 }
282 
283 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
284 {
285 	switch (base_shift) {
286 	case 12:
287 		switch (actual_shift) {
288 		case 12:
289 			return 0;
290 		case 16:
291 			return 7;
292 		case 24:
293 			return 0x38;
294 		}
295 		break;
296 	case 16:
297 		switch (actual_shift) {
298 		case 16:
299 			return 1;
300 		case 24:
301 			return 8;
302 		}
303 		break;
304 	case 24:
305 		return 0;
306 	}
307 	return -1;
308 }
309 
310 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
311 					     unsigned long pte_index)
312 {
313 	int a_pgshift, b_pgshift;
314 	unsigned long rb = 0, va_low, sllp;
315 
316 	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
317 	if (a_pgshift >= 0x100) {
318 		b_pgshift &= 0xff;
319 		a_pgshift >>= 8;
320 	}
321 
322 	/*
323 	 * Ignore the top 14 bits of va
324 	 * v have top two bits covering segment size, hence move
325 	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
326 	 * AVA field in v also have the lower 23 bits ignored.
327 	 * For base page size 4K we need 14 .. 65 bits (so need to
328 	 * collect extra 11 bits)
329 	 * For others we need 14..14+i
330 	 */
331 	/* This covers 14..54 bits of va*/
332 	rb = (v & ~0x7fUL) << 16;		/* AVA field */
333 
334 	/*
335 	 * AVA in v had cleared lower 23 bits. We need to derive
336 	 * that from pteg index
337 	 */
338 	va_low = pte_index >> 3;
339 	if (v & HPTE_V_SECONDARY)
340 		va_low = ~va_low;
341 	/*
342 	 * get the vpn bits from va_low using reverse of hashing.
343 	 * In v we have va with 23 bits dropped and then left shifted
344 	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
345 	 * right shift it with (SID_SHIFT - (23 - 7))
346 	 */
347 	if (!(v & HPTE_V_1TB_SEG))
348 		va_low ^= v >> (SID_SHIFT - 16);
349 	else
350 		va_low ^= v >> (SID_SHIFT_1T - 16);
351 	va_low &= 0x7ff;
352 
353 	if (b_pgshift <= 12) {
354 		if (a_pgshift > 12) {
355 			sllp = (a_pgshift == 16) ? 5 : 4;
356 			rb |= sllp << 5;	/*  AP field */
357 		}
358 		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
359 	} else {
360 		int aval_shift;
361 		/*
362 		 * remaining bits of AVA/LP fields
363 		 * Also contain the rr bits of LP
364 		 */
365 		rb |= (va_low << b_pgshift) & 0x7ff000;
366 		/*
367 		 * Now clear not needed LP bits based on actual psize
368 		 */
369 		rb &= ~((1ul << a_pgshift) - 1);
370 		/*
371 		 * AVAL field 58..77 - base_page_shift bits of va
372 		 * we have space for 58..64 bits, Missing bits should
373 		 * be zero filled. +1 is to take care of L bit shift
374 		 */
375 		aval_shift = 64 - (77 - b_pgshift) + 1;
376 		rb |= ((va_low << aval_shift) & 0xfe);
377 
378 		rb |= 1;		/* L field */
379 		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
380 	}
381 	/*
382 	 * This sets both bits of the B field in the PTE. 0b1x values are
383 	 * reserved, but those will have been filtered by kvmppc_do_h_enter.
384 	 */
385 	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
386 	return rb;
387 }
388 
389 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
390 {
391 	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
392 }
393 
394 static inline int hpte_is_writable(unsigned long ptel)
395 {
396 	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
397 
398 	return pp != PP_RXRX && pp != PP_RXXX;
399 }
400 
401 static inline unsigned long hpte_make_readonly(unsigned long ptel)
402 {
403 	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
404 		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
405 	else
406 		ptel |= PP_RXRX;
407 	return ptel;
408 }
409 
410 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
411 {
412 	unsigned int wimg = hptel & HPTE_R_WIMG;
413 
414 	/* Handle SAO */
415 	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
416 	    cpu_has_feature(CPU_FTR_ARCH_206))
417 		wimg = HPTE_R_M;
418 
419 	if (!is_ci)
420 		return wimg == HPTE_R_M;
421 	/*
422 	 * if host is mapped cache inhibited, make sure hptel also have
423 	 * cache inhibited.
424 	 */
425 	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
426 		return false;
427 	return !!(wimg & HPTE_R_I);
428 }
429 
430 /*
431  * If it's present and writable, atomically set dirty and referenced bits and
432  * return the PTE, otherwise return 0.
433  */
434 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
435 {
436 	pte_t old_pte, new_pte = __pte(0);
437 
438 	while (1) {
439 		/*
440 		 * Make sure we don't reload from ptep
441 		 */
442 		old_pte = READ_ONCE(*ptep);
443 		/*
444 		 * wait until H_PAGE_BUSY is clear then set it atomically
445 		 */
446 		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
447 			cpu_relax();
448 			continue;
449 		}
450 		/* If pte is not present return None */
451 		if (unlikely(!pte_present(old_pte)))
452 			return __pte(0);
453 
454 		new_pte = pte_mkyoung(old_pte);
455 		if (writing && pte_write(old_pte))
456 			new_pte = pte_mkdirty(new_pte);
457 
458 		if (pte_xchg(ptep, old_pte, new_pte))
459 			break;
460 	}
461 	return new_pte;
462 }
463 
464 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
465 {
466 	if (key)
467 		return PP_RWRX <= pp && pp <= PP_RXRX;
468 	return true;
469 }
470 
471 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
472 {
473 	if (key)
474 		return pp == PP_RWRW;
475 	return pp <= PP_RWRW;
476 }
477 
478 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
479 {
480 	unsigned long skey;
481 
482 	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
483 		((hpte_r & HPTE_R_KEY_LO) >> 9);
484 	return (amr >> (62 - 2 * skey)) & 3;
485 }
486 
487 static inline void lock_rmap(unsigned long *rmap)
488 {
489 	do {
490 		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
491 			cpu_relax();
492 	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
493 }
494 
495 static inline void unlock_rmap(unsigned long *rmap)
496 {
497 	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
498 }
499 
500 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
501 				   unsigned long pagesize)
502 {
503 	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
504 
505 	if (pagesize <= PAGE_SIZE)
506 		return true;
507 	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
508 }
509 
510 /*
511  * This works for 4k, 64k and 16M pages on POWER7,
512  * and 4k and 16M pages on PPC970.
513  */
514 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
515 {
516 	unsigned long senc = 0;
517 
518 	if (psize > 0x1000) {
519 		senc = SLB_VSID_L;
520 		if (psize == 0x10000)
521 			senc |= SLB_VSID_LP_01;
522 	}
523 	return senc;
524 }
525 
526 static inline int is_vrma_hpte(unsigned long hpte_v)
527 {
528 	return (hpte_v & ~0xffffffUL) ==
529 		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
530 }
531 
532 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
533 /*
534  * Note modification of an HPTE; set the HPTE modified bit
535  * if anyone is interested.
536  */
537 static inline void note_hpte_modification(struct kvm *kvm,
538 					  struct revmap_entry *rev)
539 {
540 	if (atomic_read(&kvm->arch.hpte_mod_interest))
541 		rev->guest_rpte |= HPTE_GR_MODIFIED;
542 }
543 
544 /*
545  * Like kvm_memslots(), but for use in real mode when we can't do
546  * any RCU stuff (since the secondary threads are offline from the
547  * kernel's point of view), and we can't print anything.
548  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
549  */
550 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
551 {
552 	return rcu_dereference_raw_check(kvm->memslots[0]);
553 }
554 
555 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
556 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
557 
558 extern void kvmhv_rm_send_ipi(int cpu);
559 
560 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
561 {
562 	/* HPTEs are 2**4 bytes long */
563 	return 1UL << (hpt->order - 4);
564 }
565 
566 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
567 {
568 	/* 128 (2**7) bytes in each HPTEG */
569 	return (1UL << (hpt->order - 7)) - 1;
570 }
571 
572 /* Set bits in a dirty bitmap, which is in LE format */
573 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
574 				  unsigned long npages)
575 {
576 
577 	if (npages >= 8)
578 		memset((char *)map + i / 8, 0xff, npages / 8);
579 	else
580 		for (; npages; ++i, --npages)
581 			__set_bit_le(i, map);
582 }
583 
584 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
585 					 unsigned long npages)
586 {
587 	if (npages >= 8)
588 		memset((char *)map + i / 8, 0xff, npages / 8);
589 	else
590 		for (; npages; ++i, --npages)
591 			set_bit_le(i, map);
592 }
593 
594 static inline u64 sanitize_msr(u64 msr)
595 {
596 	msr &= ~MSR_HV;
597 	msr |= MSR_ME;
598 	return msr;
599 }
600 
601 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
602 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
603 {
604 	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
605 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
606 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
607 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
608 	vcpu->arch.amr = vcpu->arch.amr_tm;
609 	vcpu->arch.ppr = vcpu->arch.ppr_tm;
610 	vcpu->arch.dscr = vcpu->arch.dscr_tm;
611 	vcpu->arch.tar = vcpu->arch.tar_tm;
612 	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
613 	       sizeof(vcpu->arch.regs.gpr));
614 	vcpu->arch.fp  = vcpu->arch.fp_tm;
615 	vcpu->arch.vr  = vcpu->arch.vr_tm;
616 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
617 }
618 
619 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
620 {
621 	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
622 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
623 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
624 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
625 	vcpu->arch.amr_tm = vcpu->arch.amr;
626 	vcpu->arch.ppr_tm = vcpu->arch.ppr;
627 	vcpu->arch.dscr_tm = vcpu->arch.dscr;
628 	vcpu->arch.tar_tm = vcpu->arch.tar;
629 	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
630 	       sizeof(vcpu->arch.regs.gpr));
631 	vcpu->arch.fp_tm  = vcpu->arch.fp;
632 	vcpu->arch.vr_tm  = vcpu->arch.vr;
633 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
634 }
635 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
636 
637 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
638 			     unsigned long gpa, unsigned int level,
639 			     unsigned long mmu_seq, unsigned int lpid,
640 			     unsigned long *rmapp, struct rmap_nested **n_rmap);
641 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
642 				   struct rmap_nested **n_rmap);
643 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
644 					   unsigned long clr, unsigned long set,
645 					   unsigned long hpa, unsigned long nbytes);
646 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
647 				const struct kvm_memory_slot *memslot,
648 				unsigned long gpa, unsigned long hpa,
649 				unsigned long nbytes);
650 
651 static inline pte_t *
652 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
653 				unsigned *hshift)
654 {
655 	pte_t *pte;
656 
657 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
658 	return pte;
659 }
660 
661 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
662 					    unsigned *hshift)
663 {
664 	pte_t *pte;
665 
666 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
667 		"%s called with kvm mmu_lock not held \n", __func__);
668 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
669 
670 	return pte;
671 }
672 
673 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
674 				       unsigned long ea, unsigned *hshift)
675 {
676 	pte_t *pte;
677 
678 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
679 		"%s called with kvm mmu_lock not held \n", __func__);
680 
681 	if (mmu_notifier_retry(kvm, mmu_seq))
682 		return NULL;
683 
684 	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
685 
686 	return pte;
687 }
688 
689 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
690 					unsigned long ea, unsigned *hshift);
691 
692 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
693 
694 #endif /* __ASM_KVM_BOOK3S_64_H__ */
695