1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ 4 5 #include <asm-generic/pgtable-nop4d.h> 6 7 #ifndef __ASSEMBLY__ 8 #include <linux/mmdebug.h> 9 #include <linux/bug.h> 10 #include <linux/sizes.h> 11 #endif 12 13 /* 14 * Common bits between hash and Radix page table 15 */ 16 17 #define _PAGE_EXEC 0x00001 /* execute permission */ 18 #define _PAGE_WRITE 0x00002 /* write access allowed */ 19 #define _PAGE_READ 0x00004 /* read access allowed */ 20 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ 21 #define _PAGE_SAO 0x00010 /* Strong access order */ 22 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ 23 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ 24 #define _PAGE_DIRTY 0x00080 /* C: page changed */ 25 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ 26 /* 27 * Software bits 28 */ 29 #define _RPAGE_SW0 0x2000000000000000UL 30 #define _RPAGE_SW1 0x00800 31 #define _RPAGE_SW2 0x00400 32 #define _RPAGE_SW3 0x00200 33 #define _RPAGE_RSV1 0x00040UL 34 35 #define _RPAGE_PKEY_BIT4 0x1000000000000000UL 36 #define _RPAGE_PKEY_BIT3 0x0800000000000000UL 37 #define _RPAGE_PKEY_BIT2 0x0400000000000000UL 38 #define _RPAGE_PKEY_BIT1 0x0200000000000000UL 39 #define _RPAGE_PKEY_BIT0 0x0100000000000000UL 40 41 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ 42 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ 43 /* 44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing 45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to 46 * differentiate between two use a SW field when invalidating. 47 * 48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags 49 * 50 * This is used only when _PAGE_PRESENT is cleared. 51 */ 52 #define _PAGE_INVALID _RPAGE_SW0 53 54 /* 55 * Top and bottom bits of RPN which can be used by hash 56 * translation mode, because we expect them to be zero 57 * otherwise. 58 */ 59 #define _RPAGE_RPN0 0x01000 60 #define _RPAGE_RPN1 0x02000 61 #define _RPAGE_RPN43 0x0080000000000000UL 62 #define _RPAGE_RPN42 0x0040000000000000UL 63 #define _RPAGE_RPN41 0x0020000000000000UL 64 65 /* Max physical address bit as per radix table */ 66 #define _RPAGE_PA_MAX 56 67 68 /* 69 * Max physical address bit we will use for now. 70 * 71 * This is mostly a hardware limitation and for now Power9 has 72 * a 51 bit limit. 73 * 74 * This is different from the number of physical bit required to address 75 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. 76 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum 77 * number of sections we can support (SECTIONS_SHIFT). 78 * 79 * This is different from Radix page table limitation above and 80 * should always be less than that. The limit is done such that 81 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX 82 * for hash linux page table specific bits. 83 * 84 * In order to be compatible with future hardware generations we keep 85 * some offsets and limit this for now to 53 86 */ 87 #define _PAGE_PA_MAX 53 88 89 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ 90 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ 91 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ 92 93 /* 94 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE 95 * Instead of fixing all of them, add an alternate define which 96 * maps CI pte mapping. 97 */ 98 #define _PAGE_NO_CACHE _PAGE_TOLERANT 99 /* 100 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side 101 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX 102 * and every thing below PAGE_SHIFT; 103 */ 104 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) 105 #define PTE_RPN_SHIFT PAGE_SHIFT 106 /* 107 * set of bits not changed in pmd_modify. Even though we have hash specific bits 108 * in here, on radix we expect them to be zero. 109 */ 110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 111 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ 112 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) 113 /* 114 * user access blocked by key 115 */ 116 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) 117 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) 118 #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC) 119 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC) 120 /* 121 * _PAGE_CHG_MASK masks of bits that are to be preserved across 122 * pgprot changes 123 */ 124 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ 125 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ 126 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) 127 128 /* 129 * We define 2 sets of base prot bits, one for basic pages (ie, 130 * cacheable kernel and user pages) and one for non cacheable 131 * pages. We always set _PAGE_COHERENT when SMP is enabled or 132 * the processor might need it for DMA coherency. 133 */ 134 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) 135 #define _PAGE_BASE (_PAGE_BASE_NC) 136 137 #include <asm/pgtable-masks.h> 138 139 /* Permission masks used for kernel mappings */ 140 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) 141 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT) 142 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT) 143 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) 144 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) 145 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) 146 147 #ifndef __ASSEMBLY__ 148 /* 149 * page table defines 150 */ 151 extern unsigned long __pte_index_size; 152 extern unsigned long __pmd_index_size; 153 extern unsigned long __pud_index_size; 154 extern unsigned long __pgd_index_size; 155 extern unsigned long __pud_cache_index; 156 #define PTE_INDEX_SIZE __pte_index_size 157 #define PMD_INDEX_SIZE __pmd_index_size 158 #define PUD_INDEX_SIZE __pud_index_size 159 #define PGD_INDEX_SIZE __pgd_index_size 160 /* pmd table use page table fragments */ 161 #define PMD_CACHE_INDEX 0 162 #define PUD_CACHE_INDEX __pud_cache_index 163 /* 164 * Because of use of pte fragments and THP, size of page table 165 * are not always derived out of index size above. 166 */ 167 extern unsigned long __pte_table_size; 168 extern unsigned long __pmd_table_size; 169 extern unsigned long __pud_table_size; 170 extern unsigned long __pgd_table_size; 171 #define PTE_TABLE_SIZE __pte_table_size 172 #define PMD_TABLE_SIZE __pmd_table_size 173 #define PUD_TABLE_SIZE __pud_table_size 174 #define PGD_TABLE_SIZE __pgd_table_size 175 176 extern unsigned long __pmd_val_bits; 177 extern unsigned long __pud_val_bits; 178 extern unsigned long __pgd_val_bits; 179 #define PMD_VAL_BITS __pmd_val_bits 180 #define PUD_VAL_BITS __pud_val_bits 181 #define PGD_VAL_BITS __pgd_val_bits 182 183 extern unsigned long __pte_frag_nr; 184 #define PTE_FRAG_NR __pte_frag_nr 185 extern unsigned long __pte_frag_size_shift; 186 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift 187 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) 188 189 extern unsigned long __pmd_frag_nr; 190 #define PMD_FRAG_NR __pmd_frag_nr 191 extern unsigned long __pmd_frag_size_shift; 192 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift 193 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT) 194 195 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) 196 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) 197 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) 198 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) 199 200 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE) 201 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD) 202 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD) 203 #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \ 204 H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE)) 205 206 /* PMD_SHIFT determines what a second-level page table entry can map */ 207 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) 208 #define PMD_SIZE (1UL << PMD_SHIFT) 209 #define PMD_MASK (~(PMD_SIZE-1)) 210 211 /* PUD_SHIFT determines what a third-level page table entry can map */ 212 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) 213 #define PUD_SIZE (1UL << PUD_SHIFT) 214 #define PUD_MASK (~(PUD_SIZE-1)) 215 216 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ 217 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) 218 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 219 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 220 221 /* Bits to mask out from a PMD to get to the PTE page */ 222 #define PMD_MASKED_BITS 0xc0000000000000ffUL 223 /* Bits to mask out from a PUD to get to the PMD page */ 224 #define PUD_MASKED_BITS 0xc0000000000000ffUL 225 /* Bits to mask out from a PGD to get to the PUD page */ 226 #define P4D_MASKED_BITS 0xc0000000000000ffUL 227 228 /* 229 * Used as an indicator for rcu callback functions 230 */ 231 enum pgtable_index { 232 PTE_INDEX = 0, 233 PMD_INDEX, 234 PUD_INDEX, 235 PGD_INDEX, 236 /* 237 * Below are used with 4k page size and hugetlb 238 */ 239 HTLB_16M_INDEX, 240 HTLB_16G_INDEX, 241 }; 242 243 extern unsigned long __vmalloc_start; 244 extern unsigned long __vmalloc_end; 245 #define VMALLOC_START __vmalloc_start 246 #define VMALLOC_END __vmalloc_end 247 248 static inline unsigned int ioremap_max_order(void) 249 { 250 if (radix_enabled()) 251 return PUD_SHIFT; 252 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */ 253 } 254 #define IOREMAP_MAX_ORDER ioremap_max_order() 255 256 extern unsigned long __kernel_virt_start; 257 extern unsigned long __kernel_io_start; 258 extern unsigned long __kernel_io_end; 259 #define KERN_VIRT_START __kernel_virt_start 260 #define KERN_IO_START __kernel_io_start 261 #define KERN_IO_END __kernel_io_end 262 263 extern struct page *vmemmap; 264 extern unsigned long pci_io_base; 265 266 #define pmd_leaf pmd_leaf 267 static inline bool pmd_leaf(pmd_t pmd) 268 { 269 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); 270 } 271 272 #define pud_leaf pud_leaf 273 static inline bool pud_leaf(pud_t pud) 274 { 275 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE)); 276 } 277 278 #define pmd_leaf_size pmd_leaf_size 279 static inline unsigned long pmd_leaf_size(pmd_t pmd) 280 { 281 if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) 282 return SZ_16M; 283 else 284 return PMD_SIZE; 285 } 286 287 #define pud_leaf_size pud_leaf_size 288 static inline unsigned long pud_leaf_size(pud_t pud) 289 { 290 if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) 291 return SZ_16G; 292 else 293 return PUD_SIZE; 294 } 295 #endif /* __ASSEMBLY__ */ 296 297 #include <asm/book3s/64/hash.h> 298 #include <asm/book3s/64/radix.h> 299 300 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS 301 #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS 302 #else 303 #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS 304 #endif 305 306 /* hash 4k can't share hugetlb and also doesn't support THP */ 307 #ifdef CONFIG_PPC_64K_PAGES 308 #include <asm/book3s/64/pgtable-64k.h> 309 #endif 310 311 #include <asm/barrier.h> 312 /* 313 * IO space itself carved into the PIO region (ISA and PHB IO space) and 314 * the ioremap space 315 * 316 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 317 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 318 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 319 */ 320 #define FULL_IO_SIZE 0x80000000ul 321 #define ISA_IO_BASE (KERN_IO_START) 322 #define ISA_IO_END (KERN_IO_START + 0x10000ul) 323 #define PHB_IO_BASE (ISA_IO_END) 324 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 325 #define IOREMAP_BASE (PHB_IO_END) 326 #define IOREMAP_START (ioremap_bot) 327 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE) 328 #define FIXADDR_SIZE SZ_32M 329 #define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE) 330 331 #ifndef __ASSEMBLY__ 332 333 /* 334 * This is the default implementation of various PTE accessors, it's 335 * used in all cases except Book3S with 64K pages where we have a 336 * concept of sub-pages 337 */ 338 #ifndef __real_pte 339 340 #define __real_pte(e, p, o) ((real_pte_t){(e)}) 341 #define __rpte_to_pte(r) ((r).pte) 342 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) 343 344 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ 345 do { \ 346 index = 0; \ 347 shift = mmu_psize_defs[psize].shift; \ 348 349 #define pte_iterate_hashed_end() } while(0) 350 351 /* 352 * We expect this to be called only for user addresses or kernel virtual 353 * addresses other than the linear mapping. 354 */ 355 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K 356 357 #endif /* __real_pte */ 358 359 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, 360 pte_t *ptep, unsigned long clr, 361 unsigned long set, int huge) 362 { 363 if (radix_enabled()) 364 return radix__pte_update(mm, addr, ptep, clr, set, huge); 365 return hash__pte_update(mm, addr, ptep, clr, set, huge); 366 } 367 /* 368 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. 369 * We currently remove entries from the hashtable regardless of whether 370 * the entry was young or dirty. 371 * 372 * We should be more intelligent about this but for the moment we override 373 * these functions and force a tlb flush unconditionally 374 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same 375 * function for both hash and radix. 376 */ 377 static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 378 unsigned long addr, pte_t *ptep) 379 { 380 unsigned long old; 381 382 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 383 return 0; 384 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 385 return (old & _PAGE_ACCESSED) != 0; 386 } 387 388 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 389 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 390 ({ \ 391 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 392 }) 393 394 /* 395 * On Book3S CPUs, clearing the accessed bit without a TLB flush 396 * doesn't cause data corruption. [ It could cause incorrect 397 * page aging and the (mistaken) reclaim of hot pages, but the 398 * chance of that should be relatively low. ] 399 * 400 * So as a performance optimization don't flush the TLB when 401 * clearing the accessed bit, it will eventually be flushed by 402 * a context switch or a VM operation anyway. [ In the rare 403 * event of it not getting flushed for a long time the delay 404 * shouldn't really matter because there's no real memory 405 * pressure for swapout to react to. ] 406 * 407 * Note: this optimisation also exists in pte_needs_flush() and 408 * huge_pmd_needs_flush(). 409 */ 410 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 411 #define ptep_clear_flush_young ptep_test_and_clear_young 412 413 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 414 #define pmdp_clear_flush_young pmdp_test_and_clear_young 415 416 static inline int pte_write(pte_t pte) 417 { 418 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); 419 } 420 421 static inline int pte_read(pte_t pte) 422 { 423 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); 424 } 425 426 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 427 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 428 pte_t *ptep) 429 { 430 if (pte_write(*ptep)) 431 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); 432 } 433 434 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT 435 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 436 unsigned long addr, pte_t *ptep) 437 { 438 if (pte_write(*ptep)) 439 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); 440 } 441 442 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 443 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 444 unsigned long addr, pte_t *ptep) 445 { 446 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 447 return __pte(old); 448 } 449 450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 451 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 452 unsigned long addr, 453 pte_t *ptep, int full) 454 { 455 if (full && radix_enabled()) { 456 /* 457 * We know that this is a full mm pte clear and 458 * hence can be sure there is no parallel set_pte. 459 */ 460 return radix__ptep_get_and_clear_full(mm, addr, ptep, full); 461 } 462 return ptep_get_and_clear(mm, addr, ptep); 463 } 464 465 466 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 467 pte_t * ptep) 468 { 469 pte_update(mm, addr, ptep, ~0UL, 0, 0); 470 } 471 472 static inline int pte_dirty(pte_t pte) 473 { 474 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); 475 } 476 477 static inline int pte_young(pte_t pte) 478 { 479 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); 480 } 481 482 static inline int pte_special(pte_t pte) 483 { 484 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); 485 } 486 487 static inline bool pte_exec(pte_t pte) 488 { 489 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC)); 490 } 491 492 493 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 494 static inline bool pte_soft_dirty(pte_t pte) 495 { 496 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); 497 } 498 499 static inline pte_t pte_mksoft_dirty(pte_t pte) 500 { 501 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY)); 502 } 503 504 static inline pte_t pte_clear_soft_dirty(pte_t pte) 505 { 506 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY)); 507 } 508 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 509 510 #ifdef CONFIG_NUMA_BALANCING 511 static inline int pte_protnone(pte_t pte) 512 { 513 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == 514 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); 515 } 516 #endif /* CONFIG_NUMA_BALANCING */ 517 518 static inline bool pte_hw_valid(pte_t pte) 519 { 520 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) == 521 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); 522 } 523 524 static inline int pte_present(pte_t pte) 525 { 526 /* 527 * A pte is considerent present if _PAGE_PRESENT is set. 528 * We also need to consider the pte present which is marked 529 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID 530 * if we find _PAGE_PRESENT cleared. 531 */ 532 533 if (pte_hw_valid(pte)) 534 return true; 535 return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) == 536 cpu_to_be64(_PAGE_INVALID | _PAGE_PTE); 537 } 538 539 #ifdef CONFIG_PPC_MEM_KEYS 540 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute); 541 #else 542 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute) 543 { 544 return true; 545 } 546 #endif /* CONFIG_PPC_MEM_KEYS */ 547 548 static inline bool pte_user(pte_t pte) 549 { 550 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); 551 } 552 553 #define pte_access_permitted pte_access_permitted 554 static inline bool pte_access_permitted(pte_t pte, bool write) 555 { 556 /* 557 * _PAGE_READ is needed for any access and will be cleared for 558 * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false. 559 */ 560 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) 561 return false; 562 563 if (write && !pte_write(pte)) 564 return false; 565 566 return arch_pte_access_permitted(pte_val(pte), write, 0); 567 } 568 569 /* 570 * Conversion functions: convert a page and protection to a page entry, 571 * and a page entry and page directory to the page they refer to. 572 * 573 * Even if PTEs can be unsigned long long, a PFN is always an unsigned 574 * long for now. 575 */ 576 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 577 { 578 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT)); 579 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK); 580 581 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE); 582 } 583 584 /* Generic modifiers for PTE bits */ 585 static inline pte_t pte_wrprotect(pte_t pte) 586 { 587 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); 588 } 589 590 static inline pte_t pte_exprotect(pte_t pte) 591 { 592 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC)); 593 } 594 595 static inline pte_t pte_mkclean(pte_t pte) 596 { 597 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY)); 598 } 599 600 static inline pte_t pte_mkold(pte_t pte) 601 { 602 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED)); 603 } 604 605 static inline pte_t pte_mkexec(pte_t pte) 606 { 607 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC)); 608 } 609 610 static inline pte_t pte_mkwrite_novma(pte_t pte) 611 { 612 /* 613 * write implies read, hence set both 614 */ 615 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW)); 616 } 617 618 static inline pte_t pte_mkdirty(pte_t pte) 619 { 620 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 621 } 622 623 static inline pte_t pte_mkyoung(pte_t pte) 624 { 625 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED)); 626 } 627 628 static inline pte_t pte_mkspecial(pte_t pte) 629 { 630 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL)); 631 } 632 633 static inline pte_t pte_mkhuge(pte_t pte) 634 { 635 return pte; 636 } 637 638 static inline pte_t pte_mkdevmap(pte_t pte) 639 { 640 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP)); 641 } 642 643 /* 644 * This is potentially called with a pmd as the argument, in which case it's not 645 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. 646 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software 647 * use in page directory entries (ie. non-ptes). 648 */ 649 static inline int pte_devmap(pte_t pte) 650 { 651 __be64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); 652 653 return (pte_raw(pte) & mask) == mask; 654 } 655 656 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 657 { 658 /* FIXME!! check whether this need to be a conditional */ 659 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) | 660 cpu_to_be64(pgprot_val(newprot))); 661 } 662 663 /* Encode and de-code a swap entry */ 664 #define MAX_SWAPFILES_CHECK() do { \ 665 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 666 /* \ 667 * Don't have overlapping bits with _PAGE_HPTEFLAGS \ 668 * We filter HPTEFLAGS on set_pte. \ 669 */ \ 670 BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \ 671 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ 672 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \ 673 } while (0) 674 675 #define SWP_TYPE_BITS 5 676 #define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1) 677 #define __swp_type(x) ((x).val & SWP_TYPE_MASK) 678 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) 679 #define __swp_entry(type, offset) ((swp_entry_t) { \ 680 (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) 681 /* 682 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from 683 * swap type and offset we get from swap and convert that to pte to find a 684 * matching pte in linux page table. 685 * Clear bits not found in swap entries here. 686 */ 687 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) 688 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) 689 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd))) 690 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x))) 691 692 #ifdef CONFIG_MEM_SOFT_DIRTY 693 #define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY 694 #else 695 #define _PAGE_SWP_SOFT_DIRTY 0UL 696 #endif /* CONFIG_MEM_SOFT_DIRTY */ 697 698 #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT 699 700 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 701 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 702 { 703 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 704 } 705 706 static inline bool pte_swp_soft_dirty(pte_t pte) 707 { 708 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); 709 } 710 711 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 712 { 713 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY)); 714 } 715 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 716 717 static inline pte_t pte_swp_mkexclusive(pte_t pte) 718 { 719 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); 720 } 721 722 static inline int pte_swp_exclusive(pte_t pte) 723 { 724 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); 725 } 726 727 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 728 { 729 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE)); 730 } 731 732 static inline bool check_pte_access(unsigned long access, unsigned long ptev) 733 { 734 /* 735 * This check for _PAGE_RWX and _PAGE_PRESENT bits 736 */ 737 if (access & ~ptev) 738 return false; 739 /* 740 * This check for access to privilege space 741 */ 742 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) 743 return false; 744 745 return true; 746 } 747 /* 748 * Generic functions with hash/radix callbacks 749 */ 750 751 static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 752 pte_t *ptep, pte_t entry, 753 unsigned long address, 754 int psize) 755 { 756 if (radix_enabled()) 757 return radix__ptep_set_access_flags(vma, ptep, entry, 758 address, psize); 759 return hash__ptep_set_access_flags(ptep, entry); 760 } 761 762 #define __HAVE_ARCH_PTE_SAME 763 static inline int pte_same(pte_t pte_a, pte_t pte_b) 764 { 765 if (radix_enabled()) 766 return radix__pte_same(pte_a, pte_b); 767 return hash__pte_same(pte_a, pte_b); 768 } 769 770 static inline int pte_none(pte_t pte) 771 { 772 if (radix_enabled()) 773 return radix__pte_none(pte); 774 return hash__pte_none(pte); 775 } 776 777 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 778 pte_t *ptep, pte_t pte, int percpu) 779 { 780 781 VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE))); 782 /* 783 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE 784 * in all the callers. 785 */ 786 pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE)); 787 788 if (radix_enabled()) 789 return radix__set_pte_at(mm, addr, ptep, pte, percpu); 790 return hash__set_pte_at(mm, addr, ptep, pte, percpu); 791 } 792 793 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) 794 795 #define pgprot_noncached pgprot_noncached 796 static inline pgprot_t pgprot_noncached(pgprot_t prot) 797 { 798 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 799 _PAGE_NON_IDEMPOTENT); 800 } 801 802 #define pgprot_noncached_wc pgprot_noncached_wc 803 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) 804 { 805 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | 806 _PAGE_TOLERANT); 807 } 808 809 #define pgprot_cached pgprot_cached 810 static inline pgprot_t pgprot_cached(pgprot_t prot) 811 { 812 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); 813 } 814 815 #define pgprot_writecombine pgprot_writecombine 816 static inline pgprot_t pgprot_writecombine(pgprot_t prot) 817 { 818 return pgprot_noncached_wc(prot); 819 } 820 /* 821 * check a pte mapping have cache inhibited property 822 */ 823 static inline bool pte_ci(pte_t pte) 824 { 825 __be64 pte_v = pte_raw(pte); 826 827 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) || 828 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT))) 829 return true; 830 return false; 831 } 832 833 static inline void pmd_clear(pmd_t *pmdp) 834 { 835 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { 836 /* 837 * Don't use this if we can possibly have a hash page table 838 * entry mapping this. 839 */ 840 WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); 841 } 842 *pmdp = __pmd(0); 843 } 844 845 static inline int pmd_none(pmd_t pmd) 846 { 847 return !pmd_raw(pmd); 848 } 849 850 static inline int pmd_present(pmd_t pmd) 851 { 852 /* 853 * A pmd is considerent present if _PAGE_PRESENT is set. 854 * We also need to consider the pmd present which is marked 855 * invalid during a split. Hence we look for _PAGE_INVALID 856 * if we find _PAGE_PRESENT cleared. 857 */ 858 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) 859 return true; 860 861 return false; 862 } 863 864 static inline int pmd_is_serializing(pmd_t pmd) 865 { 866 /* 867 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear 868 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate). 869 * 870 * This condition may also occur when flushing a pmd while flushing 871 * it (see ptep_modify_prot_start), so callers must ensure this 872 * case is fine as well. 873 */ 874 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) == 875 cpu_to_be64(_PAGE_INVALID)) 876 return true; 877 878 return false; 879 } 880 881 static inline int pmd_bad(pmd_t pmd) 882 { 883 if (radix_enabled()) 884 return radix__pmd_bad(pmd); 885 return hash__pmd_bad(pmd); 886 } 887 888 static inline void pud_clear(pud_t *pudp) 889 { 890 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { 891 /* 892 * Don't use this if we can possibly have a hash page table 893 * entry mapping this. 894 */ 895 WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); 896 } 897 *pudp = __pud(0); 898 } 899 900 static inline int pud_none(pud_t pud) 901 { 902 return !pud_raw(pud); 903 } 904 905 static inline int pud_present(pud_t pud) 906 { 907 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT)); 908 } 909 910 extern struct page *pud_page(pud_t pud); 911 extern struct page *pmd_page(pmd_t pmd); 912 static inline pte_t pud_pte(pud_t pud) 913 { 914 return __pte_raw(pud_raw(pud)); 915 } 916 917 static inline pud_t pte_pud(pte_t pte) 918 { 919 return __pud_raw(pte_raw(pte)); 920 } 921 922 static inline pte_t *pudp_ptep(pud_t *pud) 923 { 924 return (pte_t *)pud; 925 } 926 927 #define pud_pfn(pud) pte_pfn(pud_pte(pud)) 928 #define pud_dirty(pud) pte_dirty(pud_pte(pud)) 929 #define pud_young(pud) pte_young(pud_pte(pud)) 930 #define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud))) 931 #define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud))) 932 #define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud))) 933 #define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud))) 934 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 935 #define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud))) 936 #define pud_write(pud) pte_write(pud_pte(pud)) 937 938 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 939 #define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud)) 940 #define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud))) 941 #define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud))) 942 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 943 944 static inline int pud_bad(pud_t pud) 945 { 946 if (radix_enabled()) 947 return radix__pud_bad(pud); 948 return hash__pud_bad(pud); 949 } 950 951 #define pud_access_permitted pud_access_permitted 952 static inline bool pud_access_permitted(pud_t pud, bool write) 953 { 954 return pte_access_permitted(pud_pte(pud), write); 955 } 956 957 #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) }) 958 static inline __be64 p4d_raw(p4d_t x) 959 { 960 return pgd_raw(x.pgd); 961 } 962 963 #define p4d_write(p4d) pte_write(p4d_pte(p4d)) 964 965 static inline void p4d_clear(p4d_t *p4dp) 966 { 967 *p4dp = __p4d(0); 968 } 969 970 static inline int p4d_none(p4d_t p4d) 971 { 972 return !p4d_raw(p4d); 973 } 974 975 static inline int p4d_present(p4d_t p4d) 976 { 977 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT)); 978 } 979 980 static inline pte_t p4d_pte(p4d_t p4d) 981 { 982 return __pte_raw(p4d_raw(p4d)); 983 } 984 985 static inline p4d_t pte_p4d(pte_t pte) 986 { 987 return __p4d_raw(pte_raw(pte)); 988 } 989 990 static inline int p4d_bad(p4d_t p4d) 991 { 992 if (radix_enabled()) 993 return radix__p4d_bad(p4d); 994 return hash__p4d_bad(p4d); 995 } 996 997 #define p4d_access_permitted p4d_access_permitted 998 static inline bool p4d_access_permitted(p4d_t p4d, bool write) 999 { 1000 return pte_access_permitted(p4d_pte(p4d), write); 1001 } 1002 1003 extern struct page *p4d_page(p4d_t p4d); 1004 1005 /* Pointers in the page table tree are physical addresses */ 1006 #define __pgtable_ptr_val(ptr) __pa(ptr) 1007 1008 static inline pud_t *p4d_pgtable(p4d_t p4d) 1009 { 1010 return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS); 1011 } 1012 1013 static inline pmd_t *pud_pgtable(pud_t pud) 1014 { 1015 return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS); 1016 } 1017 1018 #define pmd_ERROR(e) \ 1019 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 1020 #define pud_ERROR(e) \ 1021 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) 1022 #define pgd_ERROR(e) \ 1023 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 1024 1025 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot) 1026 { 1027 if (radix_enabled()) { 1028 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) 1029 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; 1030 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); 1031 #endif 1032 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE); 1033 } 1034 return hash__map_kernel_page(ea, pa, prot); 1035 } 1036 1037 void unmap_kernel_page(unsigned long va); 1038 1039 static inline int __meminit vmemmap_create_mapping(unsigned long start, 1040 unsigned long page_size, 1041 unsigned long phys) 1042 { 1043 if (radix_enabled()) 1044 return radix__vmemmap_create_mapping(start, page_size, phys); 1045 return hash__vmemmap_create_mapping(start, page_size, phys); 1046 } 1047 1048 #ifdef CONFIG_MEMORY_HOTPLUG 1049 static inline void vmemmap_remove_mapping(unsigned long start, 1050 unsigned long page_size) 1051 { 1052 if (radix_enabled()) 1053 return radix__vmemmap_remove_mapping(start, page_size); 1054 return hash__vmemmap_remove_mapping(start, page_size); 1055 } 1056 #endif 1057 1058 static inline pte_t pmd_pte(pmd_t pmd) 1059 { 1060 return __pte_raw(pmd_raw(pmd)); 1061 } 1062 1063 static inline pmd_t pte_pmd(pte_t pte) 1064 { 1065 return __pmd_raw(pte_raw(pte)); 1066 } 1067 1068 static inline pte_t *pmdp_ptep(pmd_t *pmd) 1069 { 1070 return (pte_t *)pmd; 1071 } 1072 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) 1073 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 1074 #define pmd_young(pmd) pte_young(pmd_pte(pmd)) 1075 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 1076 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 1077 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 1078 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 1079 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 1080 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) 1081 1082 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1083 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) 1084 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) 1085 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) 1086 1087 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1088 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd))) 1089 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd)) 1090 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd))) 1091 #endif 1092 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 static inline int pmd_protnone(pmd_t pmd) 1096 { 1097 return pte_protnone(pmd_pte(pmd)); 1098 } 1099 #endif /* CONFIG_NUMA_BALANCING */ 1100 1101 #define pmd_write(pmd) pte_write(pmd_pte(pmd)) 1102 1103 #define pmd_access_permitted pmd_access_permitted 1104 static inline bool pmd_access_permitted(pmd_t pmd, bool write) 1105 { 1106 /* 1107 * pmdp_invalidate sets this combination (which is not caught by 1108 * !pte_present() check in pte_access_permitted), to prevent 1109 * lock-free lookups, as part of the serialize_against_pte_lookup() 1110 * synchronisation. 1111 * 1112 * This also catches the case where the PTE's hardware PRESENT bit is 1113 * cleared while TLB is flushed, which is suboptimal but should not 1114 * be frequent. 1115 */ 1116 if (pmd_is_serializing(pmd)) 1117 return false; 1118 1119 return pte_access_permitted(pmd_pte(pmd), write); 1120 } 1121 1122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1123 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); 1124 extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot); 1125 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); 1126 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); 1127 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1128 pmd_t *pmdp, pmd_t pmd); 1129 extern void set_pud_at(struct mm_struct *mm, unsigned long addr, 1130 pud_t *pudp, pud_t pud); 1131 1132 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 1133 unsigned long addr, pmd_t *pmd) 1134 { 1135 } 1136 1137 static inline void update_mmu_cache_pud(struct vm_area_struct *vma, 1138 unsigned long addr, pud_t *pud) 1139 { 1140 } 1141 1142 extern int hash__has_transparent_hugepage(void); 1143 static inline int has_transparent_hugepage(void) 1144 { 1145 if (radix_enabled()) 1146 return radix__has_transparent_hugepage(); 1147 return hash__has_transparent_hugepage(); 1148 } 1149 #define has_transparent_hugepage has_transparent_hugepage 1150 1151 static inline int has_transparent_pud_hugepage(void) 1152 { 1153 if (radix_enabled()) 1154 return radix__has_transparent_pud_hugepage(); 1155 return 0; 1156 } 1157 #define has_transparent_pud_hugepage has_transparent_pud_hugepage 1158 1159 static inline unsigned long 1160 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, 1161 unsigned long clr, unsigned long set) 1162 { 1163 if (radix_enabled()) 1164 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1165 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); 1166 } 1167 1168 static inline unsigned long 1169 pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp, 1170 unsigned long clr, unsigned long set) 1171 { 1172 if (radix_enabled()) 1173 return radix__pud_hugepage_update(mm, addr, pudp, clr, set); 1174 BUG(); 1175 return pud_val(*pudp); 1176 } 1177 1178 /* 1179 * For radix we should always find H_PAGE_HASHPTE zero. Hence 1180 * the below will work for radix too 1181 */ 1182 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, 1183 unsigned long addr, pmd_t *pmdp) 1184 { 1185 unsigned long old; 1186 1187 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 1188 return 0; 1189 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); 1190 return ((old & _PAGE_ACCESSED) != 0); 1191 } 1192 1193 static inline int __pudp_test_and_clear_young(struct mm_struct *mm, 1194 unsigned long addr, pud_t *pudp) 1195 { 1196 unsigned long old; 1197 1198 if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) 1199 return 0; 1200 old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0); 1201 return ((old & _PAGE_ACCESSED) != 0); 1202 } 1203 1204 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1205 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, 1206 pmd_t *pmdp) 1207 { 1208 if (pmd_write(*pmdp)) 1209 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); 1210 } 1211 1212 #define __HAVE_ARCH_PUDP_SET_WRPROTECT 1213 static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr, 1214 pud_t *pudp) 1215 { 1216 if (pud_write(*pudp)) 1217 pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0); 1218 } 1219 1220 /* 1221 * Only returns true for a THP. False for pmd migration entry. 1222 * We also need to return true when we come across a pte that 1223 * in between a thp split. While splitting THP, we mark the pmd 1224 * invalid (pmdp_invalidate()) before we set it with pte page 1225 * address. A pmd_trans_huge() check against a pmd entry during that time 1226 * should return true. 1227 * We should not call this on a hugetlb entry. We should check for HugeTLB 1228 * entry using vma->vm_flags 1229 * The page table walk rule is explained in Documentation/mm/transhuge.rst 1230 */ 1231 static inline int pmd_trans_huge(pmd_t pmd) 1232 { 1233 if (!pmd_present(pmd)) 1234 return false; 1235 1236 if (radix_enabled()) 1237 return radix__pmd_trans_huge(pmd); 1238 return hash__pmd_trans_huge(pmd); 1239 } 1240 1241 static inline int pud_trans_huge(pud_t pud) 1242 { 1243 if (!pud_present(pud)) 1244 return false; 1245 1246 if (radix_enabled()) 1247 return radix__pud_trans_huge(pud); 1248 return 0; 1249 } 1250 1251 1252 #define __HAVE_ARCH_PMD_SAME 1253 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1254 { 1255 if (radix_enabled()) 1256 return radix__pmd_same(pmd_a, pmd_b); 1257 return hash__pmd_same(pmd_a, pmd_b); 1258 } 1259 1260 #define pud_same pud_same 1261 static inline int pud_same(pud_t pud_a, pud_t pud_b) 1262 { 1263 if (radix_enabled()) 1264 return radix__pud_same(pud_a, pud_b); 1265 return hash__pud_same(pud_a, pud_b); 1266 } 1267 1268 1269 static inline pmd_t __pmd_mkhuge(pmd_t pmd) 1270 { 1271 if (radix_enabled()) 1272 return radix__pmd_mkhuge(pmd); 1273 return hash__pmd_mkhuge(pmd); 1274 } 1275 1276 static inline pud_t __pud_mkhuge(pud_t pud) 1277 { 1278 if (radix_enabled()) 1279 return radix__pud_mkhuge(pud); 1280 BUG(); 1281 return pud; 1282 } 1283 1284 /* 1285 * pfn_pmd return a pmd_t that can be used as pmd pte entry. 1286 */ 1287 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1288 { 1289 #ifdef CONFIG_DEBUG_VM 1290 if (radix_enabled()) 1291 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0); 1292 else 1293 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) != 1294 cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)); 1295 #endif 1296 return pmd; 1297 } 1298 1299 static inline pud_t pud_mkhuge(pud_t pud) 1300 { 1301 #ifdef CONFIG_DEBUG_VM 1302 if (radix_enabled()) 1303 WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0); 1304 else 1305 WARN_ON(1); 1306 #endif 1307 return pud; 1308 } 1309 1310 1311 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1312 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 1313 unsigned long address, pmd_t *pmdp, 1314 pmd_t entry, int dirty); 1315 #define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS 1316 extern int pudp_set_access_flags(struct vm_area_struct *vma, 1317 unsigned long address, pud_t *pudp, 1318 pud_t entry, int dirty); 1319 1320 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1321 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1322 unsigned long address, pmd_t *pmdp); 1323 #define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG 1324 extern int pudp_test_and_clear_young(struct vm_area_struct *vma, 1325 unsigned long address, pud_t *pudp); 1326 1327 1328 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1329 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1330 unsigned long addr, pmd_t *pmdp) 1331 { 1332 if (radix_enabled()) 1333 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); 1334 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); 1335 } 1336 1337 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 1338 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 1339 unsigned long addr, pud_t *pudp) 1340 { 1341 if (radix_enabled()) 1342 return radix__pudp_huge_get_and_clear(mm, addr, pudp); 1343 BUG(); 1344 return *pudp; 1345 } 1346 1347 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1348 unsigned long address, pmd_t *pmdp) 1349 { 1350 if (radix_enabled()) 1351 return radix__pmdp_collapse_flush(vma, address, pmdp); 1352 return hash__pmdp_collapse_flush(vma, address, pmdp); 1353 } 1354 #define pmdp_collapse_flush pmdp_collapse_flush 1355 1356 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1357 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1358 unsigned long addr, 1359 pmd_t *pmdp, int full); 1360 1361 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 1362 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 1363 unsigned long addr, 1364 pud_t *pudp, int full); 1365 1366 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1367 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, 1368 pmd_t *pmdp, pgtable_t pgtable) 1369 { 1370 if (radix_enabled()) 1371 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1372 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); 1373 } 1374 1375 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1376 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, 1377 pmd_t *pmdp) 1378 { 1379 if (radix_enabled()) 1380 return radix__pgtable_trans_huge_withdraw(mm, pmdp); 1381 return hash__pgtable_trans_huge_withdraw(mm, pmdp); 1382 } 1383 1384 #define __HAVE_ARCH_PMDP_INVALIDATE 1385 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 1386 pmd_t *pmdp); 1387 1388 #define pmd_move_must_withdraw pmd_move_must_withdraw 1389 struct spinlock; 1390 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, 1391 struct spinlock *old_pmd_ptl, 1392 struct vm_area_struct *vma); 1393 /* 1394 * Hash translation mode use the deposited table to store hash pte 1395 * slot information. 1396 */ 1397 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit 1398 static inline bool arch_needs_pgtable_deposit(void) 1399 { 1400 if (radix_enabled()) 1401 return false; 1402 return true; 1403 } 1404 extern void serialize_against_pte_lookup(struct mm_struct *mm); 1405 1406 1407 static inline pmd_t pmd_mkdevmap(pmd_t pmd) 1408 { 1409 if (radix_enabled()) 1410 return radix__pmd_mkdevmap(pmd); 1411 return hash__pmd_mkdevmap(pmd); 1412 } 1413 1414 static inline pud_t pud_mkdevmap(pud_t pud) 1415 { 1416 if (radix_enabled()) 1417 return radix__pud_mkdevmap(pud); 1418 BUG(); 1419 return pud; 1420 } 1421 1422 static inline int pmd_devmap(pmd_t pmd) 1423 { 1424 return pte_devmap(pmd_pte(pmd)); 1425 } 1426 1427 static inline int pud_devmap(pud_t pud) 1428 { 1429 return pte_devmap(pud_pte(pud)); 1430 } 1431 1432 static inline int pgd_devmap(pgd_t pgd) 1433 { 1434 return 0; 1435 } 1436 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1437 1438 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1439 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1440 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1441 pte_t *, pte_t, pte_t); 1442 1443 /* 1444 * Returns true for a R -> RW upgrade of pte 1445 */ 1446 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val) 1447 { 1448 if (!(old_val & _PAGE_READ)) 1449 return false; 1450 1451 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE)) 1452 return true; 1453 1454 return false; 1455 } 1456 1457 #endif /* __ASSEMBLY__ */ 1458 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */ 1459