xref: /linux/arch/powerpc/include/asm/eeh.h (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/time.h>
28 #include <linux/atomic.h>
29 
30 #include <uapi/asm/eeh.h>
31 
32 struct pci_dev;
33 struct pci_bus;
34 struct pci_dn;
35 
36 #ifdef CONFIG_EEH
37 
38 /* EEH subsystem flags */
39 #define EEH_ENABLED		0x01	/* EEH enabled			     */
40 #define EEH_FORCE_DISABLED	0x02	/* EEH disabled			     */
41 #define EEH_PROBE_MODE_DEV	0x04	/* From PCI device		     */
42 #define EEH_PROBE_MODE_DEVTREE	0x08	/* From device tree		     */
43 #define EEH_VALID_PE_ZERO	0x10	/* PE#0 is valid		     */
44 #define EEH_ENABLE_IO_FOR_LOG	0x20	/* Enable IO for log		     */
45 #define EEH_EARLY_DUMP_LOG	0x40	/* Dump log immediately		     */
46 
47 /*
48  * Delay for PE reset, all in ms
49  *
50  * PCI specification has reset hold time of 100 milliseconds.
51  * We have 250 milliseconds here. The PCI bus settlement time
52  * is specified as 1.5 seconds and we have 1.8 seconds.
53  */
54 #define EEH_PE_RST_HOLD_TIME		250
55 #define EEH_PE_RST_SETTLE_TIME		1800
56 
57 /*
58  * The struct is used to trace PE related EEH functionality.
59  * In theory, there will have one instance of the struct to
60  * be created against particular PE. In nature, PEs correlate
61  * to each other. the struct has to reflect that hierarchy in
62  * order to easily pick up those affected PEs when one particular
63  * PE has EEH errors.
64  *
65  * Also, one particular PE might be composed of PCI device, PCI
66  * bus and its subordinate components. The struct also need ship
67  * the information. Further more, one particular PE is only meaingful
68  * in the corresponding PHB. Therefore, the root PEs should be created
69  * against existing PHBs in on-to-one fashion.
70  */
71 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
72 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
73 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
74 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
75 #define EEH_PE_VF	(1 << 4)	/* VF PE     */
76 
77 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
78 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
79 #define EEH_PE_CFG_BLOCKED	(1 << 2)	/* Block config access	*/
80 #define EEH_PE_RESET		(1 << 3)	/* PE reset in progress */
81 
82 #define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
83 #define EEH_PE_CFG_RESTRICTED	(1 << 9)	/* Block config on error */
84 #define EEH_PE_REMOVED		(1 << 10)	/* Removed permanently	*/
85 #define EEH_PE_PRI_BUS		(1 << 11)	/* Cached primary bus   */
86 
87 struct eeh_pe {
88 	int type;			/* PE type: PHB/Bus/Device	*/
89 	int state;			/* PE EEH dependent mode	*/
90 	int config_addr;		/* Traditional PCI address	*/
91 	int addr;			/* PE configuration address	*/
92 	struct pci_controller *phb;	/* Associated PHB		*/
93 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
94 	int check_count;		/* Times of ignored error	*/
95 	int freeze_count;		/* Times of froze up		*/
96 	time64_t tstamp;		/* Time on first-time freeze	*/
97 	int false_positives;		/* Times of reported #ff's	*/
98 	atomic_t pass_dev_cnt;		/* Count of passed through devs	*/
99 	struct eeh_pe *parent;		/* Parent PE			*/
100 	void *data;			/* PE auxillary data		*/
101 	struct list_head child_list;	/* List of PEs below this PE	*/
102 	struct list_head child;		/* Memb. child_list/eeh_phb_pe	*/
103 	struct list_head edevs;		/* List of eeh_dev in this PE	*/
104 };
105 
106 #define eeh_pe_for_each_dev(pe, edev, tmp) \
107 		list_for_each_entry_safe(edev, tmp, &pe->edevs, entry)
108 
109 #define eeh_for_each_pe(root, pe) \
110 	for (pe = root; pe; pe = eeh_pe_next(pe, root))
111 
112 static inline bool eeh_pe_passed(struct eeh_pe *pe)
113 {
114 	return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
115 }
116 
117 /*
118  * The struct is used to trace EEH state for the associated
119  * PCI device node or PCI device. In future, it might
120  * represent PE as well so that the EEH device to form
121  * another tree except the currently existing tree of PCI
122  * buses and PCI devices
123  */
124 #define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
125 #define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
126 #define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
127 #define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
128 #define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
129 
130 #define EEH_DEV_NO_HANDLER	(1 << 8)	/* No error handler	*/
131 #define EEH_DEV_SYSFS		(1 << 9)	/* Sysfs created	*/
132 #define EEH_DEV_REMOVED		(1 << 10)	/* Removed permanently	*/
133 
134 struct eeh_dev {
135 	int mode;			/* EEH mode			*/
136 	int class_code;			/* Class code of the device	*/
137 	int pe_config_addr;		/* PE config address		*/
138 	u32 config_space[16];		/* Saved PCI config space	*/
139 	int pcix_cap;			/* Saved PCIx capability	*/
140 	int pcie_cap;			/* Saved PCIe capability	*/
141 	int aer_cap;			/* Saved AER capability		*/
142 	int af_cap;			/* Saved AF capability		*/
143 	struct eeh_pe *pe;		/* Associated PE		*/
144 	struct list_head entry;		/* Membership in eeh_pe.edevs	*/
145 	struct list_head rmv_entry;	/* Membership in rmv_list	*/
146 	struct pci_dn *pdn;		/* Associated PCI device node	*/
147 	struct pci_dev *pdev;		/* Associated PCI device	*/
148 	bool in_error;			/* Error flag for edev		*/
149 	struct pci_dev *physfn;		/* Associated SRIOV PF		*/
150 };
151 
152 static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
153 {
154 	return edev ? edev->pdn : NULL;
155 }
156 
157 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
158 {
159 	return edev ? edev->pdev : NULL;
160 }
161 
162 static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
163 {
164 	return edev ? edev->pe : NULL;
165 }
166 
167 /* Return values from eeh_ops::next_error */
168 enum {
169 	EEH_NEXT_ERR_NONE = 0,
170 	EEH_NEXT_ERR_INF,
171 	EEH_NEXT_ERR_FROZEN_PE,
172 	EEH_NEXT_ERR_FENCED_PHB,
173 	EEH_NEXT_ERR_DEAD_PHB,
174 	EEH_NEXT_ERR_DEAD_IOC
175 };
176 
177 /*
178  * The struct is used to trace the registered EEH operation
179  * callback functions. Actually, those operation callback
180  * functions are heavily platform dependent. That means the
181  * platform should register its own EEH operation callback
182  * functions before any EEH further operations.
183  */
184 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
185 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
186 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
187 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
188 #define EEH_OPT_FREEZE_PE	4	/* Freeze PE	*/
189 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
190 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
191 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
192 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
193 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
194 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
195 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
196 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
197 #define EEH_RESET_HOT		1	/* Hot reset			*/
198 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
199 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
200 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
201 
202 struct eeh_ops {
203 	char *name;
204 	int (*init)(void);
205 	void* (*probe)(struct pci_dn *pdn, void *data);
206 	int (*set_option)(struct eeh_pe *pe, int option);
207 	int (*get_pe_addr)(struct eeh_pe *pe);
208 	int (*get_state)(struct eeh_pe *pe, int *delay);
209 	int (*reset)(struct eeh_pe *pe, int option);
210 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
211 	int (*configure_bridge)(struct eeh_pe *pe);
212 	int (*err_inject)(struct eeh_pe *pe, int type, int func,
213 			  unsigned long addr, unsigned long mask);
214 	int (*read_config)(struct pci_dn *pdn, int where, int size, u32 *val);
215 	int (*write_config)(struct pci_dn *pdn, int where, int size, u32 val);
216 	int (*next_error)(struct eeh_pe **pe);
217 	int (*restore_config)(struct pci_dn *pdn);
218 	int (*notify_resume)(struct pci_dn *pdn);
219 };
220 
221 extern int eeh_subsystem_flags;
222 extern int eeh_max_freezes;
223 extern struct eeh_ops *eeh_ops;
224 extern raw_spinlock_t confirm_error_lock;
225 
226 static inline void eeh_add_flag(int flag)
227 {
228 	eeh_subsystem_flags |= flag;
229 }
230 
231 static inline void eeh_clear_flag(int flag)
232 {
233 	eeh_subsystem_flags &= ~flag;
234 }
235 
236 static inline bool eeh_has_flag(int flag)
237 {
238         return !!(eeh_subsystem_flags & flag);
239 }
240 
241 static inline bool eeh_enabled(void)
242 {
243 	return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED);
244 }
245 
246 static inline void eeh_serialize_lock(unsigned long *flags)
247 {
248 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
249 }
250 
251 static inline void eeh_serialize_unlock(unsigned long flags)
252 {
253 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
254 }
255 
256 static inline bool eeh_state_active(int state)
257 {
258 	return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
259 	== (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
260 }
261 
262 typedef void *(*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag);
263 typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag);
264 void eeh_set_pe_aux_size(int size);
265 int eeh_phb_pe_create(struct pci_controller *phb);
266 int eeh_wait_state(struct eeh_pe *pe, int max_wait);
267 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
268 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root);
269 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
270 			  int pe_no, int config_addr);
271 int eeh_add_to_parent_pe(struct eeh_dev *edev);
272 int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
273 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
274 void *eeh_pe_traverse(struct eeh_pe *root,
275 		      eeh_pe_traverse_func fn, void *flag);
276 void *eeh_pe_dev_traverse(struct eeh_pe *root,
277 			  eeh_edev_traverse_func fn, void *flag);
278 void eeh_pe_restore_bars(struct eeh_pe *pe);
279 const char *eeh_pe_loc_get(struct eeh_pe *pe);
280 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
281 
282 struct eeh_dev *eeh_dev_init(struct pci_dn *pdn);
283 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
284 void eeh_probe_devices(void);
285 int __init eeh_ops_register(struct eeh_ops *ops);
286 int __exit eeh_ops_unregister(const char *name);
287 int eeh_check_failure(const volatile void __iomem *token);
288 int eeh_dev_check_failure(struct eeh_dev *edev);
289 void eeh_addr_cache_build(void);
290 void eeh_add_device_early(struct pci_dn *);
291 void eeh_add_device_tree_early(struct pci_dn *);
292 void eeh_add_device_late(struct pci_dev *);
293 void eeh_add_device_tree_late(struct pci_bus *);
294 void eeh_add_sysfs_files(struct pci_bus *);
295 void eeh_remove_device(struct pci_dev *);
296 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state);
297 int eeh_pe_reset_and_recover(struct eeh_pe *pe);
298 int eeh_dev_open(struct pci_dev *pdev);
299 void eeh_dev_release(struct pci_dev *pdev);
300 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
301 int eeh_pe_set_option(struct eeh_pe *pe, int option);
302 int eeh_pe_get_state(struct eeh_pe *pe);
303 int eeh_pe_reset(struct eeh_pe *pe, int option);
304 int eeh_pe_configure(struct eeh_pe *pe);
305 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
306 		      unsigned long addr, unsigned long mask);
307 int eeh_restore_vf_config(struct pci_dn *pdn);
308 
309 /**
310  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
311  *
312  * If this macro yields TRUE, the caller relays to eeh_check_failure()
313  * which does further tests out of line.
314  */
315 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_enabled())
316 
317 /*
318  * Reads from a device which has been isolated by EEH will return
319  * all 1s.  This macro gives an all-1s value of the given size (in
320  * bytes: 1, 2, or 4) for comparing with the result of a read.
321  */
322 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
323 
324 #else /* !CONFIG_EEH */
325 
326 static inline bool eeh_enabled(void)
327 {
328         return false;
329 }
330 
331 static inline void eeh_probe_devices(void) { }
332 
333 static inline void *eeh_dev_init(struct pci_dn *pdn, void *data)
334 {
335 	return NULL;
336 }
337 
338 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
339 
340 static inline int eeh_check_failure(const volatile void __iomem *token)
341 {
342 	return 0;
343 }
344 
345 #define eeh_dev_check_failure(x) (0)
346 
347 static inline void eeh_addr_cache_build(void) { }
348 
349 static inline void eeh_add_device_early(struct pci_dn *pdn) { }
350 
351 static inline void eeh_add_device_tree_early(struct pci_dn *pdn) { }
352 
353 static inline void eeh_add_device_late(struct pci_dev *dev) { }
354 
355 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
356 
357 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
358 
359 static inline void eeh_remove_device(struct pci_dev *dev) { }
360 
361 #define EEH_POSSIBLE_ERROR(val, type) (0)
362 #define EEH_IO_ERROR_VALUE(size) (-1UL)
363 #endif /* CONFIG_EEH */
364 
365 #ifdef CONFIG_PPC64
366 /*
367  * MMIO read/write operations with EEH support.
368  */
369 static inline u8 eeh_readb(const volatile void __iomem *addr)
370 {
371 	u8 val = in_8(addr);
372 	if (EEH_POSSIBLE_ERROR(val, u8))
373 		eeh_check_failure(addr);
374 	return val;
375 }
376 
377 static inline u16 eeh_readw(const volatile void __iomem *addr)
378 {
379 	u16 val = in_le16(addr);
380 	if (EEH_POSSIBLE_ERROR(val, u16))
381 		eeh_check_failure(addr);
382 	return val;
383 }
384 
385 static inline u32 eeh_readl(const volatile void __iomem *addr)
386 {
387 	u32 val = in_le32(addr);
388 	if (EEH_POSSIBLE_ERROR(val, u32))
389 		eeh_check_failure(addr);
390 	return val;
391 }
392 
393 static inline u64 eeh_readq(const volatile void __iomem *addr)
394 {
395 	u64 val = in_le64(addr);
396 	if (EEH_POSSIBLE_ERROR(val, u64))
397 		eeh_check_failure(addr);
398 	return val;
399 }
400 
401 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
402 {
403 	u16 val = in_be16(addr);
404 	if (EEH_POSSIBLE_ERROR(val, u16))
405 		eeh_check_failure(addr);
406 	return val;
407 }
408 
409 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
410 {
411 	u32 val = in_be32(addr);
412 	if (EEH_POSSIBLE_ERROR(val, u32))
413 		eeh_check_failure(addr);
414 	return val;
415 }
416 
417 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
418 {
419 	u64 val = in_be64(addr);
420 	if (EEH_POSSIBLE_ERROR(val, u64))
421 		eeh_check_failure(addr);
422 	return val;
423 }
424 
425 static inline void eeh_memcpy_fromio(void *dest, const
426 				     volatile void __iomem *src,
427 				     unsigned long n)
428 {
429 	_memcpy_fromio(dest, src, n);
430 
431 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
432 	 * were copied. Check all four bytes.
433 	 */
434 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
435 		eeh_check_failure(src);
436 }
437 
438 /* in-string eeh macros */
439 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
440 			      int ns)
441 {
442 	_insb(addr, buf, ns);
443 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
444 		eeh_check_failure(addr);
445 }
446 
447 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
448 			      int ns)
449 {
450 	_insw(addr, buf, ns);
451 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
452 		eeh_check_failure(addr);
453 }
454 
455 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
456 			      int nl)
457 {
458 	_insl(addr, buf, nl);
459 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
460 		eeh_check_failure(addr);
461 }
462 
463 #endif /* CONFIG_PPC64 */
464 #endif /* __KERNEL__ */
465 #endif /* _POWERPC_EEH_H */
466