xref: /linux/arch/powerpc/include/asm/kvm_book3s_64.h (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright SUSE Linux Products GmbH 2010
5  *
6  * Authors: Alexander Graf <agraf@suse.de>
7  */
8 
9 #ifndef __ASM_KVM_BOOK3S_64_H__
10 #define __ASM_KVM_BOOK3S_64_H__
11 
12 #include <linux/string.h>
13 #include <asm/bitops.h>
14 #include <asm/book3s/64/mmu-hash.h>
15 #include <asm/cpu_has_feature.h>
16 #include <asm/ppc-opcode.h>
17 #include <asm/pte-walk.h>
18 
19 #ifdef CONFIG_PPC_PSERIES
20 static inline bool kvmhv_on_pseries(void)
21 {
22 	return !cpu_has_feature(CPU_FTR_HVMODE);
23 }
24 #else
25 static inline bool kvmhv_on_pseries(void)
26 {
27 	return false;
28 }
29 #endif
30 
31 /*
32  * Structure for a nested guest, that is, for a guest that is managed by
33  * one of our guests.
34  */
35 struct kvm_nested_guest {
36 	struct kvm *l1_host;		/* L1 VM that owns this nested guest */
37 	int l1_lpid;			/* lpid L1 guest thinks this guest is */
38 	int shadow_lpid;		/* real lpid of this nested guest */
39 	pgd_t *shadow_pgtable;		/* our page table for this guest */
40 	u64 l1_gr_to_hr;		/* L1's addr of part'n-scoped table */
41 	u64 process_table;		/* process table entry for this guest */
42 	long refcnt;			/* number of pointers to this struct */
43 	struct mutex tlb_lock;		/* serialize page faults and tlbies */
44 	struct kvm_nested_guest *next;
45 	cpumask_t need_tlb_flush;
46 	cpumask_t cpu_in_guest;
47 	short prev_cpu[NR_CPUS];
48 	u8 radix;			/* is this nested guest radix */
49 };
50 
51 /*
52  * We define a nested rmap entry as a single 64-bit quantity
53  * 0xFFF0000000000000	12-bit lpid field
54  * 0x000FFFFFFFFFF000	40-bit guest 4k page frame number
55  * 0x0000000000000001	1-bit  single entry flag
56  */
57 #define RMAP_NESTED_LPID_MASK		0xFFF0000000000000UL
58 #define RMAP_NESTED_LPID_SHIFT		(52)
59 #define RMAP_NESTED_GPA_MASK		0x000FFFFFFFFFF000UL
60 #define RMAP_NESTED_IS_SINGLE_ENTRY	0x0000000000000001UL
61 
62 /* Structure for a nested guest rmap entry */
63 struct rmap_nested {
64 	struct llist_node list;
65 	u64 rmap;
66 };
67 
68 /*
69  * for_each_nest_rmap_safe - iterate over the list of nested rmap entries
70  *			     safe against removal of the list entry or NULL list
71  * @pos:	a (struct rmap_nested *) to use as a loop cursor
72  * @node:	pointer to the first entry
73  *		NOTE: this can be NULL
74  * @rmapp:	an (unsigned long *) in which to return the rmap entries on each
75  *		iteration
76  *		NOTE: this must point to already allocated memory
77  *
78  * The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
79  * rmap entry in the memslot. The list is always terminated by a "single entry"
80  * stored in the list element of the final entry of the llist. If there is ONLY
81  * a single entry then this is itself in the rmap entry of the memslot, not a
82  * llist head pointer.
83  *
84  * Note that the iterator below assumes that a nested rmap entry is always
85  * non-zero.  This is true for our usage because the LPID field is always
86  * non-zero (zero is reserved for the host).
87  *
88  * This should be used to iterate over the list of rmap_nested entries with
89  * processing done on the u64 rmap value given by each iteration. This is safe
90  * against removal of list entries and it is always safe to call free on (pos).
91  *
92  * e.g.
93  * struct rmap_nested *cursor;
94  * struct llist_node *first;
95  * unsigned long rmap;
96  * for_each_nest_rmap_safe(cursor, first, &rmap) {
97  *	do_something(rmap);
98  *	free(cursor);
99  * }
100  */
101 #define for_each_nest_rmap_safe(pos, node, rmapp)			       \
102 	for ((pos) = llist_entry((node), typeof(*(pos)), list);		       \
103 	     (node) &&							       \
104 	     (*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?     \
105 			  ((u64) (node)) : ((pos)->rmap))) &&		       \
106 	     (((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ?      \
107 			 ((struct llist_node *) ((pos) = NULL)) :	       \
108 			 (pos)->list.next)), true);			       \
109 	     (pos) = llist_entry((node), typeof(*(pos)), list))
110 
111 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
112 					  bool create);
113 void kvmhv_put_nested(struct kvm_nested_guest *gp);
114 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
115 
116 /* Encoding of first parameter for H_TLB_INVALIDATE */
117 #define H_TLBIE_P1_ENC(ric, prs, r)	(___PPC_RIC(ric) | ___PPC_PRS(prs) | \
118 					 ___PPC_R(r))
119 
120 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
121 #define PPC_MIN_HPT_ORDER	18
122 #define PPC_MAX_HPT_ORDER	46
123 
124 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
125 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
126 {
127 	preempt_disable();
128 	return &get_paca()->shadow_vcpu;
129 }
130 
131 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
132 {
133 	preempt_enable();
134 }
135 #endif
136 
137 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
138 
139 static inline bool kvm_is_radix(struct kvm *kvm)
140 {
141 	return kvm->arch.radix;
142 }
143 
144 static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
145 {
146 	bool radix;
147 
148 	if (vcpu->arch.nested)
149 		radix = vcpu->arch.nested->radix;
150 	else
151 		radix = kvm_is_radix(vcpu->kvm);
152 
153 	return radix;
154 }
155 
156 #define KVM_DEFAULT_HPT_ORDER	24	/* 16MB HPT by default */
157 #endif
158 
159 /*
160  * We use a lock bit in HPTE dword 0 to synchronize updates and
161  * accesses to each HPTE, and another bit to indicate non-present
162  * HPTEs.
163  */
164 #define HPTE_V_HVLOCK	0x40UL
165 #define HPTE_V_ABSENT	0x20UL
166 
167 /*
168  * We use this bit in the guest_rpte field of the revmap entry
169  * to indicate a modified HPTE.
170  */
171 #define HPTE_GR_MODIFIED	(1ul << 62)
172 
173 /* These bits are reserved in the guest view of the HPTE */
174 #define HPTE_GR_RESERVED	HPTE_GR_MODIFIED
175 
176 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
177 {
178 	unsigned long tmp, old;
179 	__be64 be_lockbit, be_bits;
180 
181 	/*
182 	 * We load/store in native endian, but the HTAB is in big endian. If
183 	 * we byte swap all data we apply on the PTE we're implicitly correct
184 	 * again.
185 	 */
186 	be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
187 	be_bits = cpu_to_be64(bits);
188 
189 	asm volatile("	ldarx	%0,0,%2\n"
190 		     "	and.	%1,%0,%3\n"
191 		     "	bne	2f\n"
192 		     "	or	%0,%0,%4\n"
193 		     "  stdcx.	%0,0,%2\n"
194 		     "	beq+	2f\n"
195 		     "	mr	%1,%3\n"
196 		     "2:	isync"
197 		     : "=&r" (tmp), "=&r" (old)
198 		     : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
199 		     : "cc", "memory");
200 	return old == 0;
201 }
202 
203 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
204 {
205 	hpte_v &= ~HPTE_V_HVLOCK;
206 	asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
207 	hpte[0] = cpu_to_be64(hpte_v);
208 }
209 
210 /* Without barrier */
211 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
212 {
213 	hpte_v &= ~HPTE_V_HVLOCK;
214 	hpte[0] = cpu_to_be64(hpte_v);
215 }
216 
217 /*
218  * These functions encode knowledge of the POWER7/8/9 hardware
219  * interpretations of the HPTE LP (large page size) field.
220  */
221 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
222 {
223 	unsigned int lphi;
224 
225 	if (!(h & HPTE_V_LARGE))
226 		return 12;	/* 4kB */
227 	lphi = (l >> 16) & 0xf;
228 	switch ((l >> 12) & 0xf) {
229 	case 0:
230 		return !lphi ? 24 : 0;		/* 16MB */
231 		break;
232 	case 1:
233 		return 16;			/* 64kB */
234 		break;
235 	case 3:
236 		return !lphi ? 34 : 0;		/* 16GB */
237 		break;
238 	case 7:
239 		return (16 << 8) + 12;		/* 64kB in 4kB */
240 		break;
241 	case 8:
242 		if (!lphi)
243 			return (24 << 8) + 16;	/* 16MB in 64kkB */
244 		if (lphi == 3)
245 			return (24 << 8) + 12;	/* 16MB in 4kB */
246 		break;
247 	}
248 	return 0;
249 }
250 
251 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
252 {
253 	return kvmppc_hpte_page_shifts(h, l) & 0xff;
254 }
255 
256 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
257 {
258 	int tmp = kvmppc_hpte_page_shifts(h, l);
259 
260 	if (tmp >= 0x100)
261 		tmp >>= 8;
262 	return tmp;
263 }
264 
265 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
266 {
267 	int shift = kvmppc_hpte_actual_page_shift(v, r);
268 
269 	if (shift)
270 		return 1ul << shift;
271 	return 0;
272 }
273 
274 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
275 {
276 	switch (base_shift) {
277 	case 12:
278 		switch (actual_shift) {
279 		case 12:
280 			return 0;
281 		case 16:
282 			return 7;
283 		case 24:
284 			return 0x38;
285 		}
286 		break;
287 	case 16:
288 		switch (actual_shift) {
289 		case 16:
290 			return 1;
291 		case 24:
292 			return 8;
293 		}
294 		break;
295 	case 24:
296 		return 0;
297 	}
298 	return -1;
299 }
300 
301 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
302 					     unsigned long pte_index)
303 {
304 	int a_pgshift, b_pgshift;
305 	unsigned long rb = 0, va_low, sllp;
306 
307 	b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
308 	if (a_pgshift >= 0x100) {
309 		b_pgshift &= 0xff;
310 		a_pgshift >>= 8;
311 	}
312 
313 	/*
314 	 * Ignore the top 14 bits of va
315 	 * v have top two bits covering segment size, hence move
316 	 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
317 	 * AVA field in v also have the lower 23 bits ignored.
318 	 * For base page size 4K we need 14 .. 65 bits (so need to
319 	 * collect extra 11 bits)
320 	 * For others we need 14..14+i
321 	 */
322 	/* This covers 14..54 bits of va*/
323 	rb = (v & ~0x7fUL) << 16;		/* AVA field */
324 
325 	/*
326 	 * AVA in v had cleared lower 23 bits. We need to derive
327 	 * that from pteg index
328 	 */
329 	va_low = pte_index >> 3;
330 	if (v & HPTE_V_SECONDARY)
331 		va_low = ~va_low;
332 	/*
333 	 * get the vpn bits from va_low using reverse of hashing.
334 	 * In v we have va with 23 bits dropped and then left shifted
335 	 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
336 	 * right shift it with (SID_SHIFT - (23 - 7))
337 	 */
338 	if (!(v & HPTE_V_1TB_SEG))
339 		va_low ^= v >> (SID_SHIFT - 16);
340 	else
341 		va_low ^= v >> (SID_SHIFT_1T - 16);
342 	va_low &= 0x7ff;
343 
344 	if (b_pgshift <= 12) {
345 		if (a_pgshift > 12) {
346 			sllp = (a_pgshift == 16) ? 5 : 4;
347 			rb |= sllp << 5;	/*  AP field */
348 		}
349 		rb |= (va_low & 0x7ff) << 12;	/* remaining 11 bits of AVA */
350 	} else {
351 		int aval_shift;
352 		/*
353 		 * remaining bits of AVA/LP fields
354 		 * Also contain the rr bits of LP
355 		 */
356 		rb |= (va_low << b_pgshift) & 0x7ff000;
357 		/*
358 		 * Now clear not needed LP bits based on actual psize
359 		 */
360 		rb &= ~((1ul << a_pgshift) - 1);
361 		/*
362 		 * AVAL field 58..77 - base_page_shift bits of va
363 		 * we have space for 58..64 bits, Missing bits should
364 		 * be zero filled. +1 is to take care of L bit shift
365 		 */
366 		aval_shift = 64 - (77 - b_pgshift) + 1;
367 		rb |= ((va_low << aval_shift) & 0xfe);
368 
369 		rb |= 1;		/* L field */
370 		rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
371 	}
372 	rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;	/* B field */
373 	return rb;
374 }
375 
376 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
377 {
378 	return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
379 }
380 
381 static inline int hpte_is_writable(unsigned long ptel)
382 {
383 	unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
384 
385 	return pp != PP_RXRX && pp != PP_RXXX;
386 }
387 
388 static inline unsigned long hpte_make_readonly(unsigned long ptel)
389 {
390 	if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
391 		ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
392 	else
393 		ptel |= PP_RXRX;
394 	return ptel;
395 }
396 
397 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
398 {
399 	unsigned int wimg = hptel & HPTE_R_WIMG;
400 
401 	/* Handle SAO */
402 	if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
403 	    cpu_has_feature(CPU_FTR_ARCH_206))
404 		wimg = HPTE_R_M;
405 
406 	if (!is_ci)
407 		return wimg == HPTE_R_M;
408 	/*
409 	 * if host is mapped cache inhibited, make sure hptel also have
410 	 * cache inhibited.
411 	 */
412 	if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
413 		return false;
414 	return !!(wimg & HPTE_R_I);
415 }
416 
417 /*
418  * If it's present and writable, atomically set dirty and referenced bits and
419  * return the PTE, otherwise return 0.
420  */
421 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
422 {
423 	pte_t old_pte, new_pte = __pte(0);
424 
425 	while (1) {
426 		/*
427 		 * Make sure we don't reload from ptep
428 		 */
429 		old_pte = READ_ONCE(*ptep);
430 		/*
431 		 * wait until H_PAGE_BUSY is clear then set it atomically
432 		 */
433 		if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
434 			cpu_relax();
435 			continue;
436 		}
437 		/* If pte is not present return None */
438 		if (unlikely(!pte_present(old_pte)))
439 			return __pte(0);
440 
441 		new_pte = pte_mkyoung(old_pte);
442 		if (writing && pte_write(old_pte))
443 			new_pte = pte_mkdirty(new_pte);
444 
445 		if (pte_xchg(ptep, old_pte, new_pte))
446 			break;
447 	}
448 	return new_pte;
449 }
450 
451 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
452 {
453 	if (key)
454 		return PP_RWRX <= pp && pp <= PP_RXRX;
455 	return true;
456 }
457 
458 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
459 {
460 	if (key)
461 		return pp == PP_RWRW;
462 	return pp <= PP_RWRW;
463 }
464 
465 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
466 {
467 	unsigned long skey;
468 
469 	skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
470 		((hpte_r & HPTE_R_KEY_LO) >> 9);
471 	return (amr >> (62 - 2 * skey)) & 3;
472 }
473 
474 static inline void lock_rmap(unsigned long *rmap)
475 {
476 	do {
477 		while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
478 			cpu_relax();
479 	} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
480 }
481 
482 static inline void unlock_rmap(unsigned long *rmap)
483 {
484 	__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
485 }
486 
487 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
488 				   unsigned long pagesize)
489 {
490 	unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
491 
492 	if (pagesize <= PAGE_SIZE)
493 		return true;
494 	return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
495 }
496 
497 /*
498  * This works for 4k, 64k and 16M pages on POWER7,
499  * and 4k and 16M pages on PPC970.
500  */
501 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
502 {
503 	unsigned long senc = 0;
504 
505 	if (psize > 0x1000) {
506 		senc = SLB_VSID_L;
507 		if (psize == 0x10000)
508 			senc |= SLB_VSID_LP_01;
509 	}
510 	return senc;
511 }
512 
513 static inline int is_vrma_hpte(unsigned long hpte_v)
514 {
515 	return (hpte_v & ~0xffffffUL) ==
516 		(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
517 }
518 
519 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
520 /*
521  * Note modification of an HPTE; set the HPTE modified bit
522  * if anyone is interested.
523  */
524 static inline void note_hpte_modification(struct kvm *kvm,
525 					  struct revmap_entry *rev)
526 {
527 	if (atomic_read(&kvm->arch.hpte_mod_interest))
528 		rev->guest_rpte |= HPTE_GR_MODIFIED;
529 }
530 
531 /*
532  * Like kvm_memslots(), but for use in real mode when we can't do
533  * any RCU stuff (since the secondary threads are offline from the
534  * kernel's point of view), and we can't print anything.
535  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
536  */
537 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
538 {
539 	return rcu_dereference_raw_check(kvm->memslots[0]);
540 }
541 
542 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
543 extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
544 
545 extern void kvmhv_rm_send_ipi(int cpu);
546 
547 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
548 {
549 	/* HPTEs are 2**4 bytes long */
550 	return 1UL << (hpt->order - 4);
551 }
552 
553 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
554 {
555 	/* 128 (2**7) bytes in each HPTEG */
556 	return (1UL << (hpt->order - 7)) - 1;
557 }
558 
559 /* Set bits in a dirty bitmap, which is in LE format */
560 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
561 				  unsigned long npages)
562 {
563 
564 	if (npages >= 8)
565 		memset((char *)map + i / 8, 0xff, npages / 8);
566 	else
567 		for (; npages; ++i, --npages)
568 			__set_bit_le(i, map);
569 }
570 
571 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
572 					 unsigned long npages)
573 {
574 	if (npages >= 8)
575 		memset((char *)map + i / 8, 0xff, npages / 8);
576 	else
577 		for (; npages; ++i, --npages)
578 			set_bit_le(i, map);
579 }
580 
581 static inline u64 sanitize_msr(u64 msr)
582 {
583 	msr &= ~MSR_HV;
584 	msr |= MSR_ME;
585 	return msr;
586 }
587 
588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
589 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
590 {
591 	vcpu->arch.regs.ccr  = vcpu->arch.cr_tm;
592 	vcpu->arch.regs.xer = vcpu->arch.xer_tm;
593 	vcpu->arch.regs.link  = vcpu->arch.lr_tm;
594 	vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
595 	vcpu->arch.amr = vcpu->arch.amr_tm;
596 	vcpu->arch.ppr = vcpu->arch.ppr_tm;
597 	vcpu->arch.dscr = vcpu->arch.dscr_tm;
598 	vcpu->arch.tar = vcpu->arch.tar_tm;
599 	memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
600 	       sizeof(vcpu->arch.regs.gpr));
601 	vcpu->arch.fp  = vcpu->arch.fp_tm;
602 	vcpu->arch.vr  = vcpu->arch.vr_tm;
603 	vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
604 }
605 
606 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
607 {
608 	vcpu->arch.cr_tm  = vcpu->arch.regs.ccr;
609 	vcpu->arch.xer_tm = vcpu->arch.regs.xer;
610 	vcpu->arch.lr_tm  = vcpu->arch.regs.link;
611 	vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
612 	vcpu->arch.amr_tm = vcpu->arch.amr;
613 	vcpu->arch.ppr_tm = vcpu->arch.ppr;
614 	vcpu->arch.dscr_tm = vcpu->arch.dscr;
615 	vcpu->arch.tar_tm = vcpu->arch.tar;
616 	memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
617 	       sizeof(vcpu->arch.regs.gpr));
618 	vcpu->arch.fp_tm  = vcpu->arch.fp;
619 	vcpu->arch.vr_tm  = vcpu->arch.vr;
620 	vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
621 }
622 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
623 
624 extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
625 			     unsigned long gpa, unsigned int level,
626 			     unsigned long mmu_seq, unsigned int lpid,
627 			     unsigned long *rmapp, struct rmap_nested **n_rmap);
628 extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
629 				   struct rmap_nested **n_rmap);
630 extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
631 					   unsigned long clr, unsigned long set,
632 					   unsigned long hpa, unsigned long nbytes);
633 extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
634 				const struct kvm_memory_slot *memslot,
635 				unsigned long gpa, unsigned long hpa,
636 				unsigned long nbytes);
637 
638 static inline pte_t *
639 find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
640 				unsigned *hshift)
641 {
642 	pte_t *pte;
643 
644 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
645 	return pte;
646 }
647 
648 static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
649 					    unsigned *hshift)
650 {
651 	pte_t *pte;
652 
653 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
654 		"%s called with kvm mmu_lock not held \n", __func__);
655 	pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
656 
657 	return pte;
658 }
659 
660 static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
661 				       unsigned long ea, unsigned *hshift)
662 {
663 	pte_t *pte;
664 
665 	VM_WARN(!spin_is_locked(&kvm->mmu_lock),
666 		"%s called with kvm mmu_lock not held \n", __func__);
667 
668 	if (mmu_notifier_retry(kvm, mmu_seq))
669 		return NULL;
670 
671 	pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
672 
673 	return pte;
674 }
675 
676 extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
677 					unsigned long ea, unsigned *hshift);
678 
679 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
680 
681 #endif /* __ASM_KVM_BOOK3S_64_H__ */
682