xref: /linux/arch/powerpc/include/asm/io.h (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4 
5 #define ARCH_HAS_IOREMAP_WC
6 
7 /*
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/io.h>
29 
30 #include <linux/compiler.h>
31 #include <asm/page.h>
32 #include <asm/byteorder.h>
33 #include <asm/synch.h>
34 #include <asm/delay.h>
35 #include <asm/mmu.h>
36 
37 #include <asm-generic/iomap.h>
38 
39 #ifdef CONFIG_PPC64
40 #include <asm/paca.h>
41 #endif
42 
43 #define SIO_CONFIG_RA	0x398
44 #define SIO_CONFIG_RD	0x399
45 
46 #define SLOW_DOWN_IO
47 
48 /* 32 bits uses slightly different variables for the various IO
49  * bases. Most of this file only uses _IO_BASE though which we
50  * define properly based on the platform
51  */
52 #ifndef CONFIG_PCI
53 #define _IO_BASE	0
54 #define _ISA_MEM_BASE	0
55 #define PCI_DRAM_OFFSET 0
56 #elif defined(CONFIG_PPC32)
57 #define _IO_BASE	isa_io_base
58 #define _ISA_MEM_BASE	isa_mem_base
59 #define PCI_DRAM_OFFSET	pci_dram_offset
60 #else
61 #define _IO_BASE	pci_io_base
62 #define _ISA_MEM_BASE	isa_mem_base
63 #define PCI_DRAM_OFFSET	0
64 #endif
65 
66 extern unsigned long isa_io_base;
67 extern unsigned long pci_io_base;
68 extern unsigned long pci_dram_offset;
69 
70 extern resource_size_t isa_mem_base;
71 
72 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
73  * is not set or addresses cannot be translated to MMIO. This is typically
74  * set when the platform supports "special" PIO accesses via a non memory
75  * mapped mechanism, and allows things like the early udbg UART code to
76  * function.
77  */
78 extern bool isa_io_special;
79 
80 #ifdef CONFIG_PPC32
81 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
82 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
83 #endif
84 #endif
85 
86 /*
87  *
88  * Low level MMIO accessors
89  *
90  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
91  * specific and thus shouldn't be used in generic code. The accessors
92  * provided here are:
93  *
94  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
95  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
96  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
97  *
98  * Those operate directly on a kernel virtual address. Note that the prototype
99  * for the out_* accessors has the arguments in opposite order from the usual
100  * linux PCI accessors. Unlike those, they take the address first and the value
101  * next.
102  *
103  * Note: I might drop the _ns suffix on the stream operations soon as it is
104  * simply normal for stream operations to not swap in the first place.
105  *
106  */
107 
108 #ifdef CONFIG_PPC64
109 #define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
110 #else
111 #define IO_SET_SYNC_FLAG()
112 #endif
113 
114 /* gcc 4.0 and older doesn't have 'Z' constraint */
115 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
116 #define DEF_MMIO_IN_X(name, size, insn)				\
117 static inline u##size name(const volatile u##size __iomem *addr)	\
118 {									\
119 	u##size ret;							\
120 	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
121 		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
122 	return ret;							\
123 }
124 
125 #define DEF_MMIO_OUT_X(name, size, insn)				\
126 static inline void name(volatile u##size __iomem *addr, u##size val)	\
127 {									\
128 	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
129 		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
130 	IO_SET_SYNC_FLAG();						\
131 }
132 #else /* newer gcc */
133 #define DEF_MMIO_IN_X(name, size, insn)				\
134 static inline u##size name(const volatile u##size __iomem *addr)	\
135 {									\
136 	u##size ret;							\
137 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
138 		: "=r" (ret) : "Z" (*addr) : "memory");			\
139 	return ret;							\
140 }
141 
142 #define DEF_MMIO_OUT_X(name, size, insn)				\
143 static inline void name(volatile u##size __iomem *addr, u##size val)	\
144 {									\
145 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
146 		: "=Z" (*addr) : "r" (val) : "memory");			\
147 	IO_SET_SYNC_FLAG();						\
148 }
149 #endif
150 
151 #define DEF_MMIO_IN_D(name, size, insn)				\
152 static inline u##size name(const volatile u##size __iomem *addr)	\
153 {									\
154 	u##size ret;							\
155 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
156 		: "=r" (ret) : "m" (*addr) : "memory");			\
157 	return ret;							\
158 }
159 
160 #define DEF_MMIO_OUT_D(name, size, insn)				\
161 static inline void name(volatile u##size __iomem *addr, u##size val)	\
162 {									\
163 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
164 		: "=m" (*addr) : "r" (val) : "memory");			\
165 	IO_SET_SYNC_FLAG();						\
166 }
167 
168 DEF_MMIO_IN_D(in_8,     8, lbz);
169 DEF_MMIO_OUT_D(out_8,   8, stb);
170 
171 #ifdef __BIG_ENDIAN__
172 DEF_MMIO_IN_D(in_be16, 16, lhz);
173 DEF_MMIO_IN_D(in_be32, 32, lwz);
174 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
175 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
176 
177 DEF_MMIO_OUT_D(out_be16, 16, sth);
178 DEF_MMIO_OUT_D(out_be32, 32, stw);
179 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
180 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
181 #else
182 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
183 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
184 DEF_MMIO_IN_D(in_le16, 16, lhz);
185 DEF_MMIO_IN_D(in_le32, 32, lwz);
186 
187 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
188 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
189 DEF_MMIO_OUT_D(out_le16, 16, sth);
190 DEF_MMIO_OUT_D(out_le32, 32, stw);
191 
192 #endif /* __BIG_ENDIAN */
193 
194 #ifdef __powerpc64__
195 
196 #ifdef __BIG_ENDIAN__
197 DEF_MMIO_OUT_D(out_be64, 64, std);
198 DEF_MMIO_IN_D(in_be64, 64, ld);
199 
200 /* There is no asm instructions for 64 bits reverse loads and stores */
201 static inline u64 in_le64(const volatile u64 __iomem *addr)
202 {
203 	return swab64(in_be64(addr));
204 }
205 
206 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
207 {
208 	out_be64(addr, swab64(val));
209 }
210 #else
211 DEF_MMIO_OUT_D(out_le64, 64, std);
212 DEF_MMIO_IN_D(in_le64, 64, ld);
213 
214 /* There is no asm instructions for 64 bits reverse loads and stores */
215 static inline u64 in_be64(const volatile u64 __iomem *addr)
216 {
217 	return swab64(in_le64(addr));
218 }
219 
220 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
221 {
222 	out_le64(addr, swab64(val));
223 }
224 
225 #endif
226 #endif /* __powerpc64__ */
227 
228 /*
229  * Low level IO stream instructions are defined out of line for now
230  */
231 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
232 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
233 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
234 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
235 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
236 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
237 
238 /* The _ns naming is historical and will be removed. For now, just #define
239  * the non _ns equivalent names
240  */
241 #define _insw	_insw_ns
242 #define _insl	_insl_ns
243 #define _outsw	_outsw_ns
244 #define _outsl	_outsl_ns
245 
246 
247 /*
248  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
249  */
250 
251 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
252 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
253 			   unsigned long n);
254 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
255 			 unsigned long n);
256 
257 /*
258  *
259  * PCI and standard ISA accessors
260  *
261  * Those are globally defined linux accessors for devices on PCI or ISA
262  * busses. They follow the Linux defined semantics. The current implementation
263  * for PowerPC is as close as possible to the x86 version of these, and thus
264  * provides fairly heavy weight barriers for the non-raw versions
265  *
266  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
267  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
268  * own implementation of some or all of the accessors.
269  */
270 
271 /*
272  * Include the EEH definitions when EEH is enabled only so they don't get
273  * in the way when building for 32 bits
274  */
275 #ifdef CONFIG_EEH
276 #include <asm/eeh.h>
277 #endif
278 
279 /* Shortcut to the MMIO argument pointer */
280 #define PCI_IO_ADDR	volatile void __iomem *
281 
282 /* Indirect IO address tokens:
283  *
284  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
285  * on all MMIOs. (Note that this is all 64 bits only for now)
286  *
287  * To help platforms who may need to differenciate MMIO addresses in
288  * their hooks, a bitfield is reserved for use by the platform near the
289  * top of MMIO addresses (not PIO, those have to cope the hard way).
290  *
291  * This bit field is 12 bits and is at the top of the IO virtual
292  * addresses PCI_IO_INDIRECT_TOKEN_MASK.
293  *
294  * The kernel virtual space is thus:
295  *
296  *  0xD000000000000000		: vmalloc
297  *  0xD000080000000000		: PCI PHB IO space
298  *  0xD000080080000000		: ioremap
299  *  0xD0000fffffffffff		: end of ioremap region
300  *
301  * Since the top 4 bits are reserved as the region ID, we use thus
302  * the next 12 bits and keep 4 bits available for the future if the
303  * virtual address space is ever to be extended.
304  *
305  * The direct IO mapping operations will then mask off those bits
306  * before doing the actual access, though that only happen when
307  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
308  * mechanism
309  *
310  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
311  * all PIO functions call through a hook.
312  */
313 
314 #ifdef CONFIG_PPC_INDIRECT_MMIO
315 #define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
316 #define PCI_IO_IND_TOKEN_SHIFT	48
317 #define PCI_FIX_ADDR(addr)						\
318 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
319 #define PCI_GET_ADDR_TOKEN(addr)					\
320 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
321 		PCI_IO_IND_TOKEN_SHIFT)
322 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
323 do {									\
324 	unsigned long __a = (unsigned long)(addr);			\
325 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
326 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
327 	(addr) = (void __iomem *)__a;					\
328 } while(0)
329 #else
330 #define PCI_FIX_ADDR(addr) (addr)
331 #endif
332 
333 
334 /*
335  * Non ordered and non-swapping "raw" accessors
336  */
337 
338 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
339 {
340 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
341 }
342 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
343 {
344 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
345 }
346 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
347 {
348 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
349 }
350 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
351 {
352 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
353 }
354 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
355 {
356 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
357 }
358 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
359 {
360 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
361 }
362 
363 #ifdef __powerpc64__
364 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
365 {
366 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
367 }
368 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
369 {
370 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
371 }
372 #endif /* __powerpc64__ */
373 
374 /*
375  *
376  * PCI PIO and MMIO accessors.
377  *
378  *
379  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
380  * machine checks (which they occasionally do when probing non existing
381  * IO ports on some platforms, like PowerMac and 8xx).
382  * I always found it to be of dubious reliability and I am tempted to get
383  * rid of it one of these days. So if you think it's important to keep it,
384  * please voice up asap. We never had it for 64 bits and I do not intend
385  * to port it over
386  */
387 
388 #ifdef CONFIG_PPC32
389 
390 #define __do_in_asm(name, op)				\
391 static inline unsigned int name(unsigned int port)	\
392 {							\
393 	unsigned int x;					\
394 	__asm__ __volatile__(				\
395 		"sync\n"				\
396 		"0:"	op "	%0,0,%1\n"		\
397 		"1:	twi	0,%0,0\n"		\
398 		"2:	isync\n"			\
399 		"3:	nop\n"				\
400 		"4:\n"					\
401 		".section .fixup,\"ax\"\n"		\
402 		"5:	li	%0,-1\n"		\
403 		"	b	4b\n"			\
404 		".previous\n"				\
405 		".section __ex_table,\"a\"\n"		\
406 		"	.align	2\n"			\
407 		"	.long	0b,5b\n"		\
408 		"	.long	1b,5b\n"		\
409 		"	.long	2b,5b\n"		\
410 		"	.long	3b,5b\n"		\
411 		".previous"				\
412 		: "=&r" (x)				\
413 		: "r" (port + _IO_BASE)			\
414 		: "memory");  				\
415 	return x;					\
416 }
417 
418 #define __do_out_asm(name, op)				\
419 static inline void name(unsigned int val, unsigned int port) \
420 {							\
421 	__asm__ __volatile__(				\
422 		"sync\n"				\
423 		"0:" op " %0,0,%1\n"			\
424 		"1:	sync\n"				\
425 		"2:\n"					\
426 		".section __ex_table,\"a\"\n"		\
427 		"	.align	2\n"			\
428 		"	.long	0b,2b\n"		\
429 		"	.long	1b,2b\n"		\
430 		".previous"				\
431 		: : "r" (val), "r" (port + _IO_BASE)	\
432 		: "memory");   	   	   		\
433 }
434 
435 __do_in_asm(_rec_inb, "lbzx")
436 __do_in_asm(_rec_inw, "lhbrx")
437 __do_in_asm(_rec_inl, "lwbrx")
438 __do_out_asm(_rec_outb, "stbx")
439 __do_out_asm(_rec_outw, "sthbrx")
440 __do_out_asm(_rec_outl, "stwbrx")
441 
442 #endif /* CONFIG_PPC32 */
443 
444 /* The "__do_*" operations below provide the actual "base" implementation
445  * for each of the defined accessors. Some of them use the out_* functions
446  * directly, some of them still use EEH, though we might change that in the
447  * future. Those macros below provide the necessary argument swapping and
448  * handling of the IO base for PIO.
449  *
450  * They are themselves used by the macros that define the actual accessors
451  * and can be used by the hooks if any.
452  *
453  * Note that PIO operations are always defined in terms of their corresonding
454  * MMIO operations. That allows platforms like iSeries who want to modify the
455  * behaviour of both to only hook on the MMIO version and get both. It's also
456  * possible to hook directly at the toplevel PIO operation if they have to
457  * be handled differently
458  */
459 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
460 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
461 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
462 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
463 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
464 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
465 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
466 
467 #ifdef CONFIG_EEH
468 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
469 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
470 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
471 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
472 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
473 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
474 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
475 #else /* CONFIG_EEH */
476 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
477 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
478 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
479 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
480 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
481 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
482 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
483 #endif /* !defined(CONFIG_EEH) */
484 
485 #ifdef CONFIG_PPC32
486 #define __do_outb(val, port)	_rec_outb(val, port)
487 #define __do_outw(val, port)	_rec_outw(val, port)
488 #define __do_outl(val, port)	_rec_outl(val, port)
489 #define __do_inb(port)		_rec_inb(port)
490 #define __do_inw(port)		_rec_inw(port)
491 #define __do_inl(port)		_rec_inl(port)
492 #else /* CONFIG_PPC32 */
493 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
494 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
495 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
496 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
497 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
498 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
499 #endif /* !CONFIG_PPC32 */
500 
501 #ifdef CONFIG_EEH
502 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
503 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
504 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
505 #else /* CONFIG_EEH */
506 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
507 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
508 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
509 #endif /* !CONFIG_EEH */
510 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
511 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
512 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
513 
514 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
515 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
516 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
517 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
518 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
519 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
520 
521 #define __do_memset_io(addr, c, n)	\
522 				_memset_io(PCI_FIX_ADDR(addr), c, n)
523 #define __do_memcpy_toio(dst, src, n)	\
524 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
525 
526 #ifdef CONFIG_EEH
527 #define __do_memcpy_fromio(dst, src, n)	\
528 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
529 #else /* CONFIG_EEH */
530 #define __do_memcpy_fromio(dst, src, n)	\
531 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
532 #endif /* !CONFIG_EEH */
533 
534 #ifdef CONFIG_PPC_INDIRECT_PIO
535 #define DEF_PCI_HOOK_pio(x)	x
536 #else
537 #define DEF_PCI_HOOK_pio(x)	NULL
538 #endif
539 
540 #ifdef CONFIG_PPC_INDIRECT_MMIO
541 #define DEF_PCI_HOOK_mem(x)	x
542 #else
543 #define DEF_PCI_HOOK_mem(x)	NULL
544 #endif
545 
546 /* Structure containing all the hooks */
547 extern struct ppc_pci_io {
548 
549 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
550 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
551 
552 #include <asm/io-defs.h>
553 
554 #undef DEF_PCI_AC_RET
555 #undef DEF_PCI_AC_NORET
556 
557 } ppc_pci_io;
558 
559 /* The inline wrappers */
560 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
561 static inline ret name at					\
562 {								\
563 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
564 		return ppc_pci_io.name al;			\
565 	return __do_##name al;					\
566 }
567 
568 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
569 static inline void name at					\
570 {								\
571 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
572 		ppc_pci_io.name al;				\
573 	else							\
574 		__do_##name al;					\
575 }
576 
577 #include <asm/io-defs.h>
578 
579 #undef DEF_PCI_AC_RET
580 #undef DEF_PCI_AC_NORET
581 
582 /* Some drivers check for the presence of readq & writeq with
583  * a #ifdef, so we make them happy here.
584  */
585 #ifdef __powerpc64__
586 #define readq	readq
587 #define writeq	writeq
588 #endif
589 
590 /*
591  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
592  * access
593  */
594 #define xlate_dev_mem_ptr(p)	__va(p)
595 
596 /*
597  * Convert a virtual cached pointer to an uncached pointer
598  */
599 #define xlate_dev_kmem_ptr(p)	p
600 
601 /*
602  * We don't do relaxed operations yet, at least not with this semantic
603  */
604 #define readb_relaxed(addr) readb(addr)
605 #define readw_relaxed(addr) readw(addr)
606 #define readl_relaxed(addr) readl(addr)
607 #define readq_relaxed(addr) readq(addr)
608 
609 #ifdef CONFIG_PPC32
610 #define mmiowb()
611 #else
612 /*
613  * Enforce synchronisation of stores vs. spin_unlock
614  * (this does it explicitly, though our implementation of spin_unlock
615  * does it implicitely too)
616  */
617 static inline void mmiowb(void)
618 {
619 	unsigned long tmp;
620 
621 	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
622 	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
623 	: "memory");
624 }
625 #endif /* !CONFIG_PPC32 */
626 
627 static inline void iosync(void)
628 {
629         __asm__ __volatile__ ("sync" : : : "memory");
630 }
631 
632 /* Enforce in-order execution of data I/O.
633  * No distinction between read/write on PPC; use eieio for all three.
634  * Those are fairly week though. They don't provide a barrier between
635  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
636  * they only provide barriers between 2 __raw MMIO operations and
637  * possibly break write combining.
638  */
639 #define iobarrier_rw() eieio()
640 #define iobarrier_r()  eieio()
641 #define iobarrier_w()  eieio()
642 
643 
644 /*
645  * output pause versions need a delay at least for the
646  * w83c105 ide controller in a p610.
647  */
648 #define inb_p(port)             inb(port)
649 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
650 #define inw_p(port)             inw(port)
651 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
652 #define inl_p(port)             inl(port)
653 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
654 
655 
656 #define IO_SPACE_LIMIT ~(0UL)
657 
658 
659 /**
660  * ioremap     -   map bus memory into CPU space
661  * @address:   bus address of the memory
662  * @size:      size of the resource to map
663  *
664  * ioremap performs a platform specific sequence of operations to
665  * make bus memory CPU accessible via the readb/readw/readl/writeb/
666  * writew/writel functions and the other mmio helpers. The returned
667  * address is not guaranteed to be usable directly as a virtual
668  * address.
669  *
670  * We provide a few variations of it:
671  *
672  * * ioremap is the standard one and provides non-cacheable guarded mappings
673  *   and can be hooked by the platform via ppc_md
674  *
675  * * ioremap_prot allows to specify the page flags as an argument and can
676  *   also be hooked by the platform via ppc_md.
677  *
678  * * ioremap_nocache is identical to ioremap
679  *
680  * * ioremap_wc enables write combining
681  *
682  * * iounmap undoes such a mapping and can be hooked
683  *
684  * * __ioremap_at (and the pending __iounmap_at) are low level functions to
685  *   create hand-made mappings for use only by the PCI code and cannot
686  *   currently be hooked. Must be page aligned.
687  *
688  * * __ioremap is the low level implementation used by ioremap and
689  *   ioremap_prot and cannot be hooked (but can be used by a hook on one
690  *   of the previous ones)
691  *
692  * * __ioremap_caller is the same as above but takes an explicit caller
693  *   reference rather than using __builtin_return_address(0)
694  *
695  * * __iounmap, is the low level implementation used by iounmap and cannot
696  *   be hooked (but can be used by a hook on iounmap)
697  *
698  */
699 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
700 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
701 				  unsigned long flags);
702 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
703 #define ioremap_nocache(addr, size)	ioremap((addr), (size))
704 
705 extern void iounmap(volatile void __iomem *addr);
706 
707 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
708 			       unsigned long flags);
709 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
710 				      unsigned long flags, void *caller);
711 
712 extern void __iounmap(volatile void __iomem *addr);
713 
714 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
715 				   unsigned long size, unsigned long flags);
716 extern void __iounmap_at(void *ea, unsigned long size);
717 
718 /*
719  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
720  * which needs some additional definitions here. They basically allow PIO
721  * space overall to be 1GB. This will work as long as we never try to use
722  * iomap to map MMIO below 1GB which should be fine on ppc64
723  */
724 #define HAVE_ARCH_PIO_SIZE		1
725 #define PIO_OFFSET			0x00000000UL
726 #define PIO_MASK			(FULL_IO_SIZE - 1)
727 #define PIO_RESERVED			(FULL_IO_SIZE)
728 
729 #define mmio_read16be(addr)		readw_be(addr)
730 #define mmio_read32be(addr)		readl_be(addr)
731 #define mmio_write16be(val, addr)	writew_be(val, addr)
732 #define mmio_write32be(val, addr)	writel_be(val, addr)
733 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
734 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
735 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
736 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
737 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
738 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
739 
740 /**
741  *	virt_to_phys	-	map virtual addresses to physical
742  *	@address: address to remap
743  *
744  *	The returned physical address is the physical (CPU) mapping for
745  *	the memory address given. It is only valid to use this function on
746  *	addresses directly mapped or allocated via kmalloc.
747  *
748  *	This function does not give bus mappings for DMA transfers. In
749  *	almost all conceivable cases a device driver should not be using
750  *	this function
751  */
752 static inline unsigned long virt_to_phys(volatile void * address)
753 {
754 	return __pa((unsigned long)address);
755 }
756 
757 /**
758  *	phys_to_virt	-	map physical address to virtual
759  *	@address: address to remap
760  *
761  *	The returned virtual address is a current CPU mapping for
762  *	the memory address given. It is only valid to use this function on
763  *	addresses that have a kernel mapping
764  *
765  *	This function does not handle bus mappings for DMA transfers. In
766  *	almost all conceivable cases a device driver should not be using
767  *	this function
768  */
769 static inline void * phys_to_virt(unsigned long address)
770 {
771 	return (void *)__va(address);
772 }
773 
774 /*
775  * Change "struct page" to physical address.
776  */
777 #define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
778 
779 /*
780  * 32 bits still uses virt_to_bus() for it's implementation of DMA
781  * mappings se we have to keep it defined here. We also have some old
782  * drivers (shame shame shame) that use bus_to_virt() and haven't been
783  * fixed yet so I need to define it here.
784  */
785 #ifdef CONFIG_PPC32
786 
787 static inline unsigned long virt_to_bus(volatile void * address)
788 {
789         if (address == NULL)
790 		return 0;
791         return __pa(address) + PCI_DRAM_OFFSET;
792 }
793 
794 static inline void * bus_to_virt(unsigned long address)
795 {
796         if (address == 0)
797 		return NULL;
798         return __va(address - PCI_DRAM_OFFSET);
799 }
800 
801 #define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
802 
803 #endif /* CONFIG_PPC32 */
804 
805 /* access ports */
806 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
807 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
808 
809 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
810 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
811 
812 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
813 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
814 
815 /* Clear and set bits in one shot.  These macros can be used to clear and
816  * set multiple bits in a register using a single read-modify-write.  These
817  * macros can also be used to set a multiple-bit bit pattern using a mask,
818  * by specifying the mask in the 'clear' parameter and the new bit pattern
819  * in the 'set' parameter.
820  */
821 
822 #define clrsetbits(type, addr, clear, set) \
823 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
824 
825 #ifdef __powerpc64__
826 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
827 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
828 #endif
829 
830 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
831 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
832 
833 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
834 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
835 
836 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
837 
838 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
839 				size_t size, unsigned long flags);
840 
841 #endif /* __KERNEL__ */
842 
843 #endif /* _ASM_POWERPC_IO_H */
844