xref: /linux/arch/powerpc/include/asm/eeh.h (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/time.h>
28 
29 struct pci_dev;
30 struct pci_bus;
31 struct device_node;
32 
33 #ifdef CONFIG_EEH
34 
35 /*
36  * The struct is used to trace PE related EEH functionality.
37  * In theory, there will have one instance of the struct to
38  * be created against particular PE. In nature, PEs corelate
39  * to each other. the struct has to reflect that hierarchy in
40  * order to easily pick up those affected PEs when one particular
41  * PE has EEH errors.
42  *
43  * Also, one particular PE might be composed of PCI device, PCI
44  * bus and its subordinate components. The struct also need ship
45  * the information. Further more, one particular PE is only meaingful
46  * in the corresponding PHB. Therefore, the root PEs should be created
47  * against existing PHBs in on-to-one fashion.
48  */
49 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
50 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
51 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
52 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
53 
54 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
55 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
56 #define EEH_PE_PHB_DEAD		(1 << 2)	/* Dead PHB		*/
57 
58 struct eeh_pe {
59 	int type;			/* PE type: PHB/Bus/Device	*/
60 	int state;			/* PE EEH dependent mode	*/
61 	int config_addr;		/* Traditional PCI address	*/
62 	int addr;			/* PE configuration address	*/
63 	struct pci_controller *phb;	/* Associated PHB		*/
64 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
65 	int check_count;		/* Times of ignored error	*/
66 	int freeze_count;		/* Times of froze up		*/
67 	struct timeval tstamp;		/* Time on first-time freeze	*/
68 	int false_positives;		/* Times of reported #ff's	*/
69 	struct eeh_pe *parent;		/* Parent PE			*/
70 	struct list_head child_list;	/* Link PE to the child list	*/
71 	struct list_head edevs;		/* Link list of EEH devices	*/
72 	struct list_head child;		/* Child PEs			*/
73 };
74 
75 #define eeh_pe_for_each_dev(pe, edev) \
76 		list_for_each_entry(edev, &pe->edevs, list)
77 
78 /*
79  * The struct is used to trace EEH state for the associated
80  * PCI device node or PCI device. In future, it might
81  * represent PE as well so that the EEH device to form
82  * another tree except the currently existing tree of PCI
83  * buses and PCI devices
84  */
85 #define EEH_DEV_IRQ_DISABLED	(1<<0)	/* Interrupt disabled		*/
86 
87 struct eeh_dev {
88 	int mode;			/* EEH mode			*/
89 	int class_code;			/* Class code of the device	*/
90 	int config_addr;		/* Config address		*/
91 	int pe_config_addr;		/* PE config address		*/
92 	u32 config_space[16];		/* Saved PCI config space	*/
93 	struct eeh_pe *pe;		/* Associated PE		*/
94 	struct list_head list;		/* Form link list in the PE	*/
95 	struct pci_controller *phb;	/* Associated PHB		*/
96 	struct device_node *dn;		/* Associated device node	*/
97 	struct pci_dev *pdev;		/* Associated PCI device	*/
98 };
99 
100 static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
101 {
102 	return edev ? edev->dn : NULL;
103 }
104 
105 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
106 {
107 	return edev ? edev->pdev : NULL;
108 }
109 
110 /*
111  * The struct is used to trace the registered EEH operation
112  * callback functions. Actually, those operation callback
113  * functions are heavily platform dependent. That means the
114  * platform should register its own EEH operation callback
115  * functions before any EEH further operations.
116  */
117 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
118 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
119 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
120 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
121 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
122 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
123 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
124 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
125 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
126 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
127 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
128 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
129 #define EEH_RESET_HOT		1	/* Hot reset			*/
130 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
131 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
132 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
133 
134 struct eeh_ops {
135 	char *name;
136 	int (*init)(void);
137 	int (*post_init)(void);
138 	void* (*of_probe)(struct device_node *dn, void *flag);
139 	int (*dev_probe)(struct pci_dev *dev, void *flag);
140 	int (*set_option)(struct eeh_pe *pe, int option);
141 	int (*get_pe_addr)(struct eeh_pe *pe);
142 	int (*get_state)(struct eeh_pe *pe, int *state);
143 	int (*reset)(struct eeh_pe *pe, int option);
144 	int (*wait_state)(struct eeh_pe *pe, int max_wait);
145 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
146 	int (*configure_bridge)(struct eeh_pe *pe);
147 	int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
148 	int (*write_config)(struct device_node *dn, int where, int size, u32 val);
149 	int (*next_error)(struct eeh_pe **pe);
150 };
151 
152 extern struct eeh_ops *eeh_ops;
153 extern int eeh_subsystem_enabled;
154 extern raw_spinlock_t confirm_error_lock;
155 extern int eeh_probe_mode;
156 
157 #define EEH_PROBE_MODE_DEV	(1<<0)	/* From PCI device	*/
158 #define EEH_PROBE_MODE_DEVTREE	(1<<1)	/* From device tree	*/
159 
160 static inline void eeh_probe_mode_set(int flag)
161 {
162 	eeh_probe_mode = flag;
163 }
164 
165 static inline int eeh_probe_mode_devtree(void)
166 {
167 	return (eeh_probe_mode == EEH_PROBE_MODE_DEVTREE);
168 }
169 
170 static inline int eeh_probe_mode_dev(void)
171 {
172 	return (eeh_probe_mode == EEH_PROBE_MODE_DEV);
173 }
174 
175 static inline void eeh_serialize_lock(unsigned long *flags)
176 {
177 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
178 }
179 
180 static inline void eeh_serialize_unlock(unsigned long flags)
181 {
182 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
183 }
184 
185 /*
186  * Max number of EEH freezes allowed before we consider the device
187  * to be permanently disabled.
188  */
189 #define EEH_MAX_ALLOWED_FREEZES 5
190 
191 typedef void *(*eeh_traverse_func)(void *data, void *flag);
192 int eeh_phb_pe_create(struct pci_controller *phb);
193 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
194 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev);
195 int eeh_add_to_parent_pe(struct eeh_dev *edev);
196 int eeh_rmv_from_parent_pe(struct eeh_dev *edev, int purge_pe);
197 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 		eeh_traverse_func fn, void *flag);
200 void eeh_pe_restore_bars(struct eeh_pe *pe);
201 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
202 
203 void *eeh_dev_init(struct device_node *dn, void *data);
204 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
205 int eeh_init(void);
206 int __init eeh_ops_register(struct eeh_ops *ops);
207 int __exit eeh_ops_unregister(const char *name);
208 unsigned long eeh_check_failure(const volatile void __iomem *token,
209 				unsigned long val);
210 int eeh_dev_check_failure(struct eeh_dev *edev);
211 void eeh_addr_cache_build(void);
212 void eeh_add_device_tree_early(struct device_node *);
213 void eeh_add_device_tree_late(struct pci_bus *);
214 void eeh_add_sysfs_files(struct pci_bus *);
215 void eeh_remove_bus_device(struct pci_dev *, int);
216 
217 /**
218  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
219  *
220  * If this macro yields TRUE, the caller relays to eeh_check_failure()
221  * which does further tests out of line.
222  */
223 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_subsystem_enabled)
224 
225 /*
226  * Reads from a device which has been isolated by EEH will return
227  * all 1s.  This macro gives an all-1s value of the given size (in
228  * bytes: 1, 2, or 4) for comparing with the result of a read.
229  */
230 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
231 
232 #else /* !CONFIG_EEH */
233 
234 static inline int eeh_init(void)
235 {
236 	return 0;
237 }
238 
239 static inline void *eeh_dev_init(struct device_node *dn, void *data)
240 {
241 	return NULL;
242 }
243 
244 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
245 
246 static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
247 {
248 	return val;
249 }
250 
251 #define eeh_dev_check_failure(x) (0)
252 
253 static inline void eeh_addr_cache_build(void) { }
254 
255 static inline void eeh_add_device_tree_early(struct device_node *dn) { }
256 
257 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
258 
259 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
260 
261 static inline void eeh_remove_bus_device(struct pci_dev *dev, int purge_pe) { }
262 
263 #define EEH_POSSIBLE_ERROR(val, type) (0)
264 #define EEH_IO_ERROR_VALUE(size) (-1UL)
265 #endif /* CONFIG_EEH */
266 
267 #ifdef CONFIG_PPC64
268 /*
269  * MMIO read/write operations with EEH support.
270  */
271 static inline u8 eeh_readb(const volatile void __iomem *addr)
272 {
273 	u8 val = in_8(addr);
274 	if (EEH_POSSIBLE_ERROR(val, u8))
275 		return eeh_check_failure(addr, val);
276 	return val;
277 }
278 
279 static inline u16 eeh_readw(const volatile void __iomem *addr)
280 {
281 	u16 val = in_le16(addr);
282 	if (EEH_POSSIBLE_ERROR(val, u16))
283 		return eeh_check_failure(addr, val);
284 	return val;
285 }
286 
287 static inline u32 eeh_readl(const volatile void __iomem *addr)
288 {
289 	u32 val = in_le32(addr);
290 	if (EEH_POSSIBLE_ERROR(val, u32))
291 		return eeh_check_failure(addr, val);
292 	return val;
293 }
294 
295 static inline u64 eeh_readq(const volatile void __iomem *addr)
296 {
297 	u64 val = in_le64(addr);
298 	if (EEH_POSSIBLE_ERROR(val, u64))
299 		return eeh_check_failure(addr, val);
300 	return val;
301 }
302 
303 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
304 {
305 	u16 val = in_be16(addr);
306 	if (EEH_POSSIBLE_ERROR(val, u16))
307 		return eeh_check_failure(addr, val);
308 	return val;
309 }
310 
311 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
312 {
313 	u32 val = in_be32(addr);
314 	if (EEH_POSSIBLE_ERROR(val, u32))
315 		return eeh_check_failure(addr, val);
316 	return val;
317 }
318 
319 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
320 {
321 	u64 val = in_be64(addr);
322 	if (EEH_POSSIBLE_ERROR(val, u64))
323 		return eeh_check_failure(addr, val);
324 	return val;
325 }
326 
327 static inline void eeh_memcpy_fromio(void *dest, const
328 				     volatile void __iomem *src,
329 				     unsigned long n)
330 {
331 	_memcpy_fromio(dest, src, n);
332 
333 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
334 	 * were copied. Check all four bytes.
335 	 */
336 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
337 		eeh_check_failure(src, *((u32 *)(dest + n - 4)));
338 }
339 
340 /* in-string eeh macros */
341 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
342 			      int ns)
343 {
344 	_insb(addr, buf, ns);
345 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
346 		eeh_check_failure(addr, *(u8*)buf);
347 }
348 
349 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
350 			      int ns)
351 {
352 	_insw(addr, buf, ns);
353 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
354 		eeh_check_failure(addr, *(u16*)buf);
355 }
356 
357 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
358 			      int nl)
359 {
360 	_insl(addr, buf, nl);
361 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
362 		eeh_check_failure(addr, *(u32*)buf);
363 }
364 
365 #endif /* CONFIG_PPC64 */
366 #endif /* __KERNEL__ */
367 #endif /* _POWERPC_EEH_H */
368