xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision f56607e85ee38f2a5bb7096e24e2d40f35d714f9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x00040UL
36 
37 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42 
43 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45 /*
46  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48  * differentiate between two use a SW field when invalidating.
49  *
50  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51  *
52  * This is used only when _PAGE_PRESENT is cleared.
53  */
54 #define _PAGE_INVALID		_RPAGE_SW0
55 
56 /*
57  * Top and bottom bits of RPN which can be used by hash
58  * translation mode, because we expect them to be zero
59  * otherwise.
60  */
61 #define _RPAGE_RPN0		0x01000
62 #define _RPAGE_RPN1		0x02000
63 #define _RPAGE_RPN43		0x0080000000000000UL
64 #define _RPAGE_RPN42		0x0040000000000000UL
65 #define _RPAGE_RPN41		0x0020000000000000UL
66 
67 /* Max physical address bit as per radix table */
68 #define _RPAGE_PA_MAX		56
69 
70 /*
71  * Max physical address bit we will use for now.
72  *
73  * This is mostly a hardware limitation and for now Power9 has
74  * a 51 bit limit.
75  *
76  * This is different from the number of physical bit required to address
77  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79  * number of sections we can support (SECTIONS_SHIFT).
80  *
81  * This is different from Radix page table limitation above and
82  * should always be less than that. The limit is done such that
83  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84  * for hash linux page table specific bits.
85  *
86  * In order to be compatible with future hardware generations we keep
87  * some offsets and limit this for now to 53
88  */
89 #define _PAGE_PA_MAX		53
90 
91 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
120 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
121 				 _PAGE_RW | _PAGE_EXEC)
122 /*
123  * _PAGE_CHG_MASK masks of bits that are to be preserved across
124  * pgprot changes
125  */
126 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
128 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129 
130 /*
131  * We define 2 sets of base prot bits, one for basic pages (ie,
132  * cacheable kernel and user pages) and one for non cacheable
133  * pages. We always set _PAGE_COHERENT when SMP is enabled or
134  * the processor might need it for DMA coherency.
135  */
136 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137 #define _PAGE_BASE	(_PAGE_BASE_NC)
138 
139 /* Permission masks used to generate the __P and __S table,
140  *
141  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142  *
143  * Write permissions imply read permissions for now (we could make write-only
144  * pages on BookE but we don't bother for now). Execute permission control is
145  * possible on platforms that define _PAGE_EXEC
146  */
147 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154 
155 /* Permission masks used for kernel mappings */
156 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158 				 _PAGE_TOLERANT)
159 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160 				 _PAGE_NON_IDEMPOTENT)
161 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164 
165 /*
166  * Protection used for kernel text. We want the debuggers to be able to
167  * set breakpoints anywhere, so don't write protect the kernel text
168  * on platforms where such control is possible.
169  */
170 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
173 #else
174 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
175 #endif
176 
177 /* Make modules code happy. We don't set RO yet */
178 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
179 #define PAGE_AGP		(PAGE_KERNEL_NC)
180 
181 #ifndef __ASSEMBLY__
182 /*
183  * page table defines
184  */
185 extern unsigned long __pte_index_size;
186 extern unsigned long __pmd_index_size;
187 extern unsigned long __pud_index_size;
188 extern unsigned long __pgd_index_size;
189 extern unsigned long __pud_cache_index;
190 #define PTE_INDEX_SIZE  __pte_index_size
191 #define PMD_INDEX_SIZE  __pmd_index_size
192 #define PUD_INDEX_SIZE  __pud_index_size
193 #define PGD_INDEX_SIZE  __pgd_index_size
194 /* pmd table use page table fragments */
195 #define PMD_CACHE_INDEX  0
196 #define PUD_CACHE_INDEX __pud_cache_index
197 /*
198  * Because of use of pte fragments and THP, size of page table
199  * are not always derived out of index size above.
200  */
201 extern unsigned long __pte_table_size;
202 extern unsigned long __pmd_table_size;
203 extern unsigned long __pud_table_size;
204 extern unsigned long __pgd_table_size;
205 #define PTE_TABLE_SIZE	__pte_table_size
206 #define PMD_TABLE_SIZE	__pmd_table_size
207 #define PUD_TABLE_SIZE	__pud_table_size
208 #define PGD_TABLE_SIZE	__pgd_table_size
209 
210 extern unsigned long __pmd_val_bits;
211 extern unsigned long __pud_val_bits;
212 extern unsigned long __pgd_val_bits;
213 #define PMD_VAL_BITS	__pmd_val_bits
214 #define PUD_VAL_BITS	__pud_val_bits
215 #define PGD_VAL_BITS	__pgd_val_bits
216 
217 extern unsigned long __pte_frag_nr;
218 #define PTE_FRAG_NR __pte_frag_nr
219 extern unsigned long __pte_frag_size_shift;
220 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222 
223 extern unsigned long __pmd_frag_nr;
224 #define PMD_FRAG_NR __pmd_frag_nr
225 extern unsigned long __pmd_frag_size_shift;
226 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228 
229 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
230 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
231 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
232 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
233 
234 /* PMD_SHIFT determines what a second-level page table entry can map */
235 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
236 #define PMD_SIZE	(1UL << PMD_SHIFT)
237 #define PMD_MASK	(~(PMD_SIZE-1))
238 
239 /* PUD_SHIFT determines what a third-level page table entry can map */
240 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
241 #define PUD_SIZE	(1UL << PUD_SHIFT)
242 #define PUD_MASK	(~(PUD_SIZE-1))
243 
244 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
246 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
247 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
248 
249 /* Bits to mask out from a PMD to get to the PTE page */
250 #define PMD_MASKED_BITS		0xc0000000000000ffUL
251 /* Bits to mask out from a PUD to get to the PMD page */
252 #define PUD_MASKED_BITS		0xc0000000000000ffUL
253 /* Bits to mask out from a PGD to get to the PUD page */
254 #define P4D_MASKED_BITS		0xc0000000000000ffUL
255 
256 /*
257  * Used as an indicator for rcu callback functions
258  */
259 enum pgtable_index {
260 	PTE_INDEX = 0,
261 	PMD_INDEX,
262 	PUD_INDEX,
263 	PGD_INDEX,
264 	/*
265 	 * Below are used with 4k page size and hugetlb
266 	 */
267 	HTLB_16M_INDEX,
268 	HTLB_16G_INDEX,
269 };
270 
271 extern unsigned long __vmalloc_start;
272 extern unsigned long __vmalloc_end;
273 #define VMALLOC_START	__vmalloc_start
274 #define VMALLOC_END	__vmalloc_end
275 
276 static inline unsigned int ioremap_max_order(void)
277 {
278 	if (radix_enabled())
279 		return PUD_SHIFT;
280 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281 }
282 #define IOREMAP_MAX_ORDER ioremap_max_order()
283 
284 extern unsigned long __kernel_virt_start;
285 extern unsigned long __kernel_io_start;
286 extern unsigned long __kernel_io_end;
287 #define KERN_VIRT_START __kernel_virt_start
288 #define KERN_IO_START  __kernel_io_start
289 #define KERN_IO_END __kernel_io_end
290 
291 extern struct page *vmemmap;
292 extern unsigned long pci_io_base;
293 #endif /* __ASSEMBLY__ */
294 
295 #include <asm/book3s/64/hash.h>
296 #include <asm/book3s/64/radix.h>
297 
298 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
299 #define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
300 #else
301 #define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
302 #endif
303 
304 
305 #ifdef CONFIG_PPC_64K_PAGES
306 #include <asm/book3s/64/pgtable-64k.h>
307 #else
308 #include <asm/book3s/64/pgtable-4k.h>
309 #endif
310 
311 #include <asm/barrier.h>
312 /*
313  * IO space itself carved into the PIO region (ISA and PHB IO space) and
314  * the ioremap space
315  *
316  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
317  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
318  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
319  */
320 #define FULL_IO_SIZE	0x80000000ul
321 #define  ISA_IO_BASE	(KERN_IO_START)
322 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
323 #define  PHB_IO_BASE	(ISA_IO_END)
324 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
325 #define IOREMAP_BASE	(PHB_IO_END)
326 #define IOREMAP_START	(ioremap_bot)
327 #define IOREMAP_END	(KERN_IO_END)
328 
329 /* Advertise special mapping type for AGP */
330 #define HAVE_PAGE_AGP
331 
332 #ifndef __ASSEMBLY__
333 
334 /*
335  * This is the default implementation of various PTE accessors, it's
336  * used in all cases except Book3S with 64K pages where we have a
337  * concept of sub-pages
338  */
339 #ifndef __real_pte
340 
341 #define __real_pte(e, p, o)		((real_pte_t){(e)})
342 #define __rpte_to_pte(r)	((r).pte)
343 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
344 
345 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
346 	do {							         \
347 		index = 0;					         \
348 		shift = mmu_psize_defs[psize].shift;		         \
349 
350 #define pte_iterate_hashed_end() } while(0)
351 
352 /*
353  * We expect this to be called only for user addresses or kernel virtual
354  * addresses other than the linear mapping.
355  */
356 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
357 
358 #endif /* __real_pte */
359 
360 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
361 				       pte_t *ptep, unsigned long clr,
362 				       unsigned long set, int huge)
363 {
364 	if (radix_enabled())
365 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
366 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
367 }
368 /*
369  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
370  * We currently remove entries from the hashtable regardless of whether
371  * the entry was young or dirty.
372  *
373  * We should be more intelligent about this but for the moment we override
374  * these functions and force a tlb flush unconditionally
375  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
376  * function for both hash and radix.
377  */
378 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
379 					      unsigned long addr, pte_t *ptep)
380 {
381 	unsigned long old;
382 
383 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
384 		return 0;
385 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
386 	return (old & _PAGE_ACCESSED) != 0;
387 }
388 
389 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
390 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
391 ({								\
392 	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
393 })
394 
395 /*
396  * On Book3S CPUs, clearing the accessed bit without a TLB flush
397  * doesn't cause data corruption. [ It could cause incorrect
398  * page aging and the (mistaken) reclaim of hot pages, but the
399  * chance of that should be relatively low. ]
400  *
401  * So as a performance optimization don't flush the TLB when
402  * clearing the accessed bit, it will eventually be flushed by
403  * a context switch or a VM operation anyway. [ In the rare
404  * event of it not getting flushed for a long time the delay
405  * shouldn't really matter because there's no real memory
406  * pressure for swapout to react to. ]
407  */
408 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
409 #define ptep_clear_flush_young ptep_test_and_clear_young
410 
411 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
412 #define pmdp_clear_flush_young pmdp_test_and_clear_young
413 
414 static inline int __pte_write(pte_t pte)
415 {
416 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
417 }
418 
419 #ifdef CONFIG_NUMA_BALANCING
420 #define pte_savedwrite pte_savedwrite
421 static inline bool pte_savedwrite(pte_t pte)
422 {
423 	/*
424 	 * Saved write ptes are prot none ptes that doesn't have
425 	 * privileged bit sit. We mark prot none as one which has
426 	 * present and pviliged bit set and RWX cleared. To mark
427 	 * protnone which used to have _PAGE_WRITE set we clear
428 	 * the privileged bit.
429 	 */
430 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
431 }
432 #else
433 #define pte_savedwrite pte_savedwrite
434 static inline bool pte_savedwrite(pte_t pte)
435 {
436 	return false;
437 }
438 #endif
439 
440 static inline int pte_write(pte_t pte)
441 {
442 	return __pte_write(pte) || pte_savedwrite(pte);
443 }
444 
445 static inline int pte_read(pte_t pte)
446 {
447 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
448 }
449 
450 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
451 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
452 				      pte_t *ptep)
453 {
454 	if (__pte_write(*ptep))
455 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
456 	else if (unlikely(pte_savedwrite(*ptep)))
457 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
458 }
459 
460 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
461 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
462 					   unsigned long addr, pte_t *ptep)
463 {
464 	/*
465 	 * We should not find protnone for hugetlb, but this complete the
466 	 * interface.
467 	 */
468 	if (__pte_write(*ptep))
469 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
470 	else if (unlikely(pte_savedwrite(*ptep)))
471 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
472 }
473 
474 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
475 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
476 				       unsigned long addr, pte_t *ptep)
477 {
478 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
479 	return __pte(old);
480 }
481 
482 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
483 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
484 					    unsigned long addr,
485 					    pte_t *ptep, int full)
486 {
487 	if (full && radix_enabled()) {
488 		/*
489 		 * We know that this is a full mm pte clear and
490 		 * hence can be sure there is no parallel set_pte.
491 		 */
492 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
493 	}
494 	return ptep_get_and_clear(mm, addr, ptep);
495 }
496 
497 
498 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
499 			     pte_t * ptep)
500 {
501 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
502 }
503 
504 static inline int pte_dirty(pte_t pte)
505 {
506 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
507 }
508 
509 static inline int pte_young(pte_t pte)
510 {
511 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
512 }
513 
514 static inline int pte_special(pte_t pte)
515 {
516 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
517 }
518 
519 static inline bool pte_exec(pte_t pte)
520 {
521 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
522 }
523 
524 
525 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
526 static inline bool pte_soft_dirty(pte_t pte)
527 {
528 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
529 }
530 
531 static inline pte_t pte_mksoft_dirty(pte_t pte)
532 {
533 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
534 }
535 
536 static inline pte_t pte_clear_soft_dirty(pte_t pte)
537 {
538 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
539 }
540 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
541 
542 #ifdef CONFIG_NUMA_BALANCING
543 static inline int pte_protnone(pte_t pte)
544 {
545 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
546 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
547 }
548 
549 #define pte_mk_savedwrite pte_mk_savedwrite
550 static inline pte_t pte_mk_savedwrite(pte_t pte)
551 {
552 	/*
553 	 * Used by Autonuma subsystem to preserve the write bit
554 	 * while marking the pte PROT_NONE. Only allow this
555 	 * on PROT_NONE pte
556 	 */
557 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
558 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
559 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
560 }
561 
562 #define pte_clear_savedwrite pte_clear_savedwrite
563 static inline pte_t pte_clear_savedwrite(pte_t pte)
564 {
565 	/*
566 	 * Used by KSM subsystem to make a protnone pte readonly.
567 	 */
568 	VM_BUG_ON(!pte_protnone(pte));
569 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
570 }
571 #else
572 #define pte_clear_savedwrite pte_clear_savedwrite
573 static inline pte_t pte_clear_savedwrite(pte_t pte)
574 {
575 	VM_WARN_ON(1);
576 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
577 }
578 #endif /* CONFIG_NUMA_BALANCING */
579 
580 static inline bool pte_hw_valid(pte_t pte)
581 {
582 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
583 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
584 }
585 
586 static inline int pte_present(pte_t pte)
587 {
588 	/*
589 	 * A pte is considerent present if _PAGE_PRESENT is set.
590 	 * We also need to consider the pte present which is marked
591 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
592 	 * if we find _PAGE_PRESENT cleared.
593 	 */
594 
595 	if (pte_hw_valid(pte))
596 		return true;
597 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
598 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
599 }
600 
601 #ifdef CONFIG_PPC_MEM_KEYS
602 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
603 #else
604 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
605 {
606 	return true;
607 }
608 #endif /* CONFIG_PPC_MEM_KEYS */
609 
610 static inline bool pte_user(pte_t pte)
611 {
612 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
613 }
614 
615 #define pte_access_permitted pte_access_permitted
616 static inline bool pte_access_permitted(pte_t pte, bool write)
617 {
618 	/*
619 	 * _PAGE_READ is needed for any access and will be
620 	 * cleared for PROT_NONE
621 	 */
622 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
623 		return false;
624 
625 	if (write && !pte_write(pte))
626 		return false;
627 
628 	return arch_pte_access_permitted(pte_val(pte), write, 0);
629 }
630 
631 /*
632  * Conversion functions: convert a page and protection to a page entry,
633  * and a page entry and page directory to the page they refer to.
634  *
635  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
636  * long for now.
637  */
638 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
639 {
640 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
641 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
642 
643 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
644 }
645 
646 static inline unsigned long pte_pfn(pte_t pte)
647 {
648 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
649 }
650 
651 /* Generic modifiers for PTE bits */
652 static inline pte_t pte_wrprotect(pte_t pte)
653 {
654 	if (unlikely(pte_savedwrite(pte)))
655 		return pte_clear_savedwrite(pte);
656 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
657 }
658 
659 static inline pte_t pte_exprotect(pte_t pte)
660 {
661 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
662 }
663 
664 static inline pte_t pte_mkclean(pte_t pte)
665 {
666 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
667 }
668 
669 static inline pte_t pte_mkold(pte_t pte)
670 {
671 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
672 }
673 
674 static inline pte_t pte_mkexec(pte_t pte)
675 {
676 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
677 }
678 
679 static inline pte_t pte_mkwrite(pte_t pte)
680 {
681 	/*
682 	 * write implies read, hence set both
683 	 */
684 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
685 }
686 
687 static inline pte_t pte_mkdirty(pte_t pte)
688 {
689 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
690 }
691 
692 static inline pte_t pte_mkyoung(pte_t pte)
693 {
694 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
695 }
696 
697 static inline pte_t pte_mkspecial(pte_t pte)
698 {
699 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
700 }
701 
702 static inline pte_t pte_mkhuge(pte_t pte)
703 {
704 	return pte;
705 }
706 
707 static inline pte_t pte_mkdevmap(pte_t pte)
708 {
709 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
710 }
711 
712 static inline pte_t pte_mkprivileged(pte_t pte)
713 {
714 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
715 }
716 
717 static inline pte_t pte_mkuser(pte_t pte)
718 {
719 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
720 }
721 
722 /*
723  * This is potentially called with a pmd as the argument, in which case it's not
724  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
725  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
726  * use in page directory entries (ie. non-ptes).
727  */
728 static inline int pte_devmap(pte_t pte)
729 {
730 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
731 
732 	return (pte_raw(pte) & mask) == mask;
733 }
734 
735 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
736 {
737 	/* FIXME!! check whether this need to be a conditional */
738 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
739 			 cpu_to_be64(pgprot_val(newprot)));
740 }
741 
742 /* Encode and de-code a swap entry */
743 #define MAX_SWAPFILES_CHECK() do { \
744 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
745 	/*							\
746 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
747 	 * We filter HPTEFLAGS on set_pte.			\
748 	 */							\
749 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
750 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
751 	} while (0)
752 
753 #define SWP_TYPE_BITS 5
754 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
755 				& ((1UL << SWP_TYPE_BITS) - 1))
756 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
757 #define __swp_entry(type, offset)	((swp_entry_t) { \
758 				((type) << _PAGE_BIT_SWAP_TYPE) \
759 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
760 /*
761  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
762  * swap type and offset we get from swap and convert that to pte to find a
763  * matching pte in linux page table.
764  * Clear bits not found in swap entries here.
765  */
766 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
767 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
768 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
769 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
770 
771 #ifdef CONFIG_MEM_SOFT_DIRTY
772 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
773 #else
774 #define _PAGE_SWP_SOFT_DIRTY	0UL
775 #endif /* CONFIG_MEM_SOFT_DIRTY */
776 
777 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
778 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
779 {
780 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
781 }
782 
783 static inline bool pte_swp_soft_dirty(pte_t pte)
784 {
785 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
786 }
787 
788 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
789 {
790 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
791 }
792 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
793 
794 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
795 {
796 	/*
797 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
798 	 */
799 	if (access & ~ptev)
800 		return false;
801 	/*
802 	 * This check for access to privilege space
803 	 */
804 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
805 		return false;
806 
807 	return true;
808 }
809 /*
810  * Generic functions with hash/radix callbacks
811  */
812 
813 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
814 					   pte_t *ptep, pte_t entry,
815 					   unsigned long address,
816 					   int psize)
817 {
818 	if (radix_enabled())
819 		return radix__ptep_set_access_flags(vma, ptep, entry,
820 						    address, psize);
821 	return hash__ptep_set_access_flags(ptep, entry);
822 }
823 
824 #define __HAVE_ARCH_PTE_SAME
825 static inline int pte_same(pte_t pte_a, pte_t pte_b)
826 {
827 	if (radix_enabled())
828 		return radix__pte_same(pte_a, pte_b);
829 	return hash__pte_same(pte_a, pte_b);
830 }
831 
832 static inline int pte_none(pte_t pte)
833 {
834 	if (radix_enabled())
835 		return radix__pte_none(pte);
836 	return hash__pte_none(pte);
837 }
838 
839 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
840 				pte_t *ptep, pte_t pte, int percpu)
841 {
842 
843 	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
844 	/*
845 	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
846 	 * in all the callers.
847 	 */
848 	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
849 
850 	if (radix_enabled())
851 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
852 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
853 }
854 
855 #define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
856 
857 #define pgprot_noncached pgprot_noncached
858 static inline pgprot_t pgprot_noncached(pgprot_t prot)
859 {
860 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
861 			_PAGE_NON_IDEMPOTENT);
862 }
863 
864 #define pgprot_noncached_wc pgprot_noncached_wc
865 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
866 {
867 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
868 			_PAGE_TOLERANT);
869 }
870 
871 #define pgprot_cached pgprot_cached
872 static inline pgprot_t pgprot_cached(pgprot_t prot)
873 {
874 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
875 }
876 
877 #define pgprot_writecombine pgprot_writecombine
878 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
879 {
880 	return pgprot_noncached_wc(prot);
881 }
882 /*
883  * check a pte mapping have cache inhibited property
884  */
885 static inline bool pte_ci(pte_t pte)
886 {
887 	__be64 pte_v = pte_raw(pte);
888 
889 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
890 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
891 		return true;
892 	return false;
893 }
894 
895 static inline void pmd_clear(pmd_t *pmdp)
896 {
897 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
898 		/*
899 		 * Don't use this if we can possibly have a hash page table
900 		 * entry mapping this.
901 		 */
902 		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
903 	}
904 	*pmdp = __pmd(0);
905 }
906 
907 static inline int pmd_none(pmd_t pmd)
908 {
909 	return !pmd_raw(pmd);
910 }
911 
912 static inline int pmd_present(pmd_t pmd)
913 {
914 	/*
915 	 * A pmd is considerent present if _PAGE_PRESENT is set.
916 	 * We also need to consider the pmd present which is marked
917 	 * invalid during a split. Hence we look for _PAGE_INVALID
918 	 * if we find _PAGE_PRESENT cleared.
919 	 */
920 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
921 		return true;
922 
923 	return false;
924 }
925 
926 static inline int pmd_is_serializing(pmd_t pmd)
927 {
928 	/*
929 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
930 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
931 	 *
932 	 * This condition may also occur when flushing a pmd while flushing
933 	 * it (see ptep_modify_prot_start), so callers must ensure this
934 	 * case is fine as well.
935 	 */
936 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
937 						cpu_to_be64(_PAGE_INVALID))
938 		return true;
939 
940 	return false;
941 }
942 
943 static inline int pmd_bad(pmd_t pmd)
944 {
945 	if (radix_enabled())
946 		return radix__pmd_bad(pmd);
947 	return hash__pmd_bad(pmd);
948 }
949 
950 static inline void pud_clear(pud_t *pudp)
951 {
952 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
953 		/*
954 		 * Don't use this if we can possibly have a hash page table
955 		 * entry mapping this.
956 		 */
957 		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
958 	}
959 	*pudp = __pud(0);
960 }
961 
962 static inline int pud_none(pud_t pud)
963 {
964 	return !pud_raw(pud);
965 }
966 
967 static inline int pud_present(pud_t pud)
968 {
969 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
970 }
971 
972 extern struct page *pud_page(pud_t pud);
973 extern struct page *pmd_page(pmd_t pmd);
974 static inline pte_t pud_pte(pud_t pud)
975 {
976 	return __pte_raw(pud_raw(pud));
977 }
978 
979 static inline pud_t pte_pud(pte_t pte)
980 {
981 	return __pud_raw(pte_raw(pte));
982 }
983 #define pud_write(pud)		pte_write(pud_pte(pud))
984 
985 static inline int pud_bad(pud_t pud)
986 {
987 	if (radix_enabled())
988 		return radix__pud_bad(pud);
989 	return hash__pud_bad(pud);
990 }
991 
992 #define pud_access_permitted pud_access_permitted
993 static inline bool pud_access_permitted(pud_t pud, bool write)
994 {
995 	return pte_access_permitted(pud_pte(pud), write);
996 }
997 
998 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
999 static inline __be64 p4d_raw(p4d_t x)
1000 {
1001 	return pgd_raw(x.pgd);
1002 }
1003 
1004 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
1005 
1006 static inline void p4d_clear(p4d_t *p4dp)
1007 {
1008 	*p4dp = __p4d(0);
1009 }
1010 
1011 static inline int p4d_none(p4d_t p4d)
1012 {
1013 	return !p4d_raw(p4d);
1014 }
1015 
1016 static inline int p4d_present(p4d_t p4d)
1017 {
1018 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1019 }
1020 
1021 static inline pte_t p4d_pte(p4d_t p4d)
1022 {
1023 	return __pte_raw(p4d_raw(p4d));
1024 }
1025 
1026 static inline p4d_t pte_p4d(pte_t pte)
1027 {
1028 	return __p4d_raw(pte_raw(pte));
1029 }
1030 
1031 static inline int p4d_bad(p4d_t p4d)
1032 {
1033 	if (radix_enabled())
1034 		return radix__p4d_bad(p4d);
1035 	return hash__p4d_bad(p4d);
1036 }
1037 
1038 #define p4d_access_permitted p4d_access_permitted
1039 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1040 {
1041 	return pte_access_permitted(p4d_pte(p4d), write);
1042 }
1043 
1044 extern struct page *p4d_page(p4d_t p4d);
1045 
1046 /* Pointers in the page table tree are physical addresses */
1047 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1048 
1049 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
1050 #define p4d_page_vaddr(p4d)	__va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1051 
1052 #define pte_ERROR(e) \
1053 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1054 #define pmd_ERROR(e) \
1055 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1056 #define pud_ERROR(e) \
1057 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1058 #define pgd_ERROR(e) \
1059 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1060 
1061 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1062 {
1063 	if (radix_enabled()) {
1064 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1065 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1066 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1067 #endif
1068 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1069 	}
1070 	return hash__map_kernel_page(ea, pa, prot);
1071 }
1072 
1073 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1074 						   unsigned long page_size,
1075 						   unsigned long phys)
1076 {
1077 	if (radix_enabled())
1078 		return radix__vmemmap_create_mapping(start, page_size, phys);
1079 	return hash__vmemmap_create_mapping(start, page_size, phys);
1080 }
1081 
1082 #ifdef CONFIG_MEMORY_HOTPLUG
1083 static inline void vmemmap_remove_mapping(unsigned long start,
1084 					  unsigned long page_size)
1085 {
1086 	if (radix_enabled())
1087 		return radix__vmemmap_remove_mapping(start, page_size);
1088 	return hash__vmemmap_remove_mapping(start, page_size);
1089 }
1090 #endif
1091 
1092 static inline pte_t pmd_pte(pmd_t pmd)
1093 {
1094 	return __pte_raw(pmd_raw(pmd));
1095 }
1096 
1097 static inline pmd_t pte_pmd(pte_t pte)
1098 {
1099 	return __pmd_raw(pte_raw(pte));
1100 }
1101 
1102 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1103 {
1104 	return (pte_t *)pmd;
1105 }
1106 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1107 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1108 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1109 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1110 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1111 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1112 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1113 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1114 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1115 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1116 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1117 
1118 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1119 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1120 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1121 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1122 
1123 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1124 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1125 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1126 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1127 #endif
1128 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1129 
1130 #ifdef CONFIG_NUMA_BALANCING
1131 static inline int pmd_protnone(pmd_t pmd)
1132 {
1133 	return pte_protnone(pmd_pte(pmd));
1134 }
1135 #endif /* CONFIG_NUMA_BALANCING */
1136 
1137 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1138 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1139 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1140 
1141 #define pmd_access_permitted pmd_access_permitted
1142 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1143 {
1144 	/*
1145 	 * pmdp_invalidate sets this combination (which is not caught by
1146 	 * !pte_present() check in pte_access_permitted), to prevent
1147 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1148 	 * synchronisation.
1149 	 *
1150 	 * This also catches the case where the PTE's hardware PRESENT bit is
1151 	 * cleared while TLB is flushed, which is suboptimal but should not
1152 	 * be frequent.
1153 	 */
1154 	if (pmd_is_serializing(pmd))
1155 		return false;
1156 
1157 	return pte_access_permitted(pmd_pte(pmd), write);
1158 }
1159 
1160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1161 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1162 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1163 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1164 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1165 		       pmd_t *pmdp, pmd_t pmd);
1166 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1167 					unsigned long addr, pmd_t *pmd)
1168 {
1169 }
1170 
1171 extern int hash__has_transparent_hugepage(void);
1172 static inline int has_transparent_hugepage(void)
1173 {
1174 	if (radix_enabled())
1175 		return radix__has_transparent_hugepage();
1176 	return hash__has_transparent_hugepage();
1177 }
1178 #define has_transparent_hugepage has_transparent_hugepage
1179 
1180 static inline unsigned long
1181 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1182 		    unsigned long clr, unsigned long set)
1183 {
1184 	if (radix_enabled())
1185 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1186 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1187 }
1188 
1189 /*
1190  * returns true for pmd migration entries, THP, devmap, hugetlb
1191  * But compile time dependent on THP config
1192  */
1193 static inline int pmd_large(pmd_t pmd)
1194 {
1195 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1196 }
1197 
1198 /*
1199  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1200  * the below will work for radix too
1201  */
1202 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1203 					      unsigned long addr, pmd_t *pmdp)
1204 {
1205 	unsigned long old;
1206 
1207 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1208 		return 0;
1209 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1210 	return ((old & _PAGE_ACCESSED) != 0);
1211 }
1212 
1213 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1214 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1215 				      pmd_t *pmdp)
1216 {
1217 	if (__pmd_write((*pmdp)))
1218 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1219 	else if (unlikely(pmd_savedwrite(*pmdp)))
1220 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1221 }
1222 
1223 /*
1224  * Only returns true for a THP. False for pmd migration entry.
1225  * We also need to return true when we come across a pte that
1226  * in between a thp split. While splitting THP, we mark the pmd
1227  * invalid (pmdp_invalidate()) before we set it with pte page
1228  * address. A pmd_trans_huge() check against a pmd entry during that time
1229  * should return true.
1230  * We should not call this on a hugetlb entry. We should check for HugeTLB
1231  * entry using vma->vm_flags
1232  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1233  */
1234 static inline int pmd_trans_huge(pmd_t pmd)
1235 {
1236 	if (!pmd_present(pmd))
1237 		return false;
1238 
1239 	if (radix_enabled())
1240 		return radix__pmd_trans_huge(pmd);
1241 	return hash__pmd_trans_huge(pmd);
1242 }
1243 
1244 #define __HAVE_ARCH_PMD_SAME
1245 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1246 {
1247 	if (radix_enabled())
1248 		return radix__pmd_same(pmd_a, pmd_b);
1249 	return hash__pmd_same(pmd_a, pmd_b);
1250 }
1251 
1252 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1253 {
1254 	if (radix_enabled())
1255 		return radix__pmd_mkhuge(pmd);
1256 	return hash__pmd_mkhuge(pmd);
1257 }
1258 
1259 /*
1260  * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1261  */
1262 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1263 {
1264 #ifdef CONFIG_DEBUG_VM
1265 	if (radix_enabled())
1266 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1267 	else
1268 		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1269 			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1270 #endif
1271 	return pmd;
1272 }
1273 
1274 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1275 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1276 				 unsigned long address, pmd_t *pmdp,
1277 				 pmd_t entry, int dirty);
1278 
1279 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1280 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1281 				     unsigned long address, pmd_t *pmdp);
1282 
1283 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1284 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1285 					    unsigned long addr, pmd_t *pmdp)
1286 {
1287 	if (radix_enabled())
1288 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1289 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1290 }
1291 
1292 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1293 					unsigned long address, pmd_t *pmdp)
1294 {
1295 	if (radix_enabled())
1296 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1297 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1298 }
1299 #define pmdp_collapse_flush pmdp_collapse_flush
1300 
1301 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1302 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1303 				   unsigned long addr,
1304 				   pmd_t *pmdp, int full);
1305 
1306 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1307 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1308 					      pmd_t *pmdp, pgtable_t pgtable)
1309 {
1310 	if (radix_enabled())
1311 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1312 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1313 }
1314 
1315 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1316 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1317 						    pmd_t *pmdp)
1318 {
1319 	if (radix_enabled())
1320 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1321 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1322 }
1323 
1324 #define __HAVE_ARCH_PMDP_INVALIDATE
1325 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1326 			     pmd_t *pmdp);
1327 
1328 #define pmd_move_must_withdraw pmd_move_must_withdraw
1329 struct spinlock;
1330 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1331 				  struct spinlock *old_pmd_ptl,
1332 				  struct vm_area_struct *vma);
1333 /*
1334  * Hash translation mode use the deposited table to store hash pte
1335  * slot information.
1336  */
1337 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1338 static inline bool arch_needs_pgtable_deposit(void)
1339 {
1340 	if (radix_enabled())
1341 		return false;
1342 	return true;
1343 }
1344 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1345 
1346 
1347 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1348 {
1349 	if (radix_enabled())
1350 		return radix__pmd_mkdevmap(pmd);
1351 	return hash__pmd_mkdevmap(pmd);
1352 }
1353 
1354 static inline int pmd_devmap(pmd_t pmd)
1355 {
1356 	return pte_devmap(pmd_pte(pmd));
1357 }
1358 
1359 static inline int pud_devmap(pud_t pud)
1360 {
1361 	return 0;
1362 }
1363 
1364 static inline int pgd_devmap(pgd_t pgd)
1365 {
1366 	return 0;
1367 }
1368 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1369 
1370 static inline int pud_pfn(pud_t pud)
1371 {
1372 	/*
1373 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1374 	 * check so this should never be used. If it grows another user we
1375 	 * want to know about it.
1376 	 */
1377 	BUILD_BUG();
1378 	return 0;
1379 }
1380 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1381 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1382 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1383 			     pte_t *, pte_t, pte_t);
1384 
1385 /*
1386  * Returns true for a R -> RW upgrade of pte
1387  */
1388 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1389 {
1390 	if (!(old_val & _PAGE_READ))
1391 		return false;
1392 
1393 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1394 		return true;
1395 
1396 	return false;
1397 }
1398 
1399 /*
1400  * Like pmd_huge() and pmd_large(), but works regardless of config options
1401  */
1402 #define pmd_is_leaf pmd_is_leaf
1403 #define pmd_leaf pmd_is_leaf
1404 static inline bool pmd_is_leaf(pmd_t pmd)
1405 {
1406 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1407 }
1408 
1409 #define pud_is_leaf pud_is_leaf
1410 #define pud_leaf pud_is_leaf
1411 static inline bool pud_is_leaf(pud_t pud)
1412 {
1413 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1414 }
1415 
1416 #define p4d_is_leaf p4d_is_leaf
1417 #define p4d_leaf p4d_is_leaf
1418 static inline bool p4d_is_leaf(p4d_t p4d)
1419 {
1420 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1421 }
1422 
1423 #endif /* __ASSEMBLY__ */
1424 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1425