xref: /linux/arch/powerpc/include/asm/eeh.h (revision 55037d176107c33ac79528bf9ab282a6b0b51e16)
1 /*
2  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 
28 struct pci_dev;
29 struct pci_bus;
30 struct device_node;
31 
32 #ifdef CONFIG_EEH
33 
34 /*
35  * The struct is used to trace PE related EEH functionality.
36  * In theory, there will have one instance of the struct to
37  * be created against particular PE. In nature, PEs corelate
38  * to each other. the struct has to reflect that hierarchy in
39  * order to easily pick up those affected PEs when one particular
40  * PE has EEH errors.
41  *
42  * Also, one particular PE might be composed of PCI device, PCI
43  * bus and its subordinate components. The struct also need ship
44  * the information. Further more, one particular PE is only meaingful
45  * in the corresponding PHB. Therefore, the root PEs should be created
46  * against existing PHBs in on-to-one fashion.
47  */
48 #define EEH_PE_PHB	1	/* PHB PE    */
49 #define EEH_PE_DEVICE 	2	/* Device PE */
50 #define EEH_PE_BUS	3	/* Bus PE    */
51 
52 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
53 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
54 
55 struct eeh_pe {
56 	int type;			/* PE type: PHB/Bus/Device	*/
57 	int state;			/* PE EEH dependent mode	*/
58 	int config_addr;		/* Traditional PCI address	*/
59 	int addr;			/* PE configuration address	*/
60 	struct pci_controller *phb;	/* Associated PHB		*/
61 	int check_count;		/* Times of ignored error	*/
62 	int freeze_count;		/* Times of froze up		*/
63 	int false_positives;		/* Times of reported #ff's	*/
64 	struct eeh_pe *parent;		/* Parent PE			*/
65 	struct list_head child_list;	/* Link PE to the child list	*/
66 	struct list_head edevs;		/* Link list of EEH devices	*/
67 	struct list_head child;		/* Child PEs			*/
68 };
69 
70 /*
71  * The struct is used to trace EEH state for the associated
72  * PCI device node or PCI device. In future, it might
73  * represent PE as well so that the EEH device to form
74  * another tree except the currently existing tree of PCI
75  * buses and PCI devices
76  */
77 #define EEH_MODE_SUPPORTED	(1<<0)	/* EEH supported on the device	*/
78 #define EEH_MODE_NOCHECK	(1<<1)	/* EEH check should be skipped	*/
79 #define EEH_MODE_ISOLATED	(1<<2)	/* The device has been isolated	*/
80 #define EEH_MODE_RECOVERING	(1<<3)	/* Recovering the device	*/
81 #define EEH_MODE_IRQ_DISABLED	(1<<4)	/* Interrupt disabled		*/
82 
83 struct eeh_dev {
84 	int mode;			/* EEH mode			*/
85 	int class_code;			/* Class code of the device	*/
86 	int config_addr;		/* Config address		*/
87 	int pe_config_addr;		/* PE config address		*/
88 	int check_count;		/* Times of ignored error	*/
89 	int freeze_count;		/* Times of froze up		*/
90 	int false_positives;		/* Times of reported #ff's	*/
91 	u32 config_space[16];		/* Saved PCI config space	*/
92 	struct eeh_pe *pe;		/* Associated PE		*/
93 	struct list_head list;		/* Form link list in the PE	*/
94 	struct pci_controller *phb;	/* Associated PHB		*/
95 	struct device_node *dn;		/* Associated device node	*/
96 	struct pci_dev *pdev;		/* Associated PCI device	*/
97 };
98 
99 static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
100 {
101 	return edev->dn;
102 }
103 
104 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
105 {
106 	return edev->pdev;
107 }
108 
109 /*
110  * The struct is used to trace the registered EEH operation
111  * callback functions. Actually, those operation callback
112  * functions are heavily platform dependent. That means the
113  * platform should register its own EEH operation callback
114  * functions before any EEH further operations.
115  */
116 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
117 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
118 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
119 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
120 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
121 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
122 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
123 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
124 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
125 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
126 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
127 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
128 #define EEH_RESET_HOT		1	/* Hot reset			*/
129 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
130 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
131 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
132 
133 struct eeh_ops {
134 	char *name;
135 	int (*init)(void);
136 	int (*set_option)(struct device_node *dn, int option);
137 	int (*get_pe_addr)(struct device_node *dn);
138 	int (*get_state)(struct device_node *dn, int *state);
139 	int (*reset)(struct device_node *dn, int option);
140 	int (*wait_state)(struct device_node *dn, int max_wait);
141 	int (*get_log)(struct device_node *dn, int severity, char *drv_log, unsigned long len);
142 	int (*configure_bridge)(struct device_node *dn);
143 	int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
144 	int (*write_config)(struct device_node *dn, int where, int size, u32 val);
145 };
146 
147 extern struct eeh_ops *eeh_ops;
148 extern int eeh_subsystem_enabled;
149 extern struct mutex eeh_mutex;
150 
151 static inline void eeh_lock(void)
152 {
153 	mutex_lock(&eeh_mutex);
154 }
155 
156 static inline void eeh_unlock(void)
157 {
158 	mutex_unlock(&eeh_mutex);
159 }
160 
161 /*
162  * Max number of EEH freezes allowed before we consider the device
163  * to be permanently disabled.
164  */
165 #define EEH_MAX_ALLOWED_FREEZES 5
166 
167 int __devinit eeh_phb_pe_create(struct pci_controller *phb);
168 
169 void * __devinit eeh_dev_init(struct device_node *dn, void *data);
170 void __devinit eeh_dev_phb_init_dynamic(struct pci_controller *phb);
171 int __init eeh_ops_register(struct eeh_ops *ops);
172 int __exit eeh_ops_unregister(const char *name);
173 unsigned long eeh_check_failure(const volatile void __iomem *token,
174 				unsigned long val);
175 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev);
176 void __init pci_addr_cache_build(void);
177 void eeh_add_device_tree_early(struct device_node *);
178 void eeh_add_device_tree_late(struct pci_bus *);
179 void eeh_remove_bus_device(struct pci_dev *);
180 
181 /**
182  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
183  *
184  * If this macro yields TRUE, the caller relays to eeh_check_failure()
185  * which does further tests out of line.
186  */
187 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_subsystem_enabled)
188 
189 /*
190  * Reads from a device which has been isolated by EEH will return
191  * all 1s.  This macro gives an all-1s value of the given size (in
192  * bytes: 1, 2, or 4) for comparing with the result of a read.
193  */
194 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
195 
196 #else /* !CONFIG_EEH */
197 
198 static inline void *eeh_dev_init(struct device_node *dn, void *data)
199 {
200 	return NULL;
201 }
202 
203 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
204 
205 static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
206 {
207 	return val;
208 }
209 
210 static inline int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
211 {
212 	return 0;
213 }
214 
215 static inline void pci_addr_cache_build(void) { }
216 
217 static inline void eeh_add_device_tree_early(struct device_node *dn) { }
218 
219 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
220 
221 static inline void eeh_remove_bus_device(struct pci_dev *dev) { }
222 
223 static inline void eeh_lock(void) { }
224 static inline void eeh_unlock(void) { }
225 
226 #define EEH_POSSIBLE_ERROR(val, type) (0)
227 #define EEH_IO_ERROR_VALUE(size) (-1UL)
228 #endif /* CONFIG_EEH */
229 
230 #ifdef CONFIG_PPC64
231 /*
232  * MMIO read/write operations with EEH support.
233  */
234 static inline u8 eeh_readb(const volatile void __iomem *addr)
235 {
236 	u8 val = in_8(addr);
237 	if (EEH_POSSIBLE_ERROR(val, u8))
238 		return eeh_check_failure(addr, val);
239 	return val;
240 }
241 
242 static inline u16 eeh_readw(const volatile void __iomem *addr)
243 {
244 	u16 val = in_le16(addr);
245 	if (EEH_POSSIBLE_ERROR(val, u16))
246 		return eeh_check_failure(addr, val);
247 	return val;
248 }
249 
250 static inline u32 eeh_readl(const volatile void __iomem *addr)
251 {
252 	u32 val = in_le32(addr);
253 	if (EEH_POSSIBLE_ERROR(val, u32))
254 		return eeh_check_failure(addr, val);
255 	return val;
256 }
257 
258 static inline u64 eeh_readq(const volatile void __iomem *addr)
259 {
260 	u64 val = in_le64(addr);
261 	if (EEH_POSSIBLE_ERROR(val, u64))
262 		return eeh_check_failure(addr, val);
263 	return val;
264 }
265 
266 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
267 {
268 	u16 val = in_be16(addr);
269 	if (EEH_POSSIBLE_ERROR(val, u16))
270 		return eeh_check_failure(addr, val);
271 	return val;
272 }
273 
274 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
275 {
276 	u32 val = in_be32(addr);
277 	if (EEH_POSSIBLE_ERROR(val, u32))
278 		return eeh_check_failure(addr, val);
279 	return val;
280 }
281 
282 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
283 {
284 	u64 val = in_be64(addr);
285 	if (EEH_POSSIBLE_ERROR(val, u64))
286 		return eeh_check_failure(addr, val);
287 	return val;
288 }
289 
290 static inline void eeh_memcpy_fromio(void *dest, const
291 				     volatile void __iomem *src,
292 				     unsigned long n)
293 {
294 	_memcpy_fromio(dest, src, n);
295 
296 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
297 	 * were copied. Check all four bytes.
298 	 */
299 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
300 		eeh_check_failure(src, *((u32 *)(dest + n - 4)));
301 }
302 
303 /* in-string eeh macros */
304 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
305 			      int ns)
306 {
307 	_insb(addr, buf, ns);
308 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
309 		eeh_check_failure(addr, *(u8*)buf);
310 }
311 
312 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
313 			      int ns)
314 {
315 	_insw(addr, buf, ns);
316 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
317 		eeh_check_failure(addr, *(u16*)buf);
318 }
319 
320 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
321 			      int nl)
322 {
323 	_insl(addr, buf, nl);
324 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
325 		eeh_check_failure(addr, *(u32*)buf);
326 }
327 
328 #endif /* CONFIG_PPC64 */
329 #endif /* __KERNEL__ */
330 #endif /* _POWERPC_EEH_H */
331