1 #ifndef _ASM_POWERPC_IO_H 2 #define _ASM_POWERPC_IO_H 3 #ifdef __KERNEL__ 4 5 #define ARCH_HAS_IOREMAP_WC 6 7 /* 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Check of existence of legacy devices */ 15 extern int check_legacy_ioport(unsigned long base_port); 16 #define I8042_DATA_REG 0x60 17 #define FDC_BASE 0x3f0 18 19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI) 20 extern struct pci_dev *isa_bridge_pcidev; 21 /* 22 * has legacy ISA devices ? 23 */ 24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special) 25 #endif 26 27 #include <linux/device.h> 28 #include <linux/io.h> 29 30 #include <linux/compiler.h> 31 #include <asm/page.h> 32 #include <asm/byteorder.h> 33 #include <asm/synch.h> 34 #include <asm/delay.h> 35 #include <asm/mmu.h> 36 37 #include <asm-generic/iomap.h> 38 39 #ifdef CONFIG_PPC64 40 #include <asm/paca.h> 41 #endif 42 43 #define SIO_CONFIG_RA 0x398 44 #define SIO_CONFIG_RD 0x399 45 46 #define SLOW_DOWN_IO 47 48 /* 32 bits uses slightly different variables for the various IO 49 * bases. Most of this file only uses _IO_BASE though which we 50 * define properly based on the platform 51 */ 52 #ifndef CONFIG_PCI 53 #define _IO_BASE 0 54 #define _ISA_MEM_BASE 0 55 #define PCI_DRAM_OFFSET 0 56 #elif defined(CONFIG_PPC32) 57 #define _IO_BASE isa_io_base 58 #define _ISA_MEM_BASE isa_mem_base 59 #define PCI_DRAM_OFFSET pci_dram_offset 60 #else 61 #define _IO_BASE pci_io_base 62 #define _ISA_MEM_BASE isa_mem_base 63 #define PCI_DRAM_OFFSET 0 64 #endif 65 66 extern unsigned long isa_io_base; 67 extern unsigned long pci_io_base; 68 extern unsigned long pci_dram_offset; 69 70 extern resource_size_t isa_mem_base; 71 72 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE 73 * is not set or addresses cannot be translated to MMIO. This is typically 74 * set when the platform supports "special" PIO accesses via a non memory 75 * mapped mechanism, and allows things like the early udbg UART code to 76 * function. 77 */ 78 extern bool isa_io_special; 79 80 #ifdef CONFIG_PPC32 81 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO) 82 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits 83 #endif 84 #endif 85 86 /* 87 * 88 * Low level MMIO accessors 89 * 90 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 91 * specific and thus shouldn't be used in generic code. The accessors 92 * provided here are: 93 * 94 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 95 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 96 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 97 * 98 * Those operate directly on a kernel virtual address. Note that the prototype 99 * for the out_* accessors has the arguments in opposite order from the usual 100 * linux PCI accessors. Unlike those, they take the address first and the value 101 * next. 102 * 103 * Note: I might drop the _ns suffix on the stream operations soon as it is 104 * simply normal for stream operations to not swap in the first place. 105 * 106 */ 107 108 #ifdef CONFIG_PPC64 109 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 110 #else 111 #define IO_SET_SYNC_FLAG() 112 #endif 113 114 /* gcc 4.0 and older doesn't have 'Z' constraint */ 115 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0) 116 #define DEF_MMIO_IN_X(name, size, insn) \ 117 static inline u##size name(const volatile u##size __iomem *addr) \ 118 { \ 119 u##size ret; \ 120 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 121 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \ 122 return ret; \ 123 } 124 125 #define DEF_MMIO_OUT_X(name, size, insn) \ 126 static inline void name(volatile u##size __iomem *addr, u##size val) \ 127 { \ 128 __asm__ __volatile__("sync;"#insn" %1,0,%2" \ 129 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \ 130 IO_SET_SYNC_FLAG(); \ 131 } 132 #else /* newer gcc */ 133 #define DEF_MMIO_IN_X(name, size, insn) \ 134 static inline u##size name(const volatile u##size __iomem *addr) \ 135 { \ 136 u##size ret; \ 137 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 138 : "=r" (ret) : "Z" (*addr) : "memory"); \ 139 return ret; \ 140 } 141 142 #define DEF_MMIO_OUT_X(name, size, insn) \ 143 static inline void name(volatile u##size __iomem *addr, u##size val) \ 144 { \ 145 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 146 : "=Z" (*addr) : "r" (val) : "memory"); \ 147 IO_SET_SYNC_FLAG(); \ 148 } 149 #endif 150 151 #define DEF_MMIO_IN_D(name, size, insn) \ 152 static inline u##size name(const volatile u##size __iomem *addr) \ 153 { \ 154 u##size ret; \ 155 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 156 : "=r" (ret) : "m" (*addr) : "memory"); \ 157 return ret; \ 158 } 159 160 #define DEF_MMIO_OUT_D(name, size, insn) \ 161 static inline void name(volatile u##size __iomem *addr, u##size val) \ 162 { \ 163 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 164 : "=m" (*addr) : "r" (val) : "memory"); \ 165 IO_SET_SYNC_FLAG(); \ 166 } 167 168 DEF_MMIO_IN_D(in_8, 8, lbz); 169 DEF_MMIO_OUT_D(out_8, 8, stb); 170 171 #ifdef __BIG_ENDIAN__ 172 DEF_MMIO_IN_D(in_be16, 16, lhz); 173 DEF_MMIO_IN_D(in_be32, 32, lwz); 174 DEF_MMIO_IN_X(in_le16, 16, lhbrx); 175 DEF_MMIO_IN_X(in_le32, 32, lwbrx); 176 177 DEF_MMIO_OUT_D(out_be16, 16, sth); 178 DEF_MMIO_OUT_D(out_be32, 32, stw); 179 DEF_MMIO_OUT_X(out_le16, 16, sthbrx); 180 DEF_MMIO_OUT_X(out_le32, 32, stwbrx); 181 #else 182 DEF_MMIO_IN_X(in_be16, 16, lhbrx); 183 DEF_MMIO_IN_X(in_be32, 32, lwbrx); 184 DEF_MMIO_IN_D(in_le16, 16, lhz); 185 DEF_MMIO_IN_D(in_le32, 32, lwz); 186 187 DEF_MMIO_OUT_X(out_be16, 16, sthbrx); 188 DEF_MMIO_OUT_X(out_be32, 32, stwbrx); 189 DEF_MMIO_OUT_D(out_le16, 16, sth); 190 DEF_MMIO_OUT_D(out_le32, 32, stw); 191 192 #endif /* __BIG_ENDIAN */ 193 194 /* 195 * Cache inhibitied accessors for use in real mode, you don't want to use these 196 * unless you know what you're doing. 197 * 198 * NB. These use the cpu byte ordering. 199 */ 200 DEF_MMIO_OUT_X(out_rm8, 8, stbcix); 201 DEF_MMIO_OUT_X(out_rm16, 16, sthcix); 202 DEF_MMIO_OUT_X(out_rm32, 32, stwcix); 203 DEF_MMIO_IN_X(in_rm8, 8, lbzcix); 204 DEF_MMIO_IN_X(in_rm16, 16, lhzcix); 205 DEF_MMIO_IN_X(in_rm32, 32, lwzcix); 206 207 #ifdef __powerpc64__ 208 209 DEF_MMIO_OUT_X(out_rm64, 64, stdcix); 210 DEF_MMIO_IN_X(in_rm64, 64, ldcix); 211 212 #ifdef __BIG_ENDIAN__ 213 DEF_MMIO_OUT_D(out_be64, 64, std); 214 DEF_MMIO_IN_D(in_be64, 64, ld); 215 216 /* There is no asm instructions for 64 bits reverse loads and stores */ 217 static inline u64 in_le64(const volatile u64 __iomem *addr) 218 { 219 return swab64(in_be64(addr)); 220 } 221 222 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 223 { 224 out_be64(addr, swab64(val)); 225 } 226 #else 227 DEF_MMIO_OUT_D(out_le64, 64, std); 228 DEF_MMIO_IN_D(in_le64, 64, ld); 229 230 /* There is no asm instructions for 64 bits reverse loads and stores */ 231 static inline u64 in_be64(const volatile u64 __iomem *addr) 232 { 233 return swab64(in_le64(addr)); 234 } 235 236 static inline void out_be64(volatile u64 __iomem *addr, u64 val) 237 { 238 out_le64(addr, swab64(val)); 239 } 240 241 #endif 242 #endif /* __powerpc64__ */ 243 244 /* 245 * Low level IO stream instructions are defined out of line for now 246 */ 247 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 248 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 249 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 250 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 251 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 252 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 253 254 /* The _ns naming is historical and will be removed. For now, just #define 255 * the non _ns equivalent names 256 */ 257 #define _insw _insw_ns 258 #define _insl _insl_ns 259 #define _outsw _outsw_ns 260 #define _outsl _outsl_ns 261 262 263 /* 264 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 265 */ 266 267 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 268 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 269 unsigned long n); 270 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 271 unsigned long n); 272 273 /* 274 * 275 * PCI and standard ISA accessors 276 * 277 * Those are globally defined linux accessors for devices on PCI or ISA 278 * busses. They follow the Linux defined semantics. The current implementation 279 * for PowerPC is as close as possible to the x86 version of these, and thus 280 * provides fairly heavy weight barriers for the non-raw versions 281 * 282 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO 283 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its 284 * own implementation of some or all of the accessors. 285 */ 286 287 /* 288 * Include the EEH definitions when EEH is enabled only so they don't get 289 * in the way when building for 32 bits 290 */ 291 #ifdef CONFIG_EEH 292 #include <asm/eeh.h> 293 #endif 294 295 /* Shortcut to the MMIO argument pointer */ 296 #define PCI_IO_ADDR volatile void __iomem * 297 298 /* Indirect IO address tokens: 299 * 300 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks 301 * on all MMIOs. (Note that this is all 64 bits only for now) 302 * 303 * To help platforms who may need to differenciate MMIO addresses in 304 * their hooks, a bitfield is reserved for use by the platform near the 305 * top of MMIO addresses (not PIO, those have to cope the hard way). 306 * 307 * This bit field is 12 bits and is at the top of the IO virtual 308 * addresses PCI_IO_INDIRECT_TOKEN_MASK. 309 * 310 * The kernel virtual space is thus: 311 * 312 * 0xD000000000000000 : vmalloc 313 * 0xD000080000000000 : PCI PHB IO space 314 * 0xD000080080000000 : ioremap 315 * 0xD0000fffffffffff : end of ioremap region 316 * 317 * Since the top 4 bits are reserved as the region ID, we use thus 318 * the next 12 bits and keep 4 bits available for the future if the 319 * virtual address space is ever to be extended. 320 * 321 * The direct IO mapping operations will then mask off those bits 322 * before doing the actual access, though that only happen when 323 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that 324 * mechanism 325 * 326 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes 327 * all PIO functions call through a hook. 328 */ 329 330 #ifdef CONFIG_PPC_INDIRECT_MMIO 331 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul 332 #define PCI_IO_IND_TOKEN_SHIFT 48 333 #define PCI_FIX_ADDR(addr) \ 334 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 335 #define PCI_GET_ADDR_TOKEN(addr) \ 336 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 337 PCI_IO_IND_TOKEN_SHIFT) 338 #define PCI_SET_ADDR_TOKEN(addr, token) \ 339 do { \ 340 unsigned long __a = (unsigned long)(addr); \ 341 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 342 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 343 (addr) = (void __iomem *)__a; \ 344 } while(0) 345 #else 346 #define PCI_FIX_ADDR(addr) (addr) 347 #endif 348 349 350 /* 351 * Non ordered and non-swapping "raw" accessors 352 */ 353 354 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 355 { 356 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 357 } 358 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 359 { 360 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 361 } 362 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 363 { 364 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 365 } 366 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 367 { 368 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 369 } 370 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 371 { 372 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 373 } 374 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 375 { 376 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 377 } 378 379 #ifdef __powerpc64__ 380 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 381 { 382 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 383 } 384 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 385 { 386 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 387 } 388 #endif /* __powerpc64__ */ 389 390 /* 391 * 392 * PCI PIO and MMIO accessors. 393 * 394 * 395 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 396 * machine checks (which they occasionally do when probing non existing 397 * IO ports on some platforms, like PowerMac and 8xx). 398 * I always found it to be of dubious reliability and I am tempted to get 399 * rid of it one of these days. So if you think it's important to keep it, 400 * please voice up asap. We never had it for 64 bits and I do not intend 401 * to port it over 402 */ 403 404 #ifdef CONFIG_PPC32 405 406 #define __do_in_asm(name, op) \ 407 static inline unsigned int name(unsigned int port) \ 408 { \ 409 unsigned int x; \ 410 __asm__ __volatile__( \ 411 "sync\n" \ 412 "0:" op " %0,0,%1\n" \ 413 "1: twi 0,%0,0\n" \ 414 "2: isync\n" \ 415 "3: nop\n" \ 416 "4:\n" \ 417 ".section .fixup,\"ax\"\n" \ 418 "5: li %0,-1\n" \ 419 " b 4b\n" \ 420 ".previous\n" \ 421 ".section __ex_table,\"a\"\n" \ 422 " .align 2\n" \ 423 " .long 0b,5b\n" \ 424 " .long 1b,5b\n" \ 425 " .long 2b,5b\n" \ 426 " .long 3b,5b\n" \ 427 ".previous" \ 428 : "=&r" (x) \ 429 : "r" (port + _IO_BASE) \ 430 : "memory"); \ 431 return x; \ 432 } 433 434 #define __do_out_asm(name, op) \ 435 static inline void name(unsigned int val, unsigned int port) \ 436 { \ 437 __asm__ __volatile__( \ 438 "sync\n" \ 439 "0:" op " %0,0,%1\n" \ 440 "1: sync\n" \ 441 "2:\n" \ 442 ".section __ex_table,\"a\"\n" \ 443 " .align 2\n" \ 444 " .long 0b,2b\n" \ 445 " .long 1b,2b\n" \ 446 ".previous" \ 447 : : "r" (val), "r" (port + _IO_BASE) \ 448 : "memory"); \ 449 } 450 451 __do_in_asm(_rec_inb, "lbzx") 452 __do_in_asm(_rec_inw, "lhbrx") 453 __do_in_asm(_rec_inl, "lwbrx") 454 __do_out_asm(_rec_outb, "stbx") 455 __do_out_asm(_rec_outw, "sthbrx") 456 __do_out_asm(_rec_outl, "stwbrx") 457 458 #endif /* CONFIG_PPC32 */ 459 460 /* The "__do_*" operations below provide the actual "base" implementation 461 * for each of the defined accessors. Some of them use the out_* functions 462 * directly, some of them still use EEH, though we might change that in the 463 * future. Those macros below provide the necessary argument swapping and 464 * handling of the IO base for PIO. 465 * 466 * They are themselves used by the macros that define the actual accessors 467 * and can be used by the hooks if any. 468 * 469 * Note that PIO operations are always defined in terms of their corresonding 470 * MMIO operations. That allows platforms like iSeries who want to modify the 471 * behaviour of both to only hook on the MMIO version and get both. It's also 472 * possible to hook directly at the toplevel PIO operation if they have to 473 * be handled differently 474 */ 475 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 476 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 477 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 478 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 479 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 480 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 481 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 482 483 #ifdef CONFIG_EEH 484 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 485 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 486 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 487 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 488 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 489 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 490 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 491 #else /* CONFIG_EEH */ 492 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 493 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 494 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 495 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 496 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 497 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 498 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 499 #endif /* !defined(CONFIG_EEH) */ 500 501 #ifdef CONFIG_PPC32 502 #define __do_outb(val, port) _rec_outb(val, port) 503 #define __do_outw(val, port) _rec_outw(val, port) 504 #define __do_outl(val, port) _rec_outl(val, port) 505 #define __do_inb(port) _rec_inb(port) 506 #define __do_inw(port) _rec_inw(port) 507 #define __do_inl(port) _rec_inl(port) 508 #else /* CONFIG_PPC32 */ 509 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 510 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 511 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 512 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 513 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 514 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 515 #endif /* !CONFIG_PPC32 */ 516 517 #ifdef CONFIG_EEH 518 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 519 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 520 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 521 #else /* CONFIG_EEH */ 522 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 523 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 524 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 525 #endif /* !CONFIG_EEH */ 526 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 527 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 528 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 529 530 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 531 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 532 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 533 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 534 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 535 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 536 537 #define __do_memset_io(addr, c, n) \ 538 _memset_io(PCI_FIX_ADDR(addr), c, n) 539 #define __do_memcpy_toio(dst, src, n) \ 540 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 541 542 #ifdef CONFIG_EEH 543 #define __do_memcpy_fromio(dst, src, n) \ 544 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 545 #else /* CONFIG_EEH */ 546 #define __do_memcpy_fromio(dst, src, n) \ 547 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 548 #endif /* !CONFIG_EEH */ 549 550 #ifdef CONFIG_PPC_INDIRECT_PIO 551 #define DEF_PCI_HOOK_pio(x) x 552 #else 553 #define DEF_PCI_HOOK_pio(x) NULL 554 #endif 555 556 #ifdef CONFIG_PPC_INDIRECT_MMIO 557 #define DEF_PCI_HOOK_mem(x) x 558 #else 559 #define DEF_PCI_HOOK_mem(x) NULL 560 #endif 561 562 /* Structure containing all the hooks */ 563 extern struct ppc_pci_io { 564 565 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 566 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 567 568 #include <asm/io-defs.h> 569 570 #undef DEF_PCI_AC_RET 571 #undef DEF_PCI_AC_NORET 572 573 } ppc_pci_io; 574 575 /* The inline wrappers */ 576 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 577 static inline ret name at \ 578 { \ 579 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 580 return ppc_pci_io.name al; \ 581 return __do_##name al; \ 582 } 583 584 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 585 static inline void name at \ 586 { \ 587 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 588 ppc_pci_io.name al; \ 589 else \ 590 __do_##name al; \ 591 } 592 593 #include <asm/io-defs.h> 594 595 #undef DEF_PCI_AC_RET 596 #undef DEF_PCI_AC_NORET 597 598 /* Some drivers check for the presence of readq & writeq with 599 * a #ifdef, so we make them happy here. 600 */ 601 #ifdef __powerpc64__ 602 #define readq readq 603 #define writeq writeq 604 #endif 605 606 /* 607 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 608 * access 609 */ 610 #define xlate_dev_mem_ptr(p) __va(p) 611 612 /* 613 * Convert a virtual cached pointer to an uncached pointer 614 */ 615 #define xlate_dev_kmem_ptr(p) p 616 617 /* 618 * We don't do relaxed operations yet, at least not with this semantic 619 */ 620 #define readb_relaxed(addr) readb(addr) 621 #define readw_relaxed(addr) readw(addr) 622 #define readl_relaxed(addr) readl(addr) 623 #define readq_relaxed(addr) readq(addr) 624 #define writeb_relaxed(v, addr) writeb(v, addr) 625 #define writew_relaxed(v, addr) writew(v, addr) 626 #define writel_relaxed(v, addr) writel(v, addr) 627 #define writeq_relaxed(v, addr) writeq(v, addr) 628 629 #ifdef CONFIG_PPC32 630 #define mmiowb() 631 #else 632 /* 633 * Enforce synchronisation of stores vs. spin_unlock 634 * (this does it explicitly, though our implementation of spin_unlock 635 * does it implicitely too) 636 */ 637 static inline void mmiowb(void) 638 { 639 unsigned long tmp; 640 641 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 642 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 643 : "memory"); 644 } 645 #endif /* !CONFIG_PPC32 */ 646 647 static inline void iosync(void) 648 { 649 __asm__ __volatile__ ("sync" : : : "memory"); 650 } 651 652 /* Enforce in-order execution of data I/O. 653 * No distinction between read/write on PPC; use eieio for all three. 654 * Those are fairly week though. They don't provide a barrier between 655 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 656 * they only provide barriers between 2 __raw MMIO operations and 657 * possibly break write combining. 658 */ 659 #define iobarrier_rw() eieio() 660 #define iobarrier_r() eieio() 661 #define iobarrier_w() eieio() 662 663 664 /* 665 * output pause versions need a delay at least for the 666 * w83c105 ide controller in a p610. 667 */ 668 #define inb_p(port) inb(port) 669 #define outb_p(val, port) (udelay(1), outb((val), (port))) 670 #define inw_p(port) inw(port) 671 #define outw_p(val, port) (udelay(1), outw((val), (port))) 672 #define inl_p(port) inl(port) 673 #define outl_p(val, port) (udelay(1), outl((val), (port))) 674 675 676 #define IO_SPACE_LIMIT ~(0UL) 677 678 679 /** 680 * ioremap - map bus memory into CPU space 681 * @address: bus address of the memory 682 * @size: size of the resource to map 683 * 684 * ioremap performs a platform specific sequence of operations to 685 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 686 * writew/writel functions and the other mmio helpers. The returned 687 * address is not guaranteed to be usable directly as a virtual 688 * address. 689 * 690 * We provide a few variations of it: 691 * 692 * * ioremap is the standard one and provides non-cacheable guarded mappings 693 * and can be hooked by the platform via ppc_md 694 * 695 * * ioremap_prot allows to specify the page flags as an argument and can 696 * also be hooked by the platform via ppc_md. 697 * 698 * * ioremap_nocache is identical to ioremap 699 * 700 * * ioremap_wc enables write combining 701 * 702 * * iounmap undoes such a mapping and can be hooked 703 * 704 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 705 * create hand-made mappings for use only by the PCI code and cannot 706 * currently be hooked. Must be page aligned. 707 * 708 * * __ioremap is the low level implementation used by ioremap and 709 * ioremap_prot and cannot be hooked (but can be used by a hook on one 710 * of the previous ones) 711 * 712 * * __ioremap_caller is the same as above but takes an explicit caller 713 * reference rather than using __builtin_return_address(0) 714 * 715 * * __iounmap, is the low level implementation used by iounmap and cannot 716 * be hooked (but can be used by a hook on iounmap) 717 * 718 */ 719 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 720 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, 721 unsigned long flags); 722 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 723 #define ioremap_nocache(addr, size) ioremap((addr), (size)) 724 725 extern void iounmap(volatile void __iomem *addr); 726 727 extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 728 unsigned long flags); 729 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 730 unsigned long flags, void *caller); 731 732 extern void __iounmap(volatile void __iomem *addr); 733 734 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 735 unsigned long size, unsigned long flags); 736 extern void __iounmap_at(void *ea, unsigned long size); 737 738 /* 739 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation 740 * which needs some additional definitions here. They basically allow PIO 741 * space overall to be 1GB. This will work as long as we never try to use 742 * iomap to map MMIO below 1GB which should be fine on ppc64 743 */ 744 #define HAVE_ARCH_PIO_SIZE 1 745 #define PIO_OFFSET 0x00000000UL 746 #define PIO_MASK (FULL_IO_SIZE - 1) 747 #define PIO_RESERVED (FULL_IO_SIZE) 748 749 #define mmio_read16be(addr) readw_be(addr) 750 #define mmio_read32be(addr) readl_be(addr) 751 #define mmio_write16be(val, addr) writew_be(val, addr) 752 #define mmio_write32be(val, addr) writel_be(val, addr) 753 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 754 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 755 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 756 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 757 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 758 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 759 760 /** 761 * virt_to_phys - map virtual addresses to physical 762 * @address: address to remap 763 * 764 * The returned physical address is the physical (CPU) mapping for 765 * the memory address given. It is only valid to use this function on 766 * addresses directly mapped or allocated via kmalloc. 767 * 768 * This function does not give bus mappings for DMA transfers. In 769 * almost all conceivable cases a device driver should not be using 770 * this function 771 */ 772 static inline unsigned long virt_to_phys(volatile void * address) 773 { 774 return __pa((unsigned long)address); 775 } 776 777 /** 778 * phys_to_virt - map physical address to virtual 779 * @address: address to remap 780 * 781 * The returned virtual address is a current CPU mapping for 782 * the memory address given. It is only valid to use this function on 783 * addresses that have a kernel mapping 784 * 785 * This function does not handle bus mappings for DMA transfers. In 786 * almost all conceivable cases a device driver should not be using 787 * this function 788 */ 789 static inline void * phys_to_virt(unsigned long address) 790 { 791 return (void *)__va(address); 792 } 793 794 /* 795 * Change "struct page" to physical address. 796 */ 797 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT) 798 799 /* 800 * 32 bits still uses virt_to_bus() for it's implementation of DMA 801 * mappings se we have to keep it defined here. We also have some old 802 * drivers (shame shame shame) that use bus_to_virt() and haven't been 803 * fixed yet so I need to define it here. 804 */ 805 #ifdef CONFIG_PPC32 806 807 static inline unsigned long virt_to_bus(volatile void * address) 808 { 809 if (address == NULL) 810 return 0; 811 return __pa(address) + PCI_DRAM_OFFSET; 812 } 813 814 static inline void * bus_to_virt(unsigned long address) 815 { 816 if (address == 0) 817 return NULL; 818 return __va(address - PCI_DRAM_OFFSET); 819 } 820 821 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 822 823 #endif /* CONFIG_PPC32 */ 824 825 /* access ports */ 826 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 827 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 828 829 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 830 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 831 832 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 833 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 834 835 /* Clear and set bits in one shot. These macros can be used to clear and 836 * set multiple bits in a register using a single read-modify-write. These 837 * macros can also be used to set a multiple-bit bit pattern using a mask, 838 * by specifying the mask in the 'clear' parameter and the new bit pattern 839 * in the 'set' parameter. 840 */ 841 842 #define clrsetbits(type, addr, clear, set) \ 843 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 844 845 #ifdef __powerpc64__ 846 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 847 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 848 #endif 849 850 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 851 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 852 853 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 854 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 855 856 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 857 858 #endif /* __KERNEL__ */ 859 860 #endif /* _ASM_POWERPC_IO_H */ 861