xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision f281b5d50c87ecca108dcbf8f791bd8923fde3de)
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 /*
4  * This file contains the functions and defines necessary to modify and use
5  * the ppc64 hashed page table.
6  */
7 
8 #include <asm/book3s/64/hash.h>
9 #include <asm/barrier.h>
10 
11 
12 /*
13  * Size of EA range mapped by our pagetables.
14  */
15 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
16 			    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
17 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
18 
19 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
20 #define PMD_CACHE_INDEX	(PMD_INDEX_SIZE + 1)
21 #else
22 #define PMD_CACHE_INDEX	PMD_INDEX_SIZE
23 #endif
24 /*
25  * Define the address range of the kernel non-linear virtual area
26  */
27 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
28 #define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
29 /*
30  * The vmalloc space starts at the beginning of that region, and
31  * occupies half of it on hash CPUs and a quarter of it on Book3E
32  * (we keep a quarter for the virtual memmap)
33  */
34 #define VMALLOC_START	KERN_VIRT_START
35 #define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
36 #define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
37 /*
38  * The second half of the kernel virtual space is used for IO mappings,
39  * it's itself carved into the PIO region (ISA and PHB IO space) and
40  * the ioremap space
41  *
42  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
43  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
44  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
45  */
46 #define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
47 #define FULL_IO_SIZE	0x80000000ul
48 #define  ISA_IO_BASE	(KERN_IO_START)
49 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
50 #define  PHB_IO_BASE	(ISA_IO_END)
51 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
52 #define IOREMAP_BASE	(PHB_IO_END)
53 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
54 
55 /*
56  * Region IDs
57  */
58 #define REGION_SHIFT		60UL
59 #define REGION_MASK		(0xfUL << REGION_SHIFT)
60 #define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)
61 
62 #define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
63 #define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
64 #define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
65 #define USER_REGION_ID		(0UL)
66 
67 /*
68  * Defines the address of the vmemap area, in its own region on
69  * hash table CPUs.
70  */
71 #define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
72 #define vmemmap			((struct page *)VMEMMAP_BASE)
73 
74 
75 #ifdef CONFIG_PPC_MM_SLICES
76 #define HAVE_ARCH_UNMAPPED_AREA
77 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
78 #endif /* CONFIG_PPC_MM_SLICES */
79 
80 /*
81  * THP pages can't be special. So use the _PAGE_SPECIAL
82  */
83 #define _PAGE_SPLITTING _PAGE_SPECIAL
84 
85 /*
86  * We need to differentiate between explicit huge page and THP huge
87  * page, since THP huge page also need to track real subpage details
88  */
89 #define _PAGE_THP_HUGE  _PAGE_4K_PFN
90 
91 /*
92  * set of bits not changed in pmd_modify.
93  */
94 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |		\
95 			 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
96 			 _PAGE_THP_HUGE)
97 #define _PTE_NONE_MASK	_PAGE_HPTEFLAGS
98 /*
99  * The mask convered by the RPN must be a ULL on 32-bit platforms with
100  * 64-bit PTEs
101  */
102 #define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
103 /*
104  * _PAGE_CHG_MASK masks of bits that are to be preserved across
105  * pgprot changes
106  */
107 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
108 			 _PAGE_ACCESSED | _PAGE_SPECIAL)
109 /*
110  * Mask of bits returned by pte_pgprot()
111  */
112 #define PAGE_PROT_BITS	(_PAGE_GUARDED | _PAGE_COHERENT | _PAGE_NO_CACHE | \
113 			 _PAGE_WRITETHRU | _PAGE_4K_PFN | \
114 			 _PAGE_USER | _PAGE_ACCESSED |  \
115 			 _PAGE_RW |  _PAGE_DIRTY | _PAGE_EXEC)
116 /*
117  * We define 2 sets of base prot bits, one for basic pages (ie,
118  * cacheable kernel and user pages) and one for non cacheable
119  * pages. We always set _PAGE_COHERENT when SMP is enabled or
120  * the processor might need it for DMA coherency.
121  */
122 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
123 #define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
124 
125 /* Permission masks used to generate the __P and __S table,
126  *
127  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
128  *
129  * Write permissions imply read permissions for now (we could make write-only
130  * pages on BookE but we don't bother for now). Execute permission control is
131  * possible on platforms that define _PAGE_EXEC
132  *
133  * Note due to the way vm flags are laid out, the bits are XWR
134  */
135 #define PAGE_NONE	__pgprot(_PAGE_BASE)
136 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
137 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | \
138 				 _PAGE_EXEC)
139 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER )
140 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
141 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER )
142 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
143 
144 #define __P000	PAGE_NONE
145 #define __P001	PAGE_READONLY
146 #define __P010	PAGE_COPY
147 #define __P011	PAGE_COPY
148 #define __P100	PAGE_READONLY_X
149 #define __P101	PAGE_READONLY_X
150 #define __P110	PAGE_COPY_X
151 #define __P111	PAGE_COPY_X
152 
153 #define __S000	PAGE_NONE
154 #define __S001	PAGE_READONLY
155 #define __S010	PAGE_SHARED
156 #define __S011	PAGE_SHARED
157 #define __S100	PAGE_READONLY_X
158 #define __S101	PAGE_READONLY_X
159 #define __S110	PAGE_SHARED_X
160 #define __S111	PAGE_SHARED_X
161 
162 /* Permission masks used for kernel mappings */
163 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
164 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
165 				 _PAGE_NO_CACHE)
166 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
167 				 _PAGE_NO_CACHE | _PAGE_GUARDED)
168 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
169 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
170 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
171 
172 /* Protection used for kernel text. We want the debuggers to be able to
173  * set breakpoints anywhere, so don't write protect the kernel text
174  * on platforms where such control is possible.
175  */
176 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
177 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
178 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
179 #else
180 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
181 #endif
182 
183 /* Make modules code happy. We don't set RO yet */
184 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
185 
186 /*
187  * Don't just check for any non zero bits in __PAGE_USER, since for book3e
188  * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
189  * _PAGE_USER.  Need to explicitly match _PAGE_BAP_UR bit in that case too.
190  */
191 #define pte_user(val)		((val & _PAGE_USER) == _PAGE_USER)
192 
193 /* Advertise special mapping type for AGP */
194 #define PAGE_AGP		(PAGE_KERNEL_NC)
195 #define HAVE_PAGE_AGP
196 
197 /* Advertise support for _PAGE_SPECIAL */
198 #define __HAVE_ARCH_PTE_SPECIAL
199 
200 #ifndef __ASSEMBLY__
201 
202 /*
203  * This is the default implementation of various PTE accessors, it's
204  * used in all cases except Book3S with 64K pages where we have a
205  * concept of sub-pages
206  */
207 #ifndef __real_pte
208 
209 #ifdef CONFIG_STRICT_MM_TYPECHECKS
210 #define __real_pte(e,p)		((real_pte_t){(e)})
211 #define __rpte_to_pte(r)	((r).pte)
212 #else
213 #define __real_pte(e,p)		(e)
214 #define __rpte_to_pte(r)	(__pte(r))
215 #endif
216 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)
217 
218 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
219 	do {							         \
220 		index = 0;					         \
221 		shift = mmu_psize_defs[psize].shift;		         \
222 
223 #define pte_iterate_hashed_end() } while(0)
224 
225 /*
226  * We expect this to be called only for user addresses or kernel virtual
227  * addresses other than the linear mapping.
228  */
229 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
230 
231 #endif /* __real_pte */
232 
233 
234 /* pte_clear moved to later in this file */
235 
236 #define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
237 #define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
238 
239 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
240 {
241 	*pmdp = __pmd(val);
242 }
243 
244 static inline void pmd_clear(pmd_t *pmdp)
245 {
246 	*pmdp = __pmd(0);
247 }
248 
249 
250 #define pmd_none(pmd)		(!pmd_val(pmd))
251 #define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
252 				 || (pmd_val(pmd) & PMD_BAD_BITS))
253 #define	pmd_present(pmd)	(!pmd_none(pmd))
254 #define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
255 extern struct page *pmd_page(pmd_t pmd);
256 
257 static inline void pud_set(pud_t *pudp, unsigned long val)
258 {
259 	*pudp = __pud(val);
260 }
261 
262 static inline void pud_clear(pud_t *pudp)
263 {
264 	*pudp = __pud(0);
265 }
266 
267 #define pud_none(pud)		(!pud_val(pud))
268 #define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
269 				 || (pud_val(pud) & PUD_BAD_BITS))
270 #define pud_present(pud)	(pud_val(pud) != 0)
271 #define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)
272 
273 extern struct page *pud_page(pud_t pud);
274 
275 static inline pte_t pud_pte(pud_t pud)
276 {
277 	return __pte(pud_val(pud));
278 }
279 
280 static inline pud_t pte_pud(pte_t pte)
281 {
282 	return __pud(pte_val(pte));
283 }
284 #define pud_write(pud)		pte_write(pud_pte(pud))
285 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
286 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
287 {
288 	*pgdp = __pgd(val);
289 }
290 
291 /*
292  * Find an entry in a page-table-directory.  We combine the address region
293  * (the high order N bits) and the pgd portion of the address.
294  */
295 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
296 
297 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
298 
299 #define pmd_offset(pudp,addr) \
300   (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
301 
302 #define pte_offset_kernel(dir,addr) \
303   (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
304 
305 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
306 #define pte_unmap(pte)			do { } while(0)
307 
308 /* to find an entry in a kernel page-table-directory */
309 /* This now only contains the vmalloc pages */
310 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
311 extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
312 			    pte_t *ptep, unsigned long pte, int huge);
313 
314 /* Atomic PTE updates */
315 static inline unsigned long pte_update(struct mm_struct *mm,
316 				       unsigned long addr,
317 				       pte_t *ptep, unsigned long clr,
318 				       unsigned long set,
319 				       int huge)
320 {
321 	unsigned long old, tmp;
322 
323 	__asm__ __volatile__(
324 	"1:	ldarx	%0,0,%3		# pte_update\n\
325 	andi.	%1,%0,%6\n\
326 	bne-	1b \n\
327 	andc	%1,%0,%4 \n\
328 	or	%1,%1,%7\n\
329 	stdcx.	%1,0,%3 \n\
330 	bne-	1b"
331 	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
332 	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
333 	: "cc" );
334 	/* huge pages use the old page table lock */
335 	if (!huge)
336 		assert_pte_locked(mm, addr);
337 
338 	if (old & _PAGE_HASHPTE)
339 		hpte_need_flush(mm, addr, ptep, old, huge);
340 
341 	return old;
342 }
343 
344 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
345 					      unsigned long addr, pte_t *ptep)
346 {
347 	unsigned long old;
348 
349 	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
350 		return 0;
351 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
352 	return (old & _PAGE_ACCESSED) != 0;
353 }
354 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
355 #define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
356 ({									   \
357 	int __r;							   \
358 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
359 	__r;								   \
360 })
361 
362 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
363 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
364 				      pte_t *ptep)
365 {
366 
367 	if ((pte_val(*ptep) & _PAGE_RW) == 0)
368 		return;
369 
370 	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
371 }
372 
373 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
374 					   unsigned long addr, pte_t *ptep)
375 {
376 	if ((pte_val(*ptep) & _PAGE_RW) == 0)
377 		return;
378 
379 	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
380 }
381 
382 /*
383  * We currently remove entries from the hashtable regardless of whether
384  * the entry was young or dirty. The generic routines only flush if the
385  * entry was young or dirty which is not good enough.
386  *
387  * We should be more intelligent about this but for the moment we override
388  * these functions and force a tlb flush unconditionally
389  */
390 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
391 #define ptep_clear_flush_young(__vma, __address, __ptep)		\
392 ({									\
393 	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
394 						  __ptep);		\
395 	__young;							\
396 })
397 
398 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
399 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
400 				       unsigned long addr, pte_t *ptep)
401 {
402 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
403 	return __pte(old);
404 }
405 
406 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
407 			     pte_t * ptep)
408 {
409 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
410 }
411 
412 
413 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
414  * function doesn't need to flush the hash entry
415  */
416 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
417 {
418 	unsigned long bits = pte_val(entry) &
419 		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
420 
421 	unsigned long old, tmp;
422 
423 	__asm__ __volatile__(
424 	"1:	ldarx	%0,0,%4\n\
425 		andi.	%1,%0,%6\n\
426 		bne-	1b \n\
427 		or	%0,%3,%0\n\
428 		stdcx.	%0,0,%4\n\
429 		bne-	1b"
430 	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
431 	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
432 	:"cc");
433 }
434 
435 #define __HAVE_ARCH_PTE_SAME
436 #define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
437 
438 #define pte_ERROR(e) \
439 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
440 #define pmd_ERROR(e) \
441 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
442 #define pgd_ERROR(e) \
443 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
444 
445 /* Encode and de-code a swap entry */
446 #define MAX_SWAPFILES_CHECK() do { \
447 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
448 	/*							\
449 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
450 	 * We filter HPTEFLAGS on set_pte.			\
451 	 */							\
452 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
453 	} while (0)
454 /*
455  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
456  */
457 #define SWP_TYPE_BITS 5
458 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
459 				& ((1UL << SWP_TYPE_BITS) - 1))
460 #define __swp_offset(x)		((x).val >> PTE_RPN_SHIFT)
461 #define __swp_entry(type, offset)	((swp_entry_t) { \
462 					((type) << _PAGE_BIT_SWAP_TYPE) \
463 					| ((offset) << PTE_RPN_SHIFT) })
464 
465 #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val((pte)) })
466 #define __swp_entry_to_pte(x)		__pte((x).val)
467 
468 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
469 void pgtable_cache_init(void);
470 
471 /*
472  * The linux hugepage PMD now include the pmd entries followed by the address
473  * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
474  * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
475  * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
476  * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
477  *
478  * The last three bits are intentionally left to zero. This memory location
479  * are also used as normal page PTE pointers. So if we have any pointers
480  * left around while we collapse a hugepage, we need to make sure
481  * _PAGE_PRESENT bit of that is zero when we look at them
482  */
483 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
484 {
485 	return (hpte_slot_array[index] >> 3) & 0x1;
486 }
487 
488 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
489 					   int index)
490 {
491 	return hpte_slot_array[index] >> 4;
492 }
493 
494 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
495 					unsigned int index, unsigned int hidx)
496 {
497 	hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
498 }
499 
500 struct page *realmode_pfn_to_page(unsigned long pfn);
501 
502 static inline char *get_hpte_slot_array(pmd_t *pmdp)
503 {
504 	/*
505 	 * The hpte hindex is stored in the pgtable whose address is in the
506 	 * second half of the PMD
507 	 *
508 	 * Order this load with the test for pmd_trans_huge in the caller
509 	 */
510 	smp_rmb();
511 	return *(char **)(pmdp + PTRS_PER_PMD);
512 
513 
514 }
515 
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
518 				   pmd_t *pmdp, unsigned long old_pmd);
519 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
520 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
521 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
522 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
523 		       pmd_t *pmdp, pmd_t pmd);
524 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
525 				 pmd_t *pmd);
526 /*
527  *
528  * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
529  * page. The hugetlbfs page table walking and mangling paths are totally
530  * separated form the core VM paths and they're differentiated by
531  *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
532  *
533  * pmd_trans_huge() is defined as false at build time if
534  * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
535  * time in such case.
536  *
537  * For ppc64 we need to differntiate from explicit hugepages from THP, because
538  * for THP we also track the subpage details at the pmd level. We don't do
539  * that for explicit huge pages.
540  *
541  */
542 static inline int pmd_trans_huge(pmd_t pmd)
543 {
544 	/*
545 	 * leaf pte for huge page, bottom two bits != 00
546 	 */
547 	return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
548 }
549 
550 static inline int pmd_trans_splitting(pmd_t pmd)
551 {
552 	if (pmd_trans_huge(pmd))
553 		return pmd_val(pmd) & _PAGE_SPLITTING;
554 	return 0;
555 }
556 
557 extern int has_transparent_hugepage(void);
558 #else
559 static inline void hpte_do_hugepage_flush(struct mm_struct *mm,
560 					  unsigned long addr, pmd_t *pmdp,
561 					  unsigned long old_pmd)
562 {
563 
564 	WARN(1, "%s called with THP disabled\n", __func__);
565 }
566 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
567 
568 static inline int pmd_large(pmd_t pmd)
569 {
570 	/*
571 	 * leaf pte for huge page, bottom two bits != 00
572 	 */
573 	return ((pmd_val(pmd) & 0x3) != 0x0);
574 }
575 
576 static inline pte_t pmd_pte(pmd_t pmd)
577 {
578 	return __pte(pmd_val(pmd));
579 }
580 
581 static inline pmd_t pte_pmd(pte_t pte)
582 {
583 	return __pmd(pte_val(pte));
584 }
585 
586 static inline pte_t *pmdp_ptep(pmd_t *pmd)
587 {
588 	return (pte_t *)pmd;
589 }
590 
591 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
592 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
593 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
594 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
595 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
596 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
597 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
598 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
599 
600 #define __HAVE_ARCH_PMD_WRITE
601 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
602 
603 static inline pmd_t pmd_mkhuge(pmd_t pmd)
604 {
605 	/* Do nothing, mk_pmd() does this part.  */
606 	return pmd;
607 }
608 
609 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
610 {
611 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
612 }
613 
614 static inline pmd_t pmd_mksplitting(pmd_t pmd)
615 {
616 	return __pmd(pmd_val(pmd) | _PAGE_SPLITTING);
617 }
618 
619 #define __HAVE_ARCH_PMD_SAME
620 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
621 {
622 	return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
623 }
624 
625 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
626 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
627 				 unsigned long address, pmd_t *pmdp,
628 				 pmd_t entry, int dirty);
629 
630 extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
631 					 unsigned long addr,
632 					 pmd_t *pmdp,
633 					 unsigned long clr,
634 					 unsigned long set);
635 
636 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
637 					      unsigned long addr, pmd_t *pmdp)
638 {
639 	unsigned long old;
640 
641 	if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
642 		return 0;
643 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
644 	return ((old & _PAGE_ACCESSED) != 0);
645 }
646 
647 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
648 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
649 				     unsigned long address, pmd_t *pmdp);
650 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
651 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
652 				  unsigned long address, pmd_t *pmdp);
653 
654 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
655 extern pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
656 				     unsigned long addr, pmd_t *pmdp);
657 
658 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
659 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
660 				      pmd_t *pmdp)
661 {
662 
663 	if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
664 		return;
665 
666 	pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
667 }
668 
669 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
670 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
671 				 unsigned long address, pmd_t *pmdp);
672 
673 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
674 				 unsigned long address, pmd_t *pmdp);
675 #define pmdp_collapse_flush pmdp_collapse_flush
676 
677 #define __HAVE_ARCH_PGTABLE_DEPOSIT
678 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
679 				       pgtable_t pgtable);
680 #define __HAVE_ARCH_PGTABLE_WITHDRAW
681 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
682 
683 #define __HAVE_ARCH_PMDP_INVALIDATE
684 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
685 			    pmd_t *pmdp);
686 
687 #define pmd_move_must_withdraw pmd_move_must_withdraw
688 struct spinlock;
689 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
690 					 struct spinlock *old_pmd_ptl)
691 {
692 	/*
693 	 * Archs like ppc64 use pgtable to store per pmd
694 	 * specific information. So when we switch the pmd,
695 	 * we should also withdraw and deposit the pgtable
696 	 */
697 	return true;
698 }
699 #endif /* __ASSEMBLY__ */
700 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
701