1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 #ifndef _ASM_POWERPC_IO_H 3 #define _ASM_POWERPC_IO_H 4 #ifdef __KERNEL__ 5 6 /* 7 */ 8 9 /* Check of existence of legacy devices */ 10 extern int check_legacy_ioport(unsigned long base_port); 11 #define I8042_DATA_REG 0x60 12 #define FDC_BASE 0x3f0 13 14 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) 15 extern struct pci_dev *isa_bridge_pcidev; 16 /* 17 * has legacy ISA devices ? 18 */ 19 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) 20 #endif 21 22 #include <linux/device.h> 23 #include <linux/compiler.h> 24 #include <linux/mm.h> 25 #include <asm/page.h> 26 #include <asm/byteorder.h> 27 #include <asm/synch.h> 28 #include <asm/delay.h> 29 #include <asm/mmiowb.h> 30 #include <asm/mmu.h> 31 32 #define SIO_CONFIG_RA 0x398 33 #define SIO_CONFIG_RD 0x399 34 35 /* 32 bits uses slightly different variables for the various IO 36 * bases. Most of this file only uses _IO_BASE though which we 37 * define properly based on the platform 38 */ 39 #ifndef CONFIG_PCI 40 #define _IO_BASE 0 41 #define _ISA_MEM_BASE 0 42 #define PCI_DRAM_OFFSET 0 43 #elif defined(CONFIG_PPC32) 44 #define _IO_BASE isa_io_base 45 #define _ISA_MEM_BASE isa_mem_base 46 #define PCI_DRAM_OFFSET pci_dram_offset 47 #else 48 #define _IO_BASE pci_io_base 49 #define _ISA_MEM_BASE isa_mem_base 50 #define PCI_DRAM_OFFSET 0 51 #endif 52 53 extern unsigned long isa_io_base; 54 extern unsigned long pci_io_base; 55 extern unsigned long pci_dram_offset; 56 57 extern resource_size_t isa_mem_base; 58 59 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE 60 * is not set or addresses cannot be translated to MMIO. This is typically 61 * set when the platform supports "special" PIO accesses via a non memory 62 * mapped mechanism, and allows things like the early udbg UART code to 63 * function. 64 */ 65 extern bool isa_io_special; 66 67 #ifdef CONFIG_PPC32 68 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 69 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits 70 #endif 71 #endif 72 73 /* 74 * 75 * Low level MMIO accessors 76 * 77 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 78 * specific and thus shouldn't be used in generic code. The accessors 79 * provided here are: 80 * 81 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 82 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 83 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 84 * 85 * Those operate directly on a kernel virtual address. Note that the prototype 86 * for the out_* accessors has the arguments in opposite order from the usual 87 * linux PCI accessors. Unlike those, they take the address first and the value 88 * next. 89 * 90 * Note: I might drop the _ns suffix on the stream operations soon as it is 91 * simply normal for stream operations to not swap in the first place. 92 * 93 */ 94 95 /* -mprefixed can generate offsets beyond range, fall back hack */ 96 #ifdef CONFIG_PPC_KERNEL_PREFIXED 97 #define DEF_MMIO_IN_X(name, size, insn) \ 98 static inline u##size name(const volatile u##size __iomem *addr) \ 99 { \ 100 u##size ret; \ 101 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 102 : "=r" (ret) : "r" (addr) : "memory"); \ 103 return ret; \ 104 } 105 106 #define DEF_MMIO_OUT_X(name, size, insn) \ 107 static inline void name(volatile u##size __iomem *addr, u##size val) \ 108 { \ 109 __asm__ __volatile__("sync;"#insn" %1,0,%0" \ 110 : : "r" (addr), "r" (val) : "memory"); \ 111 mmiowb_set_pending(); \ 112 } 113 114 #define DEF_MMIO_IN_D(name, size, insn) \ 115 static inline u##size name(const volatile u##size __iomem *addr) \ 116 { \ 117 u##size ret; \ 118 __asm__ __volatile__("sync;"#insn" %0,0(%1);twi 0,%0,0;isync"\ 119 : "=r" (ret) : "b" (addr) : "memory"); \ 120 return ret; \ 121 } 122 123 #define DEF_MMIO_OUT_D(name, size, insn) \ 124 static inline void name(volatile u##size __iomem *addr, u##size val) \ 125 { \ 126 __asm__ __volatile__("sync;"#insn" %1,0(%0)" \ 127 : : "b" (addr), "r" (val) : "memory"); \ 128 mmiowb_set_pending(); \ 129 } 130 #else 131 #define DEF_MMIO_IN_X(name, size, insn) \ 132 static inline u##size name(const volatile u##size __iomem *addr) \ 133 { \ 134 u##size ret; \ 135 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 136 : "=r" (ret) : "Z" (*addr) : "memory"); \ 137 return ret; \ 138 } 139 140 #define DEF_MMIO_OUT_X(name, size, insn) \ 141 static inline void name(volatile u##size __iomem *addr, u##size val) \ 142 { \ 143 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 144 : "=Z" (*addr) : "r" (val) : "memory"); \ 145 mmiowb_set_pending(); \ 146 } 147 148 #define DEF_MMIO_IN_D(name, size, insn) \ 149 static inline u##size name(const volatile u##size __iomem *addr) \ 150 { \ 151 u##size ret; \ 152 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 153 : "=r" (ret) : "m<>" (*addr) : "memory"); \ 154 return ret; \ 155 } 156 157 #define DEF_MMIO_OUT_D(name, size, insn) \ 158 static inline void name(volatile u##size __iomem *addr, u##size val) \ 159 { \ 160 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 161 : "=m<>" (*addr) : "r" (val) : "memory"); \ 162 mmiowb_set_pending(); \ 163 } 164 #endif 165 166 DEF_MMIO_IN_D(in_8, 8, lbz); 167 DEF_MMIO_OUT_D(out_8, 8, stb); 168 169 #ifdef __BIG_ENDIAN__ 170 DEF_MMIO_IN_D(in_be16, 16, lhz); 171 DEF_MMIO_IN_D(in_be32, 32, lwz); 172 DEF_MMIO_IN_X(in_le16, 16, lhbrx); 173 DEF_MMIO_IN_X(in_le32, 32, lwbrx); 174 175 DEF_MMIO_OUT_D(out_be16, 16, sth); 176 DEF_MMIO_OUT_D(out_be32, 32, stw); 177 DEF_MMIO_OUT_X(out_le16, 16, sthbrx); 178 DEF_MMIO_OUT_X(out_le32, 32, stwbrx); 179 #else 180 DEF_MMIO_IN_X(in_be16, 16, lhbrx); 181 DEF_MMIO_IN_X(in_be32, 32, lwbrx); 182 DEF_MMIO_IN_D(in_le16, 16, lhz); 183 DEF_MMIO_IN_D(in_le32, 32, lwz); 184 185 DEF_MMIO_OUT_X(out_be16, 16, sthbrx); 186 DEF_MMIO_OUT_X(out_be32, 32, stwbrx); 187 DEF_MMIO_OUT_D(out_le16, 16, sth); 188 DEF_MMIO_OUT_D(out_le32, 32, stw); 189 190 #endif /* __BIG_ENDIAN */ 191 192 #ifdef __powerpc64__ 193 194 #ifdef __BIG_ENDIAN__ 195 DEF_MMIO_OUT_D(out_be64, 64, std); 196 DEF_MMIO_IN_D(in_be64, 64, ld); 197 198 /* There is no asm instructions for 64 bits reverse loads and stores */ 199 static inline u64 in_le64(const volatile u64 __iomem *addr) 200 { 201 return swab64(in_be64(addr)); 202 } 203 204 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 205 { 206 out_be64(addr, swab64(val)); 207 } 208 #else 209 DEF_MMIO_OUT_D(out_le64, 64, std); 210 DEF_MMIO_IN_D(in_le64, 64, ld); 211 212 /* There is no asm instructions for 64 bits reverse loads and stores */ 213 static inline u64 in_be64(const volatile u64 __iomem *addr) 214 { 215 return swab64(in_le64(addr)); 216 } 217 218 static inline void out_be64(volatile u64 __iomem *addr, u64 val) 219 { 220 out_le64(addr, swab64(val)); 221 } 222 223 #endif 224 #endif /* __powerpc64__ */ 225 226 /* 227 * Low level IO stream instructions are defined out of line for now 228 */ 229 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 230 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 231 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 232 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 233 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 234 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 235 236 /* The _ns naming is historical and will be removed. For now, just #define 237 * the non _ns equivalent names 238 */ 239 #define _insw _insw_ns 240 #define _insl _insl_ns 241 #define _outsw _outsw_ns 242 #define _outsl _outsl_ns 243 244 245 /* 246 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 247 */ 248 249 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 250 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 251 unsigned long n); 252 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 253 unsigned long n); 254 255 /* 256 * 257 * PCI and standard ISA accessors 258 * 259 * Those are globally defined linux accessors for devices on PCI or ISA 260 * busses. They follow the Linux defined semantics. The current implementation 261 * for PowerPC is as close as possible to the x86 version of these, and thus 262 * provides fairly heavy weight barriers for the non-raw versions 263 * 264 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO 265 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its 266 * own implementation of some or all of the accessors. 267 */ 268 269 /* 270 * Include the EEH definitions when EEH is enabled only so they don't get 271 * in the way when building for 32 bits 272 */ 273 #ifdef CONFIG_EEH 274 #include <asm/eeh.h> 275 #endif 276 277 /* Shortcut to the MMIO argument pointer */ 278 #define PCI_IO_ADDR volatile void __iomem * 279 280 /* Indirect IO address tokens: 281 * 282 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks 283 * on all MMIOs. (Note that this is all 64 bits only for now) 284 * 285 * To help platforms who may need to differentiate MMIO addresses in 286 * their hooks, a bitfield is reserved for use by the platform near the 287 * top of MMIO addresses (not PIO, those have to cope the hard way). 288 * 289 * The highest address in the kernel virtual space are: 290 * 291 * d0003fffffffffff # with Hash MMU 292 * c00fffffffffffff # with Radix MMU 293 * 294 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits 295 * that can be used for the field. 296 * 297 * The direct IO mapping operations will then mask off those bits 298 * before doing the actual access, though that only happen when 299 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that 300 * mechanism 301 * 302 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes 303 * all PIO functions call through a hook. 304 */ 305 306 #ifdef CONFIG_PPC_INDIRECT_MMIO 307 #define PCI_IO_IND_TOKEN_SHIFT 52 308 #define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT) 309 #define PCI_FIX_ADDR(addr) \ 310 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 311 #define PCI_GET_ADDR_TOKEN(addr) \ 312 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 313 PCI_IO_IND_TOKEN_SHIFT) 314 #define PCI_SET_ADDR_TOKEN(addr, token) \ 315 do { \ 316 unsigned long __a = (unsigned long)(addr); \ 317 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 318 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 319 (addr) = (void __iomem *)__a; \ 320 } while(0) 321 #else 322 #define PCI_FIX_ADDR(addr) (addr) 323 #endif 324 325 326 /* 327 * Non ordered and non-swapping "raw" accessors 328 */ 329 330 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 331 { 332 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 333 } 334 #define __raw_readb __raw_readb 335 336 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 337 { 338 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 339 } 340 #define __raw_readw __raw_readw 341 342 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 343 { 344 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 345 } 346 #define __raw_readl __raw_readl 347 348 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 349 { 350 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 351 } 352 #define __raw_writeb __raw_writeb 353 354 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 355 { 356 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 357 } 358 #define __raw_writew __raw_writew 359 360 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 361 { 362 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 363 } 364 #define __raw_writel __raw_writel 365 366 #ifdef __powerpc64__ 367 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 368 { 369 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 370 } 371 #define __raw_readq __raw_readq 372 373 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 374 { 375 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 376 } 377 #define __raw_writeq __raw_writeq 378 379 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr) 380 { 381 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr); 382 } 383 #define __raw_writeq_be __raw_writeq_be 384 385 /* 386 * Real mode versions of the above. Those instructions are only supposed 387 * to be used in hypervisor real mode as per the architecture spec. 388 */ 389 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr) 390 { 391 __asm__ __volatile__(".machine push; \ 392 .machine power6; \ 393 stbcix %0,0,%1; \ 394 .machine pop;" 395 : : "r" (val), "r" (paddr) : "memory"); 396 } 397 398 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr) 399 { 400 __asm__ __volatile__(".machine push; \ 401 .machine power6; \ 402 sthcix %0,0,%1; \ 403 .machine pop;" 404 : : "r" (val), "r" (paddr) : "memory"); 405 } 406 407 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr) 408 { 409 __asm__ __volatile__(".machine push; \ 410 .machine power6; \ 411 stwcix %0,0,%1; \ 412 .machine pop;" 413 : : "r" (val), "r" (paddr) : "memory"); 414 } 415 416 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr) 417 { 418 __asm__ __volatile__(".machine push; \ 419 .machine power6; \ 420 stdcix %0,0,%1; \ 421 .machine pop;" 422 : : "r" (val), "r" (paddr) : "memory"); 423 } 424 425 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr) 426 { 427 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr); 428 } 429 430 static inline u8 __raw_rm_readb(volatile void __iomem *paddr) 431 { 432 u8 ret; 433 __asm__ __volatile__(".machine push; \ 434 .machine power6; \ 435 lbzcix %0,0, %1; \ 436 .machine pop;" 437 : "=r" (ret) : "r" (paddr) : "memory"); 438 return ret; 439 } 440 441 static inline u16 __raw_rm_readw(volatile void __iomem *paddr) 442 { 443 u16 ret; 444 __asm__ __volatile__(".machine push; \ 445 .machine power6; \ 446 lhzcix %0,0, %1; \ 447 .machine pop;" 448 : "=r" (ret) : "r" (paddr) : "memory"); 449 return ret; 450 } 451 452 static inline u32 __raw_rm_readl(volatile void __iomem *paddr) 453 { 454 u32 ret; 455 __asm__ __volatile__(".machine push; \ 456 .machine power6; \ 457 lwzcix %0,0, %1; \ 458 .machine pop;" 459 : "=r" (ret) : "r" (paddr) : "memory"); 460 return ret; 461 } 462 463 static inline u64 __raw_rm_readq(volatile void __iomem *paddr) 464 { 465 u64 ret; 466 __asm__ __volatile__(".machine push; \ 467 .machine power6; \ 468 ldcix %0,0, %1; \ 469 .machine pop;" 470 : "=r" (ret) : "r" (paddr) : "memory"); 471 return ret; 472 } 473 #endif /* __powerpc64__ */ 474 475 /* 476 * 477 * PCI PIO and MMIO accessors. 478 * 479 * 480 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 481 * machine checks (which they occasionally do when probing non existing 482 * IO ports on some platforms, like PowerMac and 8xx). 483 * I always found it to be of dubious reliability and I am tempted to get 484 * rid of it one of these days. So if you think it's important to keep it, 485 * please voice up asap. We never had it for 64 bits and I do not intend 486 * to port it over 487 */ 488 489 #ifdef CONFIG_PPC32 490 491 #define __do_in_asm(name, op) \ 492 static inline unsigned int name(unsigned int port) \ 493 { \ 494 unsigned int x; \ 495 __asm__ __volatile__( \ 496 "sync\n" \ 497 "0:" op " %0,0,%1\n" \ 498 "1: twi 0,%0,0\n" \ 499 "2: isync\n" \ 500 "3: nop\n" \ 501 "4:\n" \ 502 ".section .fixup,\"ax\"\n" \ 503 "5: li %0,-1\n" \ 504 " b 4b\n" \ 505 ".previous\n" \ 506 EX_TABLE(0b, 5b) \ 507 EX_TABLE(1b, 5b) \ 508 EX_TABLE(2b, 5b) \ 509 EX_TABLE(3b, 5b) \ 510 : "=&r" (x) \ 511 : "r" (port + _IO_BASE) \ 512 : "memory"); \ 513 return x; \ 514 } 515 516 #define __do_out_asm(name, op) \ 517 static inline void name(unsigned int val, unsigned int port) \ 518 { \ 519 __asm__ __volatile__( \ 520 "sync\n" \ 521 "0:" op " %0,0,%1\n" \ 522 "1: sync\n" \ 523 "2:\n" \ 524 EX_TABLE(0b, 2b) \ 525 EX_TABLE(1b, 2b) \ 526 : : "r" (val), "r" (port + _IO_BASE) \ 527 : "memory"); \ 528 } 529 530 __do_in_asm(_rec_inb, "lbzx") 531 __do_in_asm(_rec_inw, "lhbrx") 532 __do_in_asm(_rec_inl, "lwbrx") 533 __do_out_asm(_rec_outb, "stbx") 534 __do_out_asm(_rec_outw, "sthbrx") 535 __do_out_asm(_rec_outl, "stwbrx") 536 537 #endif /* CONFIG_PPC32 */ 538 539 /* The "__do_*" operations below provide the actual "base" implementation 540 * for each of the defined accessors. Some of them use the out_* functions 541 * directly, some of them still use EEH, though we might change that in the 542 * future. Those macros below provide the necessary argument swapping and 543 * handling of the IO base for PIO. 544 * 545 * They are themselves used by the macros that define the actual accessors 546 * and can be used by the hooks if any. 547 * 548 * Note that PIO operations are always defined in terms of their corresonding 549 * MMIO operations. That allows platforms like iSeries who want to modify the 550 * behaviour of both to only hook on the MMIO version and get both. It's also 551 * possible to hook directly at the toplevel PIO operation if they have to 552 * be handled differently 553 */ 554 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 555 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 556 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 557 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 558 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 559 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 560 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 561 562 #ifdef CONFIG_EEH 563 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 564 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 565 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 566 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 567 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 568 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 569 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 570 #else /* CONFIG_EEH */ 571 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 572 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 573 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 574 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 575 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 576 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 577 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 578 #endif /* !defined(CONFIG_EEH) */ 579 580 #ifdef CONFIG_PPC32 581 #define __do_outb(val, port) _rec_outb(val, port) 582 #define __do_outw(val, port) _rec_outw(val, port) 583 #define __do_outl(val, port) _rec_outl(val, port) 584 #define __do_inb(port) _rec_inb(port) 585 #define __do_inw(port) _rec_inw(port) 586 #define __do_inl(port) _rec_inl(port) 587 #else /* CONFIG_PPC32 */ 588 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 589 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 590 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 591 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 592 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 593 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 594 #endif /* !CONFIG_PPC32 */ 595 596 #ifdef CONFIG_EEH 597 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 598 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 599 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 600 #else /* CONFIG_EEH */ 601 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 602 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 603 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 604 #endif /* !CONFIG_EEH */ 605 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 606 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 607 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 608 609 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 610 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 611 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 612 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 613 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 614 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 615 616 #define __do_memset_io(addr, c, n) \ 617 _memset_io(PCI_FIX_ADDR(addr), c, n) 618 #define __do_memcpy_toio(dst, src, n) \ 619 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 620 621 #ifdef CONFIG_EEH 622 #define __do_memcpy_fromio(dst, src, n) \ 623 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 624 #else /* CONFIG_EEH */ 625 #define __do_memcpy_fromio(dst, src, n) \ 626 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 627 #endif /* !CONFIG_EEH */ 628 629 #ifdef CONFIG_PPC_INDIRECT_PIO 630 #define DEF_PCI_HOOK_pio(x) x 631 #else 632 #define DEF_PCI_HOOK_pio(x) NULL 633 #endif 634 635 #ifdef CONFIG_PPC_INDIRECT_MMIO 636 #define DEF_PCI_HOOK_mem(x) x 637 #else 638 #define DEF_PCI_HOOK_mem(x) NULL 639 #endif 640 641 /* Structure containing all the hooks */ 642 extern struct ppc_pci_io { 643 644 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 645 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 646 647 #include <asm/io-defs.h> 648 649 #undef DEF_PCI_AC_RET 650 #undef DEF_PCI_AC_NORET 651 652 } ppc_pci_io; 653 654 /* The inline wrappers */ 655 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 656 static inline ret name at \ 657 { \ 658 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 659 return ppc_pci_io.name al; \ 660 return __do_##name al; \ 661 } 662 663 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 664 static inline void name at \ 665 { \ 666 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 667 ppc_pci_io.name al; \ 668 else \ 669 __do_##name al; \ 670 } 671 672 #include <asm/io-defs.h> 673 674 #undef DEF_PCI_AC_RET 675 #undef DEF_PCI_AC_NORET 676 677 /* Some drivers check for the presence of readq & writeq with 678 * a #ifdef, so we make them happy here. 679 */ 680 #define readb readb 681 #define readw readw 682 #define readl readl 683 #define writeb writeb 684 #define writew writew 685 #define writel writel 686 #define readsb readsb 687 #define readsw readsw 688 #define readsl readsl 689 #define writesb writesb 690 #define writesw writesw 691 #define writesl writesl 692 #define inb inb 693 #define inw inw 694 #define inl inl 695 #define outb outb 696 #define outw outw 697 #define outl outl 698 #define insb insb 699 #define insw insw 700 #define insl insl 701 #define outsb outsb 702 #define outsw outsw 703 #define outsl outsl 704 #ifdef __powerpc64__ 705 #define readq readq 706 #define writeq writeq 707 #endif 708 #define memset_io memset_io 709 #define memcpy_fromio memcpy_fromio 710 #define memcpy_toio memcpy_toio 711 712 /* 713 * We don't do relaxed operations yet, at least not with this semantic 714 */ 715 #define readb_relaxed(addr) readb(addr) 716 #define readw_relaxed(addr) readw(addr) 717 #define readl_relaxed(addr) readl(addr) 718 #define readq_relaxed(addr) readq(addr) 719 #define writeb_relaxed(v, addr) writeb(v, addr) 720 #define writew_relaxed(v, addr) writew(v, addr) 721 #define writel_relaxed(v, addr) writel(v, addr) 722 #define writeq_relaxed(v, addr) writeq(v, addr) 723 724 #ifndef CONFIG_GENERIC_IOMAP 725 /* 726 * Here comes the implementation of the IOMAP interfaces. 727 */ 728 static inline unsigned int ioread16be(const void __iomem *addr) 729 { 730 return readw_be(addr); 731 } 732 #define ioread16be ioread16be 733 734 static inline unsigned int ioread32be(const void __iomem *addr) 735 { 736 return readl_be(addr); 737 } 738 #define ioread32be ioread32be 739 740 #ifdef __powerpc64__ 741 static inline u64 ioread64_lo_hi(const void __iomem *addr) 742 { 743 return readq(addr); 744 } 745 #define ioread64_lo_hi ioread64_lo_hi 746 747 static inline u64 ioread64_hi_lo(const void __iomem *addr) 748 { 749 return readq(addr); 750 } 751 #define ioread64_hi_lo ioread64_hi_lo 752 753 static inline u64 ioread64be(const void __iomem *addr) 754 { 755 return readq_be(addr); 756 } 757 #define ioread64be ioread64be 758 759 static inline u64 ioread64be_lo_hi(const void __iomem *addr) 760 { 761 return readq_be(addr); 762 } 763 #define ioread64be_lo_hi ioread64be_lo_hi 764 765 static inline u64 ioread64be_hi_lo(const void __iomem *addr) 766 { 767 return readq_be(addr); 768 } 769 #define ioread64be_hi_lo ioread64be_hi_lo 770 #endif /* __powerpc64__ */ 771 772 static inline void iowrite16be(u16 val, void __iomem *addr) 773 { 774 writew_be(val, addr); 775 } 776 #define iowrite16be iowrite16be 777 778 static inline void iowrite32be(u32 val, void __iomem *addr) 779 { 780 writel_be(val, addr); 781 } 782 #define iowrite32be iowrite32be 783 784 #ifdef __powerpc64__ 785 static inline void iowrite64_lo_hi(u64 val, void __iomem *addr) 786 { 787 writeq(val, addr); 788 } 789 #define iowrite64_lo_hi iowrite64_lo_hi 790 791 static inline void iowrite64_hi_lo(u64 val, void __iomem *addr) 792 { 793 writeq(val, addr); 794 } 795 #define iowrite64_hi_lo iowrite64_hi_lo 796 797 static inline void iowrite64be(u64 val, void __iomem *addr) 798 { 799 writeq_be(val, addr); 800 } 801 #define iowrite64be iowrite64be 802 803 static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr) 804 { 805 writeq_be(val, addr); 806 } 807 #define iowrite64be_lo_hi iowrite64be_lo_hi 808 809 static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr) 810 { 811 writeq_be(val, addr); 812 } 813 #define iowrite64be_hi_lo iowrite64be_hi_lo 814 #endif /* __powerpc64__ */ 815 816 struct pci_dev; 817 void pci_iounmap(struct pci_dev *dev, void __iomem *addr); 818 #define pci_iounmap pci_iounmap 819 void __iomem *ioport_map(unsigned long port, unsigned int len); 820 #define ioport_map ioport_map 821 #endif 822 823 static inline void iosync(void) 824 { 825 __asm__ __volatile__ ("sync" : : : "memory"); 826 } 827 828 /* Enforce in-order execution of data I/O. 829 * No distinction between read/write on PPC; use eieio for all three. 830 * Those are fairly week though. They don't provide a barrier between 831 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 832 * they only provide barriers between 2 __raw MMIO operations and 833 * possibly break write combining. 834 */ 835 #define iobarrier_rw() eieio() 836 #define iobarrier_r() eieio() 837 #define iobarrier_w() eieio() 838 839 840 /* 841 * output pause versions need a delay at least for the 842 * w83c105 ide controller in a p610. 843 */ 844 #define inb_p(port) inb(port) 845 #define outb_p(val, port) (udelay(1), outb((val), (port))) 846 #define inw_p(port) inw(port) 847 #define outw_p(val, port) (udelay(1), outw((val), (port))) 848 #define inl_p(port) inl(port) 849 #define outl_p(val, port) (udelay(1), outl((val), (port))) 850 851 852 #define IO_SPACE_LIMIT ~(0UL) 853 854 /** 855 * ioremap - map bus memory into CPU space 856 * @address: bus address of the memory 857 * @size: size of the resource to map 858 * 859 * ioremap performs a platform specific sequence of operations to 860 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 861 * writew/writel functions and the other mmio helpers. The returned 862 * address is not guaranteed to be usable directly as a virtual 863 * address. 864 * 865 * We provide a few variations of it: 866 * 867 * * ioremap is the standard one and provides non-cacheable guarded mappings 868 * and can be hooked by the platform via ppc_md 869 * 870 * * ioremap_prot allows to specify the page flags as an argument and can 871 * also be hooked by the platform via ppc_md. 872 * 873 * * ioremap_wc enables write combining 874 * 875 * * ioremap_wt enables write through 876 * 877 * * ioremap_coherent maps coherent cached memory 878 * 879 * * iounmap undoes such a mapping and can be hooked 880 * 881 * * __ioremap_caller is the same as above but takes an explicit caller 882 * reference rather than using __builtin_return_address(0) 883 * 884 */ 885 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 886 #define ioremap ioremap 887 #define ioremap_prot ioremap_prot 888 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 889 #define ioremap_wc ioremap_wc 890 891 #ifdef CONFIG_PPC32 892 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size); 893 #define ioremap_wt ioremap_wt 894 #endif 895 896 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size); 897 #define ioremap_cache(addr, size) \ 898 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL)) 899 900 #define iounmap iounmap 901 902 void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size); 903 904 int early_ioremap_range(unsigned long ea, phys_addr_t pa, 905 unsigned long size, pgprot_t prot); 906 907 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 908 pgprot_t prot, void *caller); 909 910 /* 911 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation 912 * which needs some additional definitions here. They basically allow PIO 913 * space overall to be 1GB. This will work as long as we never try to use 914 * iomap to map MMIO below 1GB which should be fine on ppc64 915 */ 916 #define HAVE_ARCH_PIO_SIZE 1 917 #define PIO_OFFSET 0x00000000UL 918 #define PIO_MASK (FULL_IO_SIZE - 1) 919 #define PIO_RESERVED (FULL_IO_SIZE) 920 921 #define mmio_read16be(addr) readw_be(addr) 922 #define mmio_read32be(addr) readl_be(addr) 923 #define mmio_read64be(addr) readq_be(addr) 924 #define mmio_write16be(val, addr) writew_be(val, addr) 925 #define mmio_write32be(val, addr) writel_be(val, addr) 926 #define mmio_write64be(val, addr) writeq_be(val, addr) 927 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 928 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 929 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 930 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 931 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 932 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 933 934 /** 935 * virt_to_phys - map virtual addresses to physical 936 * @address: address to remap 937 * 938 * The returned physical address is the physical (CPU) mapping for 939 * the memory address given. It is only valid to use this function on 940 * addresses directly mapped or allocated via kmalloc. 941 * 942 * This function does not give bus mappings for DMA transfers. In 943 * almost all conceivable cases a device driver should not be using 944 * this function 945 */ 946 static inline unsigned long virt_to_phys(const volatile void * address) 947 { 948 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address)); 949 950 return __pa((unsigned long)address); 951 } 952 #define virt_to_phys virt_to_phys 953 954 /** 955 * phys_to_virt - map physical address to virtual 956 * @address: address to remap 957 * 958 * The returned virtual address is a current CPU mapping for 959 * the memory address given. It is only valid to use this function on 960 * addresses that have a kernel mapping 961 * 962 * This function does not handle bus mappings for DMA transfers. In 963 * almost all conceivable cases a device driver should not be using 964 * this function 965 */ 966 static inline void * phys_to_virt(unsigned long address) 967 { 968 return (void *)__va(address); 969 } 970 #define phys_to_virt phys_to_virt 971 972 /* 973 * Change "struct page" to physical address. 974 */ 975 static inline phys_addr_t page_to_phys(struct page *page) 976 { 977 unsigned long pfn = page_to_pfn(page); 978 979 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn)); 980 981 return PFN_PHYS(pfn); 982 } 983 984 /* 985 * 32 bits still uses virt_to_bus() for it's implementation of DMA 986 * mappings se we have to keep it defined here. We also have some old 987 * drivers (shame shame shame) that use bus_to_virt() and haven't been 988 * fixed yet so I need to define it here. 989 */ 990 #ifdef CONFIG_PPC32 991 992 static inline unsigned long virt_to_bus(volatile void * address) 993 { 994 if (address == NULL) 995 return 0; 996 return __pa(address) + PCI_DRAM_OFFSET; 997 } 998 #define virt_to_bus virt_to_bus 999 1000 static inline void * bus_to_virt(unsigned long address) 1001 { 1002 if (address == 0) 1003 return NULL; 1004 return __va(address - PCI_DRAM_OFFSET); 1005 } 1006 #define bus_to_virt bus_to_virt 1007 1008 #endif /* CONFIG_PPC32 */ 1009 1010 /* access ports */ 1011 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 1012 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 1013 1014 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 1015 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 1016 1017 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 1018 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 1019 1020 /* Clear and set bits in one shot. These macros can be used to clear and 1021 * set multiple bits in a register using a single read-modify-write. These 1022 * macros can also be used to set a multiple-bit bit pattern using a mask, 1023 * by specifying the mask in the 'clear' parameter and the new bit pattern 1024 * in the 'set' parameter. 1025 */ 1026 1027 #define clrsetbits(type, addr, clear, set) \ 1028 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 1029 1030 #ifdef __powerpc64__ 1031 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 1032 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 1033 #endif 1034 1035 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 1036 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 1037 1038 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 1039 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 1040 1041 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 1042 1043 #include <asm-generic/io.h> 1044 1045 #endif /* __KERNEL__ */ 1046 1047 #endif /* _ASM_POWERPC_IO_H */ 1048