1 #ifndef _ASM_POWERPC_IO_H 2 #define _ASM_POWERPC_IO_H 3 #ifdef __KERNEL__ 4 5 #define ARCH_HAS_IOREMAP_WC 6 7 /* 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14 /* Check of existence of legacy devices */ 15 extern int check_legacy_ioport(unsigned long base_port); 16 #define I8042_DATA_REG 0x60 17 #define FDC_BASE 0x3f0 18 /* only relevant for PReP */ 19 #define _PIDXR 0x279 20 #define _PNPWRP 0xa79 21 #define PNPBIOS_BASE 0xf000 22 23 #include <linux/device.h> 24 #include <linux/io.h> 25 26 #include <linux/compiler.h> 27 #include <asm/page.h> 28 #include <asm/byteorder.h> 29 #include <asm/synch.h> 30 #include <asm/delay.h> 31 #include <asm/mmu.h> 32 33 #include <asm-generic/iomap.h> 34 35 #ifdef CONFIG_PPC64 36 #include <asm/paca.h> 37 #endif 38 39 #define SIO_CONFIG_RA 0x398 40 #define SIO_CONFIG_RD 0x399 41 42 #define SLOW_DOWN_IO 43 44 /* 32 bits uses slightly different variables for the various IO 45 * bases. Most of this file only uses _IO_BASE though which we 46 * define properly based on the platform 47 */ 48 #ifndef CONFIG_PCI 49 #define _IO_BASE 0 50 #define _ISA_MEM_BASE 0 51 #define PCI_DRAM_OFFSET 0 52 #elif defined(CONFIG_PPC32) 53 #define _IO_BASE isa_io_base 54 #define _ISA_MEM_BASE isa_mem_base 55 #define PCI_DRAM_OFFSET pci_dram_offset 56 #else 57 #define _IO_BASE pci_io_base 58 #define _ISA_MEM_BASE isa_mem_base 59 #define PCI_DRAM_OFFSET 0 60 #endif 61 62 extern unsigned long isa_io_base; 63 extern unsigned long pci_io_base; 64 extern unsigned long pci_dram_offset; 65 66 extern resource_size_t isa_mem_base; 67 68 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO) 69 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits 70 #endif 71 72 /* 73 * 74 * Low level MMIO accessors 75 * 76 * This provides the non-bus specific accessors to MMIO. Those are PowerPC 77 * specific and thus shouldn't be used in generic code. The accessors 78 * provided here are: 79 * 80 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64 81 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64 82 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns 83 * 84 * Those operate directly on a kernel virtual address. Note that the prototype 85 * for the out_* accessors has the arguments in opposite order from the usual 86 * linux PCI accessors. Unlike those, they take the address first and the value 87 * next. 88 * 89 * Note: I might drop the _ns suffix on the stream operations soon as it is 90 * simply normal for stream operations to not swap in the first place. 91 * 92 */ 93 94 #ifdef CONFIG_PPC64 95 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0) 96 #else 97 #define IO_SET_SYNC_FLAG() 98 #endif 99 100 /* gcc 4.0 and older doesn't have 'Z' constraint */ 101 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0) 102 #define DEF_MMIO_IN_LE(name, size, insn) \ 103 static inline u##size name(const volatile u##size __iomem *addr) \ 104 { \ 105 u##size ret; \ 106 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \ 107 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \ 108 return ret; \ 109 } 110 111 #define DEF_MMIO_OUT_LE(name, size, insn) \ 112 static inline void name(volatile u##size __iomem *addr, u##size val) \ 113 { \ 114 __asm__ __volatile__("sync;"#insn" %1,0,%2" \ 115 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \ 116 IO_SET_SYNC_FLAG(); \ 117 } 118 #else /* newer gcc */ 119 #define DEF_MMIO_IN_LE(name, size, insn) \ 120 static inline u##size name(const volatile u##size __iomem *addr) \ 121 { \ 122 u##size ret; \ 123 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \ 124 : "=r" (ret) : "Z" (*addr) : "memory"); \ 125 return ret; \ 126 } 127 128 #define DEF_MMIO_OUT_LE(name, size, insn) \ 129 static inline void name(volatile u##size __iomem *addr, u##size val) \ 130 { \ 131 __asm__ __volatile__("sync;"#insn" %1,%y0" \ 132 : "=Z" (*addr) : "r" (val) : "memory"); \ 133 IO_SET_SYNC_FLAG(); \ 134 } 135 #endif 136 137 #define DEF_MMIO_IN_BE(name, size, insn) \ 138 static inline u##size name(const volatile u##size __iomem *addr) \ 139 { \ 140 u##size ret; \ 141 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\ 142 : "=r" (ret) : "m" (*addr) : "memory"); \ 143 return ret; \ 144 } 145 146 #define DEF_MMIO_OUT_BE(name, size, insn) \ 147 static inline void name(volatile u##size __iomem *addr, u##size val) \ 148 { \ 149 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \ 150 : "=m" (*addr) : "r" (val) : "memory"); \ 151 IO_SET_SYNC_FLAG(); \ 152 } 153 154 155 DEF_MMIO_IN_BE(in_8, 8, lbz); 156 DEF_MMIO_IN_BE(in_be16, 16, lhz); 157 DEF_MMIO_IN_BE(in_be32, 32, lwz); 158 DEF_MMIO_IN_LE(in_le16, 16, lhbrx); 159 DEF_MMIO_IN_LE(in_le32, 32, lwbrx); 160 161 DEF_MMIO_OUT_BE(out_8, 8, stb); 162 DEF_MMIO_OUT_BE(out_be16, 16, sth); 163 DEF_MMIO_OUT_BE(out_be32, 32, stw); 164 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx); 165 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx); 166 167 #ifdef __powerpc64__ 168 DEF_MMIO_OUT_BE(out_be64, 64, std); 169 DEF_MMIO_IN_BE(in_be64, 64, ld); 170 171 /* There is no asm instructions for 64 bits reverse loads and stores */ 172 static inline u64 in_le64(const volatile u64 __iomem *addr) 173 { 174 return swab64(in_be64(addr)); 175 } 176 177 static inline void out_le64(volatile u64 __iomem *addr, u64 val) 178 { 179 out_be64(addr, swab64(val)); 180 } 181 #endif /* __powerpc64__ */ 182 183 /* 184 * Low level IO stream instructions are defined out of line for now 185 */ 186 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count); 187 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count); 188 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count); 189 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count); 190 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count); 191 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count); 192 193 /* The _ns naming is historical and will be removed. For now, just #define 194 * the non _ns equivalent names 195 */ 196 #define _insw _insw_ns 197 #define _insl _insl_ns 198 #define _outsw _outsw_ns 199 #define _outsl _outsl_ns 200 201 202 /* 203 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line 204 */ 205 206 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n); 207 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src, 208 unsigned long n); 209 extern void _memcpy_toio(volatile void __iomem *dest, const void *src, 210 unsigned long n); 211 212 /* 213 * 214 * PCI and standard ISA accessors 215 * 216 * Those are globally defined linux accessors for devices on PCI or ISA 217 * busses. They follow the Linux defined semantics. The current implementation 218 * for PowerPC is as close as possible to the x86 version of these, and thus 219 * provides fairly heavy weight barriers for the non-raw versions 220 * 221 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO 222 * allowing the platform to provide its own implementation of some or all 223 * of the accessors. 224 */ 225 226 /* 227 * Include the EEH definitions when EEH is enabled only so they don't get 228 * in the way when building for 32 bits 229 */ 230 #ifdef CONFIG_EEH 231 #include <asm/eeh.h> 232 #endif 233 234 /* Shortcut to the MMIO argument pointer */ 235 #define PCI_IO_ADDR volatile void __iomem * 236 237 /* Indirect IO address tokens: 238 * 239 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks 240 * on all IOs. (Note that this is all 64 bits only for now) 241 * 242 * To help platforms who may need to differenciate MMIO addresses in 243 * their hooks, a bitfield is reserved for use by the platform near the 244 * top of MMIO addresses (not PIO, those have to cope the hard way). 245 * 246 * This bit field is 12 bits and is at the top of the IO virtual 247 * addresses PCI_IO_INDIRECT_TOKEN_MASK. 248 * 249 * The kernel virtual space is thus: 250 * 251 * 0xD000000000000000 : vmalloc 252 * 0xD000080000000000 : PCI PHB IO space 253 * 0xD000080080000000 : ioremap 254 * 0xD0000fffffffffff : end of ioremap region 255 * 256 * Since the top 4 bits are reserved as the region ID, we use thus 257 * the next 12 bits and keep 4 bits available for the future if the 258 * virtual address space is ever to be extended. 259 * 260 * The direct IO mapping operations will then mask off those bits 261 * before doing the actual access, though that only happen when 262 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that 263 * mechanism 264 */ 265 266 #ifdef CONFIG_PPC_INDIRECT_IO 267 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul 268 #define PCI_IO_IND_TOKEN_SHIFT 48 269 #define PCI_FIX_ADDR(addr) \ 270 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK)) 271 #define PCI_GET_ADDR_TOKEN(addr) \ 272 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \ 273 PCI_IO_IND_TOKEN_SHIFT) 274 #define PCI_SET_ADDR_TOKEN(addr, token) \ 275 do { \ 276 unsigned long __a = (unsigned long)(addr); \ 277 __a &= ~PCI_IO_IND_TOKEN_MASK; \ 278 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \ 279 (addr) = (void __iomem *)__a; \ 280 } while(0) 281 #else 282 #define PCI_FIX_ADDR(addr) (addr) 283 #endif 284 285 286 /* 287 * Non ordered and non-swapping "raw" accessors 288 */ 289 290 static inline unsigned char __raw_readb(const volatile void __iomem *addr) 291 { 292 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr); 293 } 294 static inline unsigned short __raw_readw(const volatile void __iomem *addr) 295 { 296 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr); 297 } 298 static inline unsigned int __raw_readl(const volatile void __iomem *addr) 299 { 300 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr); 301 } 302 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr) 303 { 304 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v; 305 } 306 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr) 307 { 308 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v; 309 } 310 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr) 311 { 312 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v; 313 } 314 315 #ifdef __powerpc64__ 316 static inline unsigned long __raw_readq(const volatile void __iomem *addr) 317 { 318 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr); 319 } 320 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) 321 { 322 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v; 323 } 324 #endif /* __powerpc64__ */ 325 326 /* 327 * 328 * PCI PIO and MMIO accessors. 329 * 330 * 331 * On 32 bits, PIO operations have a recovery mechanism in case they trigger 332 * machine checks (which they occasionally do when probing non existing 333 * IO ports on some platforms, like PowerMac and 8xx). 334 * I always found it to be of dubious reliability and I am tempted to get 335 * rid of it one of these days. So if you think it's important to keep it, 336 * please voice up asap. We never had it for 64 bits and I do not intend 337 * to port it over 338 */ 339 340 #ifdef CONFIG_PPC32 341 342 #define __do_in_asm(name, op) \ 343 static inline unsigned int name(unsigned int port) \ 344 { \ 345 unsigned int x; \ 346 __asm__ __volatile__( \ 347 "sync\n" \ 348 "0:" op " %0,0,%1\n" \ 349 "1: twi 0,%0,0\n" \ 350 "2: isync\n" \ 351 "3: nop\n" \ 352 "4:\n" \ 353 ".section .fixup,\"ax\"\n" \ 354 "5: li %0,-1\n" \ 355 " b 4b\n" \ 356 ".previous\n" \ 357 ".section __ex_table,\"a\"\n" \ 358 " .align 2\n" \ 359 " .long 0b,5b\n" \ 360 " .long 1b,5b\n" \ 361 " .long 2b,5b\n" \ 362 " .long 3b,5b\n" \ 363 ".previous" \ 364 : "=&r" (x) \ 365 : "r" (port + _IO_BASE) \ 366 : "memory"); \ 367 return x; \ 368 } 369 370 #define __do_out_asm(name, op) \ 371 static inline void name(unsigned int val, unsigned int port) \ 372 { \ 373 __asm__ __volatile__( \ 374 "sync\n" \ 375 "0:" op " %0,0,%1\n" \ 376 "1: sync\n" \ 377 "2:\n" \ 378 ".section __ex_table,\"a\"\n" \ 379 " .align 2\n" \ 380 " .long 0b,2b\n" \ 381 " .long 1b,2b\n" \ 382 ".previous" \ 383 : : "r" (val), "r" (port + _IO_BASE) \ 384 : "memory"); \ 385 } 386 387 __do_in_asm(_rec_inb, "lbzx") 388 __do_in_asm(_rec_inw, "lhbrx") 389 __do_in_asm(_rec_inl, "lwbrx") 390 __do_out_asm(_rec_outb, "stbx") 391 __do_out_asm(_rec_outw, "sthbrx") 392 __do_out_asm(_rec_outl, "stwbrx") 393 394 #endif /* CONFIG_PPC32 */ 395 396 /* The "__do_*" operations below provide the actual "base" implementation 397 * for each of the defined acccessor. Some of them use the out_* functions 398 * directly, some of them still use EEH, though we might change that in the 399 * future. Those macros below provide the necessary argument swapping and 400 * handling of the IO base for PIO. 401 * 402 * They are themselves used by the macros that define the actual accessors 403 * and can be used by the hooks if any. 404 * 405 * Note that PIO operations are always defined in terms of their corresonding 406 * MMIO operations. That allows platforms like iSeries who want to modify the 407 * behaviour of both to only hook on the MMIO version and get both. It's also 408 * possible to hook directly at the toplevel PIO operation if they have to 409 * be handled differently 410 */ 411 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val) 412 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val) 413 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val) 414 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val) 415 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val) 416 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val) 417 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val) 418 419 #ifdef CONFIG_EEH 420 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr)) 421 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr)) 422 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr)) 423 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr)) 424 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr)) 425 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr)) 426 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr)) 427 #else /* CONFIG_EEH */ 428 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr)) 429 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr)) 430 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr)) 431 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr)) 432 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr)) 433 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr)) 434 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr)) 435 #endif /* !defined(CONFIG_EEH) */ 436 437 #ifdef CONFIG_PPC32 438 #define __do_outb(val, port) _rec_outb(val, port) 439 #define __do_outw(val, port) _rec_outw(val, port) 440 #define __do_outl(val, port) _rec_outl(val, port) 441 #define __do_inb(port) _rec_inb(port) 442 #define __do_inw(port) _rec_inw(port) 443 #define __do_inl(port) _rec_inl(port) 444 #else /* CONFIG_PPC32 */ 445 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port); 446 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port); 447 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port); 448 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port); 449 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port); 450 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port); 451 #endif /* !CONFIG_PPC32 */ 452 453 #ifdef CONFIG_EEH 454 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n)) 455 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n)) 456 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n)) 457 #else /* CONFIG_EEH */ 458 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n)) 459 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n)) 460 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n)) 461 #endif /* !CONFIG_EEH */ 462 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n)) 463 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n)) 464 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n)) 465 466 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 467 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 468 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n)) 469 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 470 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 471 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n)) 472 473 #define __do_memset_io(addr, c, n) \ 474 _memset_io(PCI_FIX_ADDR(addr), c, n) 475 #define __do_memcpy_toio(dst, src, n) \ 476 _memcpy_toio(PCI_FIX_ADDR(dst), src, n) 477 478 #ifdef CONFIG_EEH 479 #define __do_memcpy_fromio(dst, src, n) \ 480 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n) 481 #else /* CONFIG_EEH */ 482 #define __do_memcpy_fromio(dst, src, n) \ 483 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n) 484 #endif /* !CONFIG_EEH */ 485 486 #ifdef CONFIG_PPC_INDIRECT_PIO 487 #define DEF_PCI_HOOK_pio(x) x 488 #else 489 #define DEF_PCI_HOOK_pio(x) NULL 490 #endif 491 492 #ifdef CONFIG_PPC_INDIRECT_MMIO 493 #define DEF_PCI_HOOK_mem(x) x 494 #else 495 #define DEF_PCI_HOOK_mem(x) NULL 496 #endif 497 498 /* Structure containing all the hooks */ 499 extern struct ppc_pci_io { 500 501 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at; 502 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at; 503 504 #include <asm/io-defs.h> 505 506 #undef DEF_PCI_AC_RET 507 #undef DEF_PCI_AC_NORET 508 509 } ppc_pci_io; 510 511 /* The inline wrappers */ 512 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \ 513 static inline ret name at \ 514 { \ 515 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 516 return ppc_pci_io.name al; \ 517 return __do_##name al; \ 518 } 519 520 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \ 521 static inline void name at \ 522 { \ 523 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \ 524 ppc_pci_io.name al; \ 525 else \ 526 __do_##name al; \ 527 } 528 529 #include <asm/io-defs.h> 530 531 #undef DEF_PCI_AC_RET 532 #undef DEF_PCI_AC_NORET 533 534 /* Some drivers check for the presence of readq & writeq with 535 * a #ifdef, so we make them happy here. 536 */ 537 #ifdef __powerpc64__ 538 #define readq readq 539 #define writeq writeq 540 #endif 541 542 /* 543 * Convert a physical pointer to a virtual kernel pointer for /dev/mem 544 * access 545 */ 546 #define xlate_dev_mem_ptr(p) __va(p) 547 548 /* 549 * Convert a virtual cached pointer to an uncached pointer 550 */ 551 #define xlate_dev_kmem_ptr(p) p 552 553 /* 554 * We don't do relaxed operations yet, at least not with this semantic 555 */ 556 #define readb_relaxed(addr) readb(addr) 557 #define readw_relaxed(addr) readw(addr) 558 #define readl_relaxed(addr) readl(addr) 559 #define readq_relaxed(addr) readq(addr) 560 561 #ifdef CONFIG_PPC32 562 #define mmiowb() 563 #else 564 /* 565 * Enforce synchronisation of stores vs. spin_unlock 566 * (this does it explicitly, though our implementation of spin_unlock 567 * does it implicitely too) 568 */ 569 static inline void mmiowb(void) 570 { 571 unsigned long tmp; 572 573 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)" 574 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync)) 575 : "memory"); 576 } 577 #endif /* !CONFIG_PPC32 */ 578 579 static inline void iosync(void) 580 { 581 __asm__ __volatile__ ("sync" : : : "memory"); 582 } 583 584 /* Enforce in-order execution of data I/O. 585 * No distinction between read/write on PPC; use eieio for all three. 586 * Those are fairly week though. They don't provide a barrier between 587 * MMIO and cacheable storage nor do they provide a barrier vs. locks, 588 * they only provide barriers between 2 __raw MMIO operations and 589 * possibly break write combining. 590 */ 591 #define iobarrier_rw() eieio() 592 #define iobarrier_r() eieio() 593 #define iobarrier_w() eieio() 594 595 596 /* 597 * output pause versions need a delay at least for the 598 * w83c105 ide controller in a p610. 599 */ 600 #define inb_p(port) inb(port) 601 #define outb_p(val, port) (udelay(1), outb((val), (port))) 602 #define inw_p(port) inw(port) 603 #define outw_p(val, port) (udelay(1), outw((val), (port))) 604 #define inl_p(port) inl(port) 605 #define outl_p(val, port) (udelay(1), outl((val), (port))) 606 607 608 #define IO_SPACE_LIMIT ~(0UL) 609 610 611 /** 612 * ioremap - map bus memory into CPU space 613 * @address: bus address of the memory 614 * @size: size of the resource to map 615 * 616 * ioremap performs a platform specific sequence of operations to 617 * make bus memory CPU accessible via the readb/readw/readl/writeb/ 618 * writew/writel functions and the other mmio helpers. The returned 619 * address is not guaranteed to be usable directly as a virtual 620 * address. 621 * 622 * We provide a few variations of it: 623 * 624 * * ioremap is the standard one and provides non-cacheable guarded mappings 625 * and can be hooked by the platform via ppc_md 626 * 627 * * ioremap_prot allows to specify the page flags as an argument and can 628 * also be hooked by the platform via ppc_md. 629 * 630 * * ioremap_nocache is identical to ioremap 631 * 632 * * ioremap_wc enables write combining 633 * 634 * * iounmap undoes such a mapping and can be hooked 635 * 636 * * __ioremap_at (and the pending __iounmap_at) are low level functions to 637 * create hand-made mappings for use only by the PCI code and cannot 638 * currently be hooked. Must be page aligned. 639 * 640 * * __ioremap is the low level implementation used by ioremap and 641 * ioremap_prot and cannot be hooked (but can be used by a hook on one 642 * of the previous ones) 643 * 644 * * __ioremap_caller is the same as above but takes an explicit caller 645 * reference rather than using __builtin_return_address(0) 646 * 647 * * __iounmap, is the low level implementation used by iounmap and cannot 648 * be hooked (but can be used by a hook on iounmap) 649 * 650 */ 651 extern void __iomem *ioremap(phys_addr_t address, unsigned long size); 652 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size, 653 unsigned long flags); 654 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size); 655 #define ioremap_nocache(addr, size) ioremap((addr), (size)) 656 657 extern void iounmap(volatile void __iomem *addr); 658 659 extern void __iomem *__ioremap(phys_addr_t, unsigned long size, 660 unsigned long flags); 661 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size, 662 unsigned long flags, void *caller); 663 664 extern void __iounmap(volatile void __iomem *addr); 665 666 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea, 667 unsigned long size, unsigned long flags); 668 extern void __iounmap_at(void *ea, unsigned long size); 669 670 /* 671 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation 672 * which needs some additional definitions here. They basically allow PIO 673 * space overall to be 1GB. This will work as long as we never try to use 674 * iomap to map MMIO below 1GB which should be fine on ppc64 675 */ 676 #define HAVE_ARCH_PIO_SIZE 1 677 #define PIO_OFFSET 0x00000000UL 678 #define PIO_MASK (FULL_IO_SIZE - 1) 679 #define PIO_RESERVED (FULL_IO_SIZE) 680 681 #define mmio_read16be(addr) readw_be(addr) 682 #define mmio_read32be(addr) readl_be(addr) 683 #define mmio_write16be(val, addr) writew_be(val, addr) 684 #define mmio_write32be(val, addr) writel_be(val, addr) 685 #define mmio_insb(addr, dst, count) readsb(addr, dst, count) 686 #define mmio_insw(addr, dst, count) readsw(addr, dst, count) 687 #define mmio_insl(addr, dst, count) readsl(addr, dst, count) 688 #define mmio_outsb(addr, src, count) writesb(addr, src, count) 689 #define mmio_outsw(addr, src, count) writesw(addr, src, count) 690 #define mmio_outsl(addr, src, count) writesl(addr, src, count) 691 692 /** 693 * virt_to_phys - map virtual addresses to physical 694 * @address: address to remap 695 * 696 * The returned physical address is the physical (CPU) mapping for 697 * the memory address given. It is only valid to use this function on 698 * addresses directly mapped or allocated via kmalloc. 699 * 700 * This function does not give bus mappings for DMA transfers. In 701 * almost all conceivable cases a device driver should not be using 702 * this function 703 */ 704 static inline unsigned long virt_to_phys(volatile void * address) 705 { 706 return __pa((unsigned long)address); 707 } 708 709 /** 710 * phys_to_virt - map physical address to virtual 711 * @address: address to remap 712 * 713 * The returned virtual address is a current CPU mapping for 714 * the memory address given. It is only valid to use this function on 715 * addresses that have a kernel mapping 716 * 717 * This function does not handle bus mappings for DMA transfers. In 718 * almost all conceivable cases a device driver should not be using 719 * this function 720 */ 721 static inline void * phys_to_virt(unsigned long address) 722 { 723 return (void *)__va(address); 724 } 725 726 /* 727 * Change "struct page" to physical address. 728 */ 729 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT) 730 731 /* 732 * 32 bits still uses virt_to_bus() for it's implementation of DMA 733 * mappings se we have to keep it defined here. We also have some old 734 * drivers (shame shame shame) that use bus_to_virt() and haven't been 735 * fixed yet so I need to define it here. 736 */ 737 #ifdef CONFIG_PPC32 738 739 static inline unsigned long virt_to_bus(volatile void * address) 740 { 741 if (address == NULL) 742 return 0; 743 return __pa(address) + PCI_DRAM_OFFSET; 744 } 745 746 static inline void * bus_to_virt(unsigned long address) 747 { 748 if (address == 0) 749 return NULL; 750 return __va(address - PCI_DRAM_OFFSET); 751 } 752 753 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) 754 755 #endif /* CONFIG_PPC32 */ 756 757 /* access ports */ 758 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) 759 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) 760 761 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) 762 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) 763 764 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v)) 765 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v)) 766 767 /* Clear and set bits in one shot. These macros can be used to clear and 768 * set multiple bits in a register using a single read-modify-write. These 769 * macros can also be used to set a multiple-bit bit pattern using a mask, 770 * by specifying the mask in the 'clear' parameter and the new bit pattern 771 * in the 'set' parameter. 772 */ 773 774 #define clrsetbits(type, addr, clear, set) \ 775 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 776 777 #ifdef __powerpc64__ 778 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) 779 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) 780 #endif 781 782 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 783 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 784 785 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 786 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 787 788 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 789 790 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset, 791 size_t size, unsigned long flags); 792 793 #endif /* __KERNEL__ */ 794 795 #endif /* _ASM_POWERPC_IO_H */ 796