xref: /linux/arch/powerpc/include/asm/io.h (revision 6a9a092eb25851e16ecacc04ca2b155635d4e52f)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_POWERPC_IO_H
3 #define _ASM_POWERPC_IO_H
4 #ifdef __KERNEL__
5 
6 #define ARCH_HAS_IOREMAP_WC
7 #ifdef CONFIG_PPC32
8 #define ARCH_HAS_IOREMAP_WT
9 #endif
10 
11 /*
12  */
13 
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG	0x60
17 #define FDC_BASE	0x3f0
18 
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22  * has legacy ISA devices ?
23  */
24 #define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26 
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <linux/mm.h>
30 #include <asm/page.h>
31 #include <asm/byteorder.h>
32 #include <asm/synch.h>
33 #include <asm/delay.h>
34 #include <asm/mmiowb.h>
35 #include <asm/mmu.h>
36 
37 #define SIO_CONFIG_RA	0x398
38 #define SIO_CONFIG_RD	0x399
39 
40 /* 32 bits uses slightly different variables for the various IO
41  * bases. Most of this file only uses _IO_BASE though which we
42  * define properly based on the platform
43  */
44 #ifndef CONFIG_PCI
45 #define _IO_BASE	0
46 #define _ISA_MEM_BASE	0
47 #define PCI_DRAM_OFFSET 0
48 #elif defined(CONFIG_PPC32)
49 #define _IO_BASE	isa_io_base
50 #define _ISA_MEM_BASE	isa_mem_base
51 #define PCI_DRAM_OFFSET	pci_dram_offset
52 #else
53 #define _IO_BASE	pci_io_base
54 #define _ISA_MEM_BASE	isa_mem_base
55 #define PCI_DRAM_OFFSET	0
56 #endif
57 
58 extern unsigned long isa_io_base;
59 extern unsigned long pci_io_base;
60 extern unsigned long pci_dram_offset;
61 
62 extern resource_size_t isa_mem_base;
63 
64 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
65  * is not set or addresses cannot be translated to MMIO. This is typically
66  * set when the platform supports "special" PIO accesses via a non memory
67  * mapped mechanism, and allows things like the early udbg UART code to
68  * function.
69  */
70 extern bool isa_io_special;
71 
72 #ifdef CONFIG_PPC32
73 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
74 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
75 #endif
76 #endif
77 
78 /*
79  *
80  * Low level MMIO accessors
81  *
82  * This provides the non-bus specific accessors to MMIO. Those are PowerPC
83  * specific and thus shouldn't be used in generic code. The accessors
84  * provided here are:
85  *
86  *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
87  *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
88  *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
89  *
90  * Those operate directly on a kernel virtual address. Note that the prototype
91  * for the out_* accessors has the arguments in opposite order from the usual
92  * linux PCI accessors. Unlike those, they take the address first and the value
93  * next.
94  *
95  * Note: I might drop the _ns suffix on the stream operations soon as it is
96  * simply normal for stream operations to not swap in the first place.
97  *
98  */
99 
100 /* -mprefixed can generate offsets beyond range, fall back hack */
101 #ifdef CONFIG_PPC_KERNEL_PREFIXED
102 #define DEF_MMIO_IN_X(name, size, insn)				\
103 static inline u##size name(const volatile u##size __iomem *addr)	\
104 {									\
105 	u##size ret;							\
106 	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
107 		: "=r" (ret) : "r" (addr) : "memory");			\
108 	return ret;							\
109 }
110 
111 #define DEF_MMIO_OUT_X(name, size, insn)				\
112 static inline void name(volatile u##size __iomem *addr, u##size val)	\
113 {									\
114 	__asm__ __volatile__("sync;"#insn" %1,0,%0"			\
115 		: : "r" (addr), "r" (val) : "memory");			\
116 	mmiowb_set_pending();						\
117 }
118 
119 #define DEF_MMIO_IN_D(name, size, insn)				\
120 static inline u##size name(const volatile u##size __iomem *addr)	\
121 {									\
122 	u##size ret;							\
123 	__asm__ __volatile__("sync;"#insn" %0,0(%1);twi 0,%0,0;isync"\
124 		: "=r" (ret) : "b" (addr) : "memory");	\
125 	return ret;							\
126 }
127 
128 #define DEF_MMIO_OUT_D(name, size, insn)				\
129 static inline void name(volatile u##size __iomem *addr, u##size val)	\
130 {									\
131 	__asm__ __volatile__("sync;"#insn" %1,0(%0)"			\
132 		: : "b" (addr), "r" (val) : "memory");	\
133 	mmiowb_set_pending();						\
134 }
135 #else
136 #define DEF_MMIO_IN_X(name, size, insn)				\
137 static inline u##size name(const volatile u##size __iomem *addr)	\
138 {									\
139 	u##size ret;							\
140 	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
141 		: "=r" (ret) : "Z" (*addr) : "memory");			\
142 	return ret;							\
143 }
144 
145 #define DEF_MMIO_OUT_X(name, size, insn)				\
146 static inline void name(volatile u##size __iomem *addr, u##size val)	\
147 {									\
148 	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
149 		: "=Z" (*addr) : "r" (val) : "memory");			\
150 	mmiowb_set_pending();						\
151 }
152 
153 #define DEF_MMIO_IN_D(name, size, insn)				\
154 static inline u##size name(const volatile u##size __iomem *addr)	\
155 {									\
156 	u##size ret;							\
157 	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
158 		: "=r" (ret) : "m<>" (*addr) : "memory");	\
159 	return ret;							\
160 }
161 
162 #define DEF_MMIO_OUT_D(name, size, insn)				\
163 static inline void name(volatile u##size __iomem *addr, u##size val)	\
164 {									\
165 	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
166 		: "=m<>" (*addr) : "r" (val) : "memory");	\
167 	mmiowb_set_pending();						\
168 }
169 #endif
170 
171 DEF_MMIO_IN_D(in_8,     8, lbz);
172 DEF_MMIO_OUT_D(out_8,   8, stb);
173 
174 #ifdef __BIG_ENDIAN__
175 DEF_MMIO_IN_D(in_be16, 16, lhz);
176 DEF_MMIO_IN_D(in_be32, 32, lwz);
177 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
178 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
179 
180 DEF_MMIO_OUT_D(out_be16, 16, sth);
181 DEF_MMIO_OUT_D(out_be32, 32, stw);
182 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
183 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
184 #else
185 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
186 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
187 DEF_MMIO_IN_D(in_le16, 16, lhz);
188 DEF_MMIO_IN_D(in_le32, 32, lwz);
189 
190 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
191 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
192 DEF_MMIO_OUT_D(out_le16, 16, sth);
193 DEF_MMIO_OUT_D(out_le32, 32, stw);
194 
195 #endif /* __BIG_ENDIAN */
196 
197 #ifdef __powerpc64__
198 
199 #ifdef __BIG_ENDIAN__
200 DEF_MMIO_OUT_D(out_be64, 64, std);
201 DEF_MMIO_IN_D(in_be64, 64, ld);
202 
203 /* There is no asm instructions for 64 bits reverse loads and stores */
204 static inline u64 in_le64(const volatile u64 __iomem *addr)
205 {
206 	return swab64(in_be64(addr));
207 }
208 
209 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
210 {
211 	out_be64(addr, swab64(val));
212 }
213 #else
214 DEF_MMIO_OUT_D(out_le64, 64, std);
215 DEF_MMIO_IN_D(in_le64, 64, ld);
216 
217 /* There is no asm instructions for 64 bits reverse loads and stores */
218 static inline u64 in_be64(const volatile u64 __iomem *addr)
219 {
220 	return swab64(in_le64(addr));
221 }
222 
223 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
224 {
225 	out_le64(addr, swab64(val));
226 }
227 
228 #endif
229 #endif /* __powerpc64__ */
230 
231 /*
232  * Low level IO stream instructions are defined out of line for now
233  */
234 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
235 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
236 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
237 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
238 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
239 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
240 
241 /* The _ns naming is historical and will be removed. For now, just #define
242  * the non _ns equivalent names
243  */
244 #define _insw	_insw_ns
245 #define _insl	_insl_ns
246 #define _outsw	_outsw_ns
247 #define _outsl	_outsl_ns
248 
249 
250 /*
251  * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
252  */
253 
254 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
255 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
256 			   unsigned long n);
257 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
258 			 unsigned long n);
259 
260 /*
261  *
262  * PCI and standard ISA accessors
263  *
264  * Those are globally defined linux accessors for devices on PCI or ISA
265  * busses. They follow the Linux defined semantics. The current implementation
266  * for PowerPC is as close as possible to the x86 version of these, and thus
267  * provides fairly heavy weight barriers for the non-raw versions
268  *
269  * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
270  * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
271  * own implementation of some or all of the accessors.
272  */
273 
274 /*
275  * Include the EEH definitions when EEH is enabled only so they don't get
276  * in the way when building for 32 bits
277  */
278 #ifdef CONFIG_EEH
279 #include <asm/eeh.h>
280 #endif
281 
282 /* Shortcut to the MMIO argument pointer */
283 #define PCI_IO_ADDR	volatile void __iomem *
284 
285 /* Indirect IO address tokens:
286  *
287  * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
288  * on all MMIOs. (Note that this is all 64 bits only for now)
289  *
290  * To help platforms who may need to differentiate MMIO addresses in
291  * their hooks, a bitfield is reserved for use by the platform near the
292  * top of MMIO addresses (not PIO, those have to cope the hard way).
293  *
294  * The highest address in the kernel virtual space are:
295  *
296  *  d0003fffffffffff	# with Hash MMU
297  *  c00fffffffffffff	# with Radix MMU
298  *
299  * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
300  * that can be used for the field.
301  *
302  * The direct IO mapping operations will then mask off those bits
303  * before doing the actual access, though that only happen when
304  * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
305  * mechanism
306  *
307  * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
308  * all PIO functions call through a hook.
309  */
310 
311 #ifdef CONFIG_PPC_INDIRECT_MMIO
312 #define PCI_IO_IND_TOKEN_SHIFT	52
313 #define PCI_IO_IND_TOKEN_MASK	(0xfful << PCI_IO_IND_TOKEN_SHIFT)
314 #define PCI_FIX_ADDR(addr)						\
315 	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
316 #define PCI_GET_ADDR_TOKEN(addr)					\
317 	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
318 		PCI_IO_IND_TOKEN_SHIFT)
319 #define PCI_SET_ADDR_TOKEN(addr, token) 				\
320 do {									\
321 	unsigned long __a = (unsigned long)(addr);			\
322 	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
323 	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
324 	(addr) = (void __iomem *)__a;					\
325 } while(0)
326 #else
327 #define PCI_FIX_ADDR(addr) (addr)
328 #endif
329 
330 
331 /*
332  * Non ordered and non-swapping "raw" accessors
333  */
334 
335 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
336 {
337 	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
338 }
339 #define __raw_readb __raw_readb
340 
341 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
342 {
343 	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
344 }
345 #define __raw_readw __raw_readw
346 
347 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
348 {
349 	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
350 }
351 #define __raw_readl __raw_readl
352 
353 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
354 {
355 	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
356 }
357 #define __raw_writeb __raw_writeb
358 
359 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
360 {
361 	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
362 }
363 #define __raw_writew __raw_writew
364 
365 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
366 {
367 	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
368 }
369 #define __raw_writel __raw_writel
370 
371 #ifdef __powerpc64__
372 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
373 {
374 	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
375 }
376 #define __raw_readq __raw_readq
377 
378 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
379 {
380 	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
381 }
382 #define __raw_writeq __raw_writeq
383 
384 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
385 {
386 	__raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
387 }
388 #define __raw_writeq_be __raw_writeq_be
389 
390 /*
391  * Real mode versions of the above. Those instructions are only supposed
392  * to be used in hypervisor real mode as per the architecture spec.
393  */
394 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
395 {
396 	__asm__ __volatile__(".machine push;   \
397 			      .machine power6; \
398 			      stbcix %0,0,%1;  \
399 			      .machine pop;"
400 		: : "r" (val), "r" (paddr) : "memory");
401 }
402 
403 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
404 {
405 	__asm__ __volatile__(".machine push;   \
406 			      .machine power6; \
407 			      sthcix %0,0,%1;  \
408 			      .machine pop;"
409 		: : "r" (val), "r" (paddr) : "memory");
410 }
411 
412 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
413 {
414 	__asm__ __volatile__(".machine push;   \
415 			      .machine power6; \
416 			      stwcix %0,0,%1;  \
417 			      .machine pop;"
418 		: : "r" (val), "r" (paddr) : "memory");
419 }
420 
421 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
422 {
423 	__asm__ __volatile__(".machine push;   \
424 			      .machine power6; \
425 			      stdcix %0,0,%1;  \
426 			      .machine pop;"
427 		: : "r" (val), "r" (paddr) : "memory");
428 }
429 
430 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
431 {
432 	__raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
433 }
434 
435 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
436 {
437 	u8 ret;
438 	__asm__ __volatile__(".machine push;   \
439 			      .machine power6; \
440 			      lbzcix %0,0, %1; \
441 			      .machine pop;"
442 			     : "=r" (ret) : "r" (paddr) : "memory");
443 	return ret;
444 }
445 
446 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
447 {
448 	u16 ret;
449 	__asm__ __volatile__(".machine push;   \
450 			      .machine power6; \
451 			      lhzcix %0,0, %1; \
452 			      .machine pop;"
453 			     : "=r" (ret) : "r" (paddr) : "memory");
454 	return ret;
455 }
456 
457 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
458 {
459 	u32 ret;
460 	__asm__ __volatile__(".machine push;   \
461 			      .machine power6; \
462 			      lwzcix %0,0, %1; \
463 			      .machine pop;"
464 			     : "=r" (ret) : "r" (paddr) : "memory");
465 	return ret;
466 }
467 
468 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
469 {
470 	u64 ret;
471 	__asm__ __volatile__(".machine push;   \
472 			      .machine power6; \
473 			      ldcix %0,0, %1;  \
474 			      .machine pop;"
475 			     : "=r" (ret) : "r" (paddr) : "memory");
476 	return ret;
477 }
478 #endif /* __powerpc64__ */
479 
480 /*
481  *
482  * PCI PIO and MMIO accessors.
483  *
484  *
485  * On 32 bits, PIO operations have a recovery mechanism in case they trigger
486  * machine checks (which they occasionally do when probing non existing
487  * IO ports on some platforms, like PowerMac and 8xx).
488  * I always found it to be of dubious reliability and I am tempted to get
489  * rid of it one of these days. So if you think it's important to keep it,
490  * please voice up asap. We never had it for 64 bits and I do not intend
491  * to port it over
492  */
493 
494 #ifdef CONFIG_PPC32
495 
496 #define __do_in_asm(name, op)				\
497 static inline unsigned int name(unsigned int port)	\
498 {							\
499 	unsigned int x;					\
500 	__asm__ __volatile__(				\
501 		"sync\n"				\
502 		"0:"	op "	%0,0,%1\n"		\
503 		"1:	twi	0,%0,0\n"		\
504 		"2:	isync\n"			\
505 		"3:	nop\n"				\
506 		"4:\n"					\
507 		".section .fixup,\"ax\"\n"		\
508 		"5:	li	%0,-1\n"		\
509 		"	b	4b\n"			\
510 		".previous\n"				\
511 		EX_TABLE(0b, 5b)			\
512 		EX_TABLE(1b, 5b)			\
513 		EX_TABLE(2b, 5b)			\
514 		EX_TABLE(3b, 5b)			\
515 		: "=&r" (x)				\
516 		: "r" (port + _IO_BASE)			\
517 		: "memory");  				\
518 	return x;					\
519 }
520 
521 #define __do_out_asm(name, op)				\
522 static inline void name(unsigned int val, unsigned int port) \
523 {							\
524 	__asm__ __volatile__(				\
525 		"sync\n"				\
526 		"0:" op " %0,0,%1\n"			\
527 		"1:	sync\n"				\
528 		"2:\n"					\
529 		EX_TABLE(0b, 2b)			\
530 		EX_TABLE(1b, 2b)			\
531 		: : "r" (val), "r" (port + _IO_BASE)	\
532 		: "memory");   	   	   		\
533 }
534 
535 __do_in_asm(_rec_inb, "lbzx")
536 __do_in_asm(_rec_inw, "lhbrx")
537 __do_in_asm(_rec_inl, "lwbrx")
538 __do_out_asm(_rec_outb, "stbx")
539 __do_out_asm(_rec_outw, "sthbrx")
540 __do_out_asm(_rec_outl, "stwbrx")
541 
542 #endif /* CONFIG_PPC32 */
543 
544 /* The "__do_*" operations below provide the actual "base" implementation
545  * for each of the defined accessors. Some of them use the out_* functions
546  * directly, some of them still use EEH, though we might change that in the
547  * future. Those macros below provide the necessary argument swapping and
548  * handling of the IO base for PIO.
549  *
550  * They are themselves used by the macros that define the actual accessors
551  * and can be used by the hooks if any.
552  *
553  * Note that PIO operations are always defined in terms of their corresonding
554  * MMIO operations. That allows platforms like iSeries who want to modify the
555  * behaviour of both to only hook on the MMIO version and get both. It's also
556  * possible to hook directly at the toplevel PIO operation if they have to
557  * be handled differently
558  */
559 #define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
560 #define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
561 #define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
562 #define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
563 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
564 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
565 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
566 
567 #ifdef CONFIG_EEH
568 #define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
569 #define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
570 #define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
571 #define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
572 #define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
573 #define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
574 #define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
575 #else /* CONFIG_EEH */
576 #define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
577 #define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
578 #define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
579 #define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
580 #define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
581 #define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
582 #define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
583 #endif /* !defined(CONFIG_EEH) */
584 
585 #ifdef CONFIG_PPC32
586 #define __do_outb(val, port)	_rec_outb(val, port)
587 #define __do_outw(val, port)	_rec_outw(val, port)
588 #define __do_outl(val, port)	_rec_outl(val, port)
589 #define __do_inb(port)		_rec_inb(port)
590 #define __do_inw(port)		_rec_inw(port)
591 #define __do_inl(port)		_rec_inl(port)
592 #else /* CONFIG_PPC32 */
593 #define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
594 #define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
595 #define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
596 #define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
597 #define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
598 #define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
599 #endif /* !CONFIG_PPC32 */
600 
601 #ifdef CONFIG_EEH
602 #define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
603 #define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
604 #define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
605 #else /* CONFIG_EEH */
606 #define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
607 #define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
608 #define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
609 #endif /* !CONFIG_EEH */
610 #define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
611 #define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
612 #define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
613 
614 #define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
615 #define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
616 #define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
617 #define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
618 #define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
619 #define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
620 
621 #define __do_memset_io(addr, c, n)	\
622 				_memset_io(PCI_FIX_ADDR(addr), c, n)
623 #define __do_memcpy_toio(dst, src, n)	\
624 				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
625 
626 #ifdef CONFIG_EEH
627 #define __do_memcpy_fromio(dst, src, n)	\
628 				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
629 #else /* CONFIG_EEH */
630 #define __do_memcpy_fromio(dst, src, n)	\
631 				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
632 #endif /* !CONFIG_EEH */
633 
634 #ifdef CONFIG_PPC_INDIRECT_PIO
635 #define DEF_PCI_HOOK_pio(x)	x
636 #else
637 #define DEF_PCI_HOOK_pio(x)	NULL
638 #endif
639 
640 #ifdef CONFIG_PPC_INDIRECT_MMIO
641 #define DEF_PCI_HOOK_mem(x)	x
642 #else
643 #define DEF_PCI_HOOK_mem(x)	NULL
644 #endif
645 
646 /* Structure containing all the hooks */
647 extern struct ppc_pci_io {
648 
649 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
650 #define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
651 
652 #include <asm/io-defs.h>
653 
654 #undef DEF_PCI_AC_RET
655 #undef DEF_PCI_AC_NORET
656 
657 } ppc_pci_io;
658 
659 /* The inline wrappers */
660 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
661 static inline ret name at					\
662 {								\
663 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
664 		return ppc_pci_io.name al;			\
665 	return __do_##name al;					\
666 }
667 
668 #define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
669 static inline void name at					\
670 {								\
671 	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
672 		ppc_pci_io.name al;				\
673 	else							\
674 		__do_##name al;					\
675 }
676 
677 #include <asm/io-defs.h>
678 
679 #undef DEF_PCI_AC_RET
680 #undef DEF_PCI_AC_NORET
681 
682 /* Some drivers check for the presence of readq & writeq with
683  * a #ifdef, so we make them happy here.
684  */
685 #define readb readb
686 #define readw readw
687 #define readl readl
688 #define writeb writeb
689 #define writew writew
690 #define writel writel
691 #define readsb readsb
692 #define readsw readsw
693 #define readsl readsl
694 #define writesb writesb
695 #define writesw writesw
696 #define writesl writesl
697 #define inb inb
698 #define inw inw
699 #define inl inl
700 #define outb outb
701 #define outw outw
702 #define outl outl
703 #define insb insb
704 #define insw insw
705 #define insl insl
706 #define outsb outsb
707 #define outsw outsw
708 #define outsl outsl
709 #ifdef __powerpc64__
710 #define readq	readq
711 #define writeq	writeq
712 #endif
713 #define memset_io memset_io
714 #define memcpy_fromio memcpy_fromio
715 #define memcpy_toio memcpy_toio
716 
717 /*
718  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
719  * access
720  */
721 #define xlate_dev_mem_ptr(p)	__va(p)
722 
723 /*
724  * We don't do relaxed operations yet, at least not with this semantic
725  */
726 #define readb_relaxed(addr)	readb(addr)
727 #define readw_relaxed(addr)	readw(addr)
728 #define readl_relaxed(addr)	readl(addr)
729 #define readq_relaxed(addr)	readq(addr)
730 #define writeb_relaxed(v, addr)	writeb(v, addr)
731 #define writew_relaxed(v, addr)	writew(v, addr)
732 #define writel_relaxed(v, addr)	writel(v, addr)
733 #define writeq_relaxed(v, addr)	writeq(v, addr)
734 
735 #ifdef CONFIG_GENERIC_IOMAP
736 #include <asm-generic/iomap.h>
737 #else
738 /*
739  * Here comes the implementation of the IOMAP interfaces.
740  */
741 static inline unsigned int ioread16be(const void __iomem *addr)
742 {
743 	return readw_be(addr);
744 }
745 #define ioread16be ioread16be
746 
747 static inline unsigned int ioread32be(const void __iomem *addr)
748 {
749 	return readl_be(addr);
750 }
751 #define ioread32be ioread32be
752 
753 #ifdef __powerpc64__
754 static inline u64 ioread64_lo_hi(const void __iomem *addr)
755 {
756 	return readq(addr);
757 }
758 #define ioread64_lo_hi ioread64_lo_hi
759 
760 static inline u64 ioread64_hi_lo(const void __iomem *addr)
761 {
762 	return readq(addr);
763 }
764 #define ioread64_hi_lo ioread64_hi_lo
765 
766 static inline u64 ioread64be(const void __iomem *addr)
767 {
768 	return readq_be(addr);
769 }
770 #define ioread64be ioread64be
771 
772 static inline u64 ioread64be_lo_hi(const void __iomem *addr)
773 {
774 	return readq_be(addr);
775 }
776 #define ioread64be_lo_hi ioread64be_lo_hi
777 
778 static inline u64 ioread64be_hi_lo(const void __iomem *addr)
779 {
780 	return readq_be(addr);
781 }
782 #define ioread64be_hi_lo ioread64be_hi_lo
783 #endif /* __powerpc64__ */
784 
785 static inline void iowrite16be(u16 val, void __iomem *addr)
786 {
787 	writew_be(val, addr);
788 }
789 #define iowrite16be iowrite16be
790 
791 static inline void iowrite32be(u32 val, void __iomem *addr)
792 {
793 	writel_be(val, addr);
794 }
795 #define iowrite32be iowrite32be
796 
797 #ifdef __powerpc64__
798 static inline void iowrite64_lo_hi(u64 val, void __iomem *addr)
799 {
800 	writeq(val, addr);
801 }
802 #define iowrite64_lo_hi iowrite64_lo_hi
803 
804 static inline void iowrite64_hi_lo(u64 val, void __iomem *addr)
805 {
806 	writeq(val, addr);
807 }
808 #define iowrite64_hi_lo iowrite64_hi_lo
809 
810 static inline void iowrite64be(u64 val, void __iomem *addr)
811 {
812 	writeq_be(val, addr);
813 }
814 #define iowrite64be iowrite64be
815 
816 static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr)
817 {
818 	writeq_be(val, addr);
819 }
820 #define iowrite64be_lo_hi iowrite64be_lo_hi
821 
822 static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr)
823 {
824 	writeq_be(val, addr);
825 }
826 #define iowrite64be_hi_lo iowrite64be_hi_lo
827 #endif /* __powerpc64__ */
828 
829 struct pci_dev;
830 void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
831 #define pci_iounmap pci_iounmap
832 void __iomem *ioport_map(unsigned long port, unsigned int len);
833 #define ioport_map ioport_map
834 #endif
835 
836 static inline void iosync(void)
837 {
838         __asm__ __volatile__ ("sync" : : : "memory");
839 }
840 
841 /* Enforce in-order execution of data I/O.
842  * No distinction between read/write on PPC; use eieio for all three.
843  * Those are fairly week though. They don't provide a barrier between
844  * MMIO and cacheable storage nor do they provide a barrier vs. locks,
845  * they only provide barriers between 2 __raw MMIO operations and
846  * possibly break write combining.
847  */
848 #define iobarrier_rw() eieio()
849 #define iobarrier_r()  eieio()
850 #define iobarrier_w()  eieio()
851 
852 
853 /*
854  * output pause versions need a delay at least for the
855  * w83c105 ide controller in a p610.
856  */
857 #define inb_p(port)             inb(port)
858 #define outb_p(val, port)       (udelay(1), outb((val), (port)))
859 #define inw_p(port)             inw(port)
860 #define outw_p(val, port)       (udelay(1), outw((val), (port)))
861 #define inl_p(port)             inl(port)
862 #define outl_p(val, port)       (udelay(1), outl((val), (port)))
863 
864 
865 #define IO_SPACE_LIMIT ~(0UL)
866 
867 /**
868  * ioremap     -   map bus memory into CPU space
869  * @address:   bus address of the memory
870  * @size:      size of the resource to map
871  *
872  * ioremap performs a platform specific sequence of operations to
873  * make bus memory CPU accessible via the readb/readw/readl/writeb/
874  * writew/writel functions and the other mmio helpers. The returned
875  * address is not guaranteed to be usable directly as a virtual
876  * address.
877  *
878  * We provide a few variations of it:
879  *
880  * * ioremap is the standard one and provides non-cacheable guarded mappings
881  *   and can be hooked by the platform via ppc_md
882  *
883  * * ioremap_prot allows to specify the page flags as an argument and can
884  *   also be hooked by the platform via ppc_md.
885  *
886  * * ioremap_wc enables write combining
887  *
888  * * ioremap_wt enables write through
889  *
890  * * ioremap_coherent maps coherent cached memory
891  *
892  * * iounmap undoes such a mapping and can be hooked
893  *
894  * * __ioremap_caller is the same as above but takes an explicit caller
895  *   reference rather than using __builtin_return_address(0)
896  *
897  */
898 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
899 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
900 				  unsigned long flags);
901 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
902 #define ioremap_wc ioremap_wc
903 
904 #ifdef CONFIG_PPC32
905 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
906 #define ioremap_wt ioremap_wt
907 #endif
908 
909 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
910 #define ioremap_uc(addr, size)		ioremap((addr), (size))
911 #define ioremap_cache(addr, size) \
912 	ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
913 
914 extern void iounmap(volatile void __iomem *addr);
915 
916 void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
917 
918 int early_ioremap_range(unsigned long ea, phys_addr_t pa,
919 			unsigned long size, pgprot_t prot);
920 void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
921 			 pgprot_t prot, void *caller);
922 
923 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
924 				      pgprot_t prot, void *caller);
925 
926 /*
927  * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
928  * which needs some additional definitions here. They basically allow PIO
929  * space overall to be 1GB. This will work as long as we never try to use
930  * iomap to map MMIO below 1GB which should be fine on ppc64
931  */
932 #define HAVE_ARCH_PIO_SIZE		1
933 #define PIO_OFFSET			0x00000000UL
934 #define PIO_MASK			(FULL_IO_SIZE - 1)
935 #define PIO_RESERVED			(FULL_IO_SIZE)
936 
937 #define mmio_read16be(addr)		readw_be(addr)
938 #define mmio_read32be(addr)		readl_be(addr)
939 #define mmio_read64be(addr)		readq_be(addr)
940 #define mmio_write16be(val, addr)	writew_be(val, addr)
941 #define mmio_write32be(val, addr)	writel_be(val, addr)
942 #define mmio_write64be(val, addr)	writeq_be(val, addr)
943 #define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
944 #define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
945 #define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
946 #define mmio_outsb(addr, src, count)	writesb(addr, src, count)
947 #define mmio_outsw(addr, src, count)	writesw(addr, src, count)
948 #define mmio_outsl(addr, src, count)	writesl(addr, src, count)
949 
950 /**
951  *	virt_to_phys	-	map virtual addresses to physical
952  *	@address: address to remap
953  *
954  *	The returned physical address is the physical (CPU) mapping for
955  *	the memory address given. It is only valid to use this function on
956  *	addresses directly mapped or allocated via kmalloc.
957  *
958  *	This function does not give bus mappings for DMA transfers. In
959  *	almost all conceivable cases a device driver should not be using
960  *	this function
961  */
962 static inline unsigned long virt_to_phys(volatile void * address)
963 {
964 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
965 
966 	return __pa((unsigned long)address);
967 }
968 #define virt_to_phys virt_to_phys
969 
970 /**
971  *	phys_to_virt	-	map physical address to virtual
972  *	@address: address to remap
973  *
974  *	The returned virtual address is a current CPU mapping for
975  *	the memory address given. It is only valid to use this function on
976  *	addresses that have a kernel mapping
977  *
978  *	This function does not handle bus mappings for DMA transfers. In
979  *	almost all conceivable cases a device driver should not be using
980  *	this function
981  */
982 static inline void * phys_to_virt(unsigned long address)
983 {
984 	return (void *)__va(address);
985 }
986 #define phys_to_virt phys_to_virt
987 
988 /*
989  * Change "struct page" to physical address.
990  */
991 static inline phys_addr_t page_to_phys(struct page *page)
992 {
993 	unsigned long pfn = page_to_pfn(page);
994 
995 	WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
996 
997 	return PFN_PHYS(pfn);
998 }
999 
1000 /*
1001  * 32 bits still uses virt_to_bus() for it's implementation of DMA
1002  * mappings se we have to keep it defined here. We also have some old
1003  * drivers (shame shame shame) that use bus_to_virt() and haven't been
1004  * fixed yet so I need to define it here.
1005  */
1006 #ifdef CONFIG_PPC32
1007 
1008 static inline unsigned long virt_to_bus(volatile void * address)
1009 {
1010         if (address == NULL)
1011 		return 0;
1012         return __pa(address) + PCI_DRAM_OFFSET;
1013 }
1014 #define virt_to_bus virt_to_bus
1015 
1016 static inline void * bus_to_virt(unsigned long address)
1017 {
1018         if (address == 0)
1019 		return NULL;
1020         return __va(address - PCI_DRAM_OFFSET);
1021 }
1022 #define bus_to_virt bus_to_virt
1023 
1024 #endif /* CONFIG_PPC32 */
1025 
1026 /* access ports */
1027 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
1028 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
1029 
1030 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
1031 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
1032 
1033 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
1034 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
1035 
1036 /* Clear and set bits in one shot.  These macros can be used to clear and
1037  * set multiple bits in a register using a single read-modify-write.  These
1038  * macros can also be used to set a multiple-bit bit pattern using a mask,
1039  * by specifying the mask in the 'clear' parameter and the new bit pattern
1040  * in the 'set' parameter.
1041  */
1042 
1043 #define clrsetbits(type, addr, clear, set) \
1044 	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
1045 
1046 #ifdef __powerpc64__
1047 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
1048 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
1049 #endif
1050 
1051 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
1052 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
1053 
1054 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
1055 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
1056 
1057 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
1058 
1059 #include <asm-generic/io.h>
1060 
1061 #endif /* __KERNEL__ */
1062 
1063 #endif /* _ASM_POWERPC_IO_H */
1064