xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision d8a2fe29d3c97038c8efcc328d5e7940c5310565)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/5level-fixup.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 #define _PAGE_SAO		0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY		0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28 /*
29  * Software bits
30  */
31 #define _RPAGE_SW0		0x2000000000000000UL
32 #define _RPAGE_SW1		0x00800
33 #define _RPAGE_SW2		0x00400
34 #define _RPAGE_SW3		0x00200
35 #define _RPAGE_RSV1		0x1000000000000000UL
36 #define _RPAGE_RSV2		0x0800000000000000UL
37 #define _RPAGE_RSV3		0x0400000000000000UL
38 #define _RPAGE_RSV4		0x0200000000000000UL
39 #define _RPAGE_RSV5		0x00040UL
40 
41 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
43 /*
44  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46  * differentiate between two use a SW field when invalidating.
47  *
48  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49  *
50  * This is used only when _PAGE_PRESENT is cleared.
51  */
52 #define _PAGE_INVALID		_RPAGE_SW0
53 
54 /*
55  * Top and bottom bits of RPN which can be used by hash
56  * translation mode, because we expect them to be zero
57  * otherwise.
58  */
59 #define _RPAGE_RPN0		0x01000
60 #define _RPAGE_RPN1		0x02000
61 #define _RPAGE_RPN44		0x0100000000000000UL
62 #define _RPAGE_RPN43		0x0080000000000000UL
63 #define _RPAGE_RPN42		0x0040000000000000UL
64 #define _RPAGE_RPN41		0x0020000000000000UL
65 
66 /* Max physical address bit as per radix table */
67 #define _RPAGE_PA_MAX		57
68 
69 /*
70  * Max physical address bit we will use for now.
71  *
72  * This is mostly a hardware limitation and for now Power9 has
73  * a 51 bit limit.
74  *
75  * This is different from the number of physical bit required to address
76  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
77  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
78  * number of sections we can support (SECTIONS_SHIFT).
79  *
80  * This is different from Radix page table limitation above and
81  * should always be less than that. The limit is done such that
82  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
83  * for hash linux page table specific bits.
84  *
85  * In order to be compatible with future hardware generations we keep
86  * some offsets and limit this for now to 53
87  */
88 #define _PAGE_PA_MAX		53
89 
90 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
91 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
92 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
93 #define __HAVE_ARCH_PTE_DEVMAP
94 
95 /*
96  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97  * Instead of fixing all of them, add an alternate define which
98  * maps CI pte mapping.
99  */
100 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
101 /*
102  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104  * and every thing below PAGE_SHIFT;
105  */
106 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107 /*
108  * set of bits not changed in pmd_modify. Even though we have hash specific bits
109  * in here, on radix we expect them to be zero.
110  */
111 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
112 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
113 			 _PAGE_SOFT_DIRTY)
114 /*
115  * user access blocked by key
116  */
117 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
118 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
119 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
120 				 _PAGE_RW | _PAGE_EXEC)
121 /*
122  * _PAGE_CHG_MASK masks of bits that are to be preserved across
123  * pgprot changes
124  */
125 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
126 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
127 			 _PAGE_SOFT_DIRTY)
128 
129 #define H_PTE_PKEY  (H_PTE_PKEY_BIT0 | H_PTE_PKEY_BIT1 | H_PTE_PKEY_BIT2 | \
130 		     H_PTE_PKEY_BIT3 | H_PTE_PKEY_BIT4)
131 /*
132  * We define 2 sets of base prot bits, one for basic pages (ie,
133  * cacheable kernel and user pages) and one for non cacheable
134  * pages. We always set _PAGE_COHERENT when SMP is enabled or
135  * the processor might need it for DMA coherency.
136  */
137 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
138 #define _PAGE_BASE	(_PAGE_BASE_NC)
139 
140 /* Permission masks used to generate the __P and __S table,
141  *
142  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
143  *
144  * Write permissions imply read permissions for now (we could make write-only
145  * pages on BookE but we don't bother for now). Execute permission control is
146  * possible on platforms that define _PAGE_EXEC
147  */
148 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
149 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
150 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
151 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155 
156 /* Permission masks used for kernel mappings */
157 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
159 				 _PAGE_TOLERANT)
160 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
161 				 _PAGE_NON_IDEMPOTENT)
162 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
163 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
164 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
165 
166 /*
167  * Protection used for kernel text. We want the debuggers to be able to
168  * set breakpoints anywhere, so don't write protect the kernel text
169  * on platforms where such control is possible.
170  */
171 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
172 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
173 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
174 #else
175 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
176 #endif
177 
178 /* Make modules code happy. We don't set RO yet */
179 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
180 #define PAGE_AGP		(PAGE_KERNEL_NC)
181 
182 #ifndef __ASSEMBLY__
183 /*
184  * page table defines
185  */
186 extern unsigned long __pte_index_size;
187 extern unsigned long __pmd_index_size;
188 extern unsigned long __pud_index_size;
189 extern unsigned long __pgd_index_size;
190 extern unsigned long __pud_cache_index;
191 #define PTE_INDEX_SIZE  __pte_index_size
192 #define PMD_INDEX_SIZE  __pmd_index_size
193 #define PUD_INDEX_SIZE  __pud_index_size
194 #define PGD_INDEX_SIZE  __pgd_index_size
195 /* pmd table use page table fragments */
196 #define PMD_CACHE_INDEX  0
197 #define PUD_CACHE_INDEX __pud_cache_index
198 /*
199  * Because of use of pte fragments and THP, size of page table
200  * are not always derived out of index size above.
201  */
202 extern unsigned long __pte_table_size;
203 extern unsigned long __pmd_table_size;
204 extern unsigned long __pud_table_size;
205 extern unsigned long __pgd_table_size;
206 #define PTE_TABLE_SIZE	__pte_table_size
207 #define PMD_TABLE_SIZE	__pmd_table_size
208 #define PUD_TABLE_SIZE	__pud_table_size
209 #define PGD_TABLE_SIZE	__pgd_table_size
210 
211 extern unsigned long __pmd_val_bits;
212 extern unsigned long __pud_val_bits;
213 extern unsigned long __pgd_val_bits;
214 #define PMD_VAL_BITS	__pmd_val_bits
215 #define PUD_VAL_BITS	__pud_val_bits
216 #define PGD_VAL_BITS	__pgd_val_bits
217 
218 extern unsigned long __pte_frag_nr;
219 #define PTE_FRAG_NR __pte_frag_nr
220 extern unsigned long __pte_frag_size_shift;
221 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
222 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
223 
224 extern unsigned long __pmd_frag_nr;
225 #define PMD_FRAG_NR __pmd_frag_nr
226 extern unsigned long __pmd_frag_size_shift;
227 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
228 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
229 
230 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
231 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
232 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
233 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
234 
235 /* PMD_SHIFT determines what a second-level page table entry can map */
236 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
237 #define PMD_SIZE	(1UL << PMD_SHIFT)
238 #define PMD_MASK	(~(PMD_SIZE-1))
239 
240 /* PUD_SHIFT determines what a third-level page table entry can map */
241 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
242 #define PUD_SIZE	(1UL << PUD_SHIFT)
243 #define PUD_MASK	(~(PUD_SIZE-1))
244 
245 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
246 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
247 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
248 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
249 
250 /* Bits to mask out from a PMD to get to the PTE page */
251 #define PMD_MASKED_BITS		0xc0000000000000ffUL
252 /* Bits to mask out from a PUD to get to the PMD page */
253 #define PUD_MASKED_BITS		0xc0000000000000ffUL
254 /* Bits to mask out from a PGD to get to the PUD page */
255 #define PGD_MASKED_BITS		0xc0000000000000ffUL
256 
257 /*
258  * Used as an indicator for rcu callback functions
259  */
260 enum pgtable_index {
261 	PTE_INDEX = 0,
262 	PMD_INDEX,
263 	PUD_INDEX,
264 	PGD_INDEX,
265 	/*
266 	 * Below are used with 4k page size and hugetlb
267 	 */
268 	HTLB_16M_INDEX,
269 	HTLB_16G_INDEX,
270 };
271 
272 extern unsigned long __vmalloc_start;
273 extern unsigned long __vmalloc_end;
274 #define VMALLOC_START	__vmalloc_start
275 #define VMALLOC_END	__vmalloc_end
276 
277 extern unsigned long __kernel_virt_start;
278 extern unsigned long __kernel_virt_size;
279 extern unsigned long __kernel_io_start;
280 #define KERN_VIRT_START __kernel_virt_start
281 #define KERN_VIRT_SIZE  __kernel_virt_size
282 #define KERN_IO_START  __kernel_io_start
283 extern struct page *vmemmap;
284 extern unsigned long ioremap_bot;
285 extern unsigned long pci_io_base;
286 #endif /* __ASSEMBLY__ */
287 
288 #include <asm/book3s/64/hash.h>
289 #include <asm/book3s/64/radix.h>
290 
291 #ifdef CONFIG_PPC_64K_PAGES
292 #include <asm/book3s/64/pgtable-64k.h>
293 #else
294 #include <asm/book3s/64/pgtable-4k.h>
295 #endif
296 
297 #include <asm/barrier.h>
298 /*
299  * The second half of the kernel virtual space is used for IO mappings,
300  * it's itself carved into the PIO region (ISA and PHB IO space) and
301  * the ioremap space
302  *
303  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
304  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
305  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
306  */
307 #define FULL_IO_SIZE	0x80000000ul
308 #define  ISA_IO_BASE	(KERN_IO_START)
309 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
310 #define  PHB_IO_BASE	(ISA_IO_END)
311 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
312 #define IOREMAP_BASE	(PHB_IO_END)
313 #define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
314 
315 /* Advertise special mapping type for AGP */
316 #define HAVE_PAGE_AGP
317 
318 #ifndef __ASSEMBLY__
319 
320 /*
321  * This is the default implementation of various PTE accessors, it's
322  * used in all cases except Book3S with 64K pages where we have a
323  * concept of sub-pages
324  */
325 #ifndef __real_pte
326 
327 #define __real_pte(e, p, o)		((real_pte_t){(e)})
328 #define __rpte_to_pte(r)	((r).pte)
329 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
330 
331 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
332 	do {							         \
333 		index = 0;					         \
334 		shift = mmu_psize_defs[psize].shift;		         \
335 
336 #define pte_iterate_hashed_end() } while(0)
337 
338 /*
339  * We expect this to be called only for user addresses or kernel virtual
340  * addresses other than the linear mapping.
341  */
342 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
343 
344 #endif /* __real_pte */
345 
346 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
347 				       pte_t *ptep, unsigned long clr,
348 				       unsigned long set, int huge)
349 {
350 	if (radix_enabled())
351 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
352 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
353 }
354 /*
355  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
356  * We currently remove entries from the hashtable regardless of whether
357  * the entry was young or dirty.
358  *
359  * We should be more intelligent about this but for the moment we override
360  * these functions and force a tlb flush unconditionally
361  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
362  * function for both hash and radix.
363  */
364 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
365 					      unsigned long addr, pte_t *ptep)
366 {
367 	unsigned long old;
368 
369 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
370 		return 0;
371 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
372 	return (old & _PAGE_ACCESSED) != 0;
373 }
374 
375 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
376 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
377 ({								\
378 	int __r;						\
379 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
380 	__r;							\
381 })
382 
383 static inline int __pte_write(pte_t pte)
384 {
385 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
386 }
387 
388 #ifdef CONFIG_NUMA_BALANCING
389 #define pte_savedwrite pte_savedwrite
390 static inline bool pte_savedwrite(pte_t pte)
391 {
392 	/*
393 	 * Saved write ptes are prot none ptes that doesn't have
394 	 * privileged bit sit. We mark prot none as one which has
395 	 * present and pviliged bit set and RWX cleared. To mark
396 	 * protnone which used to have _PAGE_WRITE set we clear
397 	 * the privileged bit.
398 	 */
399 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
400 }
401 #else
402 #define pte_savedwrite pte_savedwrite
403 static inline bool pte_savedwrite(pte_t pte)
404 {
405 	return false;
406 }
407 #endif
408 
409 static inline int pte_write(pte_t pte)
410 {
411 	return __pte_write(pte) || pte_savedwrite(pte);
412 }
413 
414 static inline int pte_read(pte_t pte)
415 {
416 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
417 }
418 
419 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
420 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
421 				      pte_t *ptep)
422 {
423 	if (__pte_write(*ptep))
424 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
425 	else if (unlikely(pte_savedwrite(*ptep)))
426 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
427 }
428 
429 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
430 					   unsigned long addr, pte_t *ptep)
431 {
432 	/*
433 	 * We should not find protnone for hugetlb, but this complete the
434 	 * interface.
435 	 */
436 	if (__pte_write(*ptep))
437 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
438 	else if (unlikely(pte_savedwrite(*ptep)))
439 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
440 }
441 
442 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
443 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
444 				       unsigned long addr, pte_t *ptep)
445 {
446 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
447 	return __pte(old);
448 }
449 
450 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
451 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
452 					    unsigned long addr,
453 					    pte_t *ptep, int full)
454 {
455 	if (full && radix_enabled()) {
456 		/*
457 		 * We know that this is a full mm pte clear and
458 		 * hence can be sure there is no parallel set_pte.
459 		 */
460 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
461 	}
462 	return ptep_get_and_clear(mm, addr, ptep);
463 }
464 
465 
466 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
467 			     pte_t * ptep)
468 {
469 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
470 }
471 
472 static inline int pte_dirty(pte_t pte)
473 {
474 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
475 }
476 
477 static inline int pte_young(pte_t pte)
478 {
479 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
480 }
481 
482 static inline int pte_special(pte_t pte)
483 {
484 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
485 }
486 
487 static inline bool pte_exec(pte_t pte)
488 {
489 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
490 }
491 
492 
493 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
494 static inline bool pte_soft_dirty(pte_t pte)
495 {
496 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
497 }
498 
499 static inline pte_t pte_mksoft_dirty(pte_t pte)
500 {
501 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
502 }
503 
504 static inline pte_t pte_clear_soft_dirty(pte_t pte)
505 {
506 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
507 }
508 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
509 
510 #ifdef CONFIG_NUMA_BALANCING
511 static inline int pte_protnone(pte_t pte)
512 {
513 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
514 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
515 }
516 
517 #define pte_mk_savedwrite pte_mk_savedwrite
518 static inline pte_t pte_mk_savedwrite(pte_t pte)
519 {
520 	/*
521 	 * Used by Autonuma subsystem to preserve the write bit
522 	 * while marking the pte PROT_NONE. Only allow this
523 	 * on PROT_NONE pte
524 	 */
525 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
526 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
527 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
528 }
529 
530 #define pte_clear_savedwrite pte_clear_savedwrite
531 static inline pte_t pte_clear_savedwrite(pte_t pte)
532 {
533 	/*
534 	 * Used by KSM subsystem to make a protnone pte readonly.
535 	 */
536 	VM_BUG_ON(!pte_protnone(pte));
537 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
538 }
539 #else
540 #define pte_clear_savedwrite pte_clear_savedwrite
541 static inline pte_t pte_clear_savedwrite(pte_t pte)
542 {
543 	VM_WARN_ON(1);
544 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
545 }
546 #endif /* CONFIG_NUMA_BALANCING */
547 
548 static inline int pte_present(pte_t pte)
549 {
550 	/*
551 	 * A pte is considerent present if _PAGE_PRESENT is set.
552 	 * We also need to consider the pte present which is marked
553 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
554 	 * if we find _PAGE_PRESENT cleared.
555 	 */
556 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID));
557 }
558 
559 static inline bool pte_hw_valid(pte_t pte)
560 {
561 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
562 }
563 
564 #ifdef CONFIG_PPC_MEM_KEYS
565 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
566 #else
567 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
568 {
569 	return true;
570 }
571 #endif /* CONFIG_PPC_MEM_KEYS */
572 
573 static inline bool pte_user(pte_t pte)
574 {
575 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
576 }
577 
578 #define pte_access_permitted pte_access_permitted
579 static inline bool pte_access_permitted(pte_t pte, bool write)
580 {
581 	/*
582 	 * _PAGE_READ is needed for any access and will be
583 	 * cleared for PROT_NONE
584 	 */
585 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
586 		return false;
587 
588 	if (write && !pte_write(pte))
589 		return false;
590 
591 	return arch_pte_access_permitted(pte_val(pte), write, 0);
592 }
593 
594 /*
595  * Conversion functions: convert a page and protection to a page entry,
596  * and a page entry and page directory to the page they refer to.
597  *
598  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
599  * long for now.
600  */
601 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
602 {
603 	return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
604 		     pgprot_val(pgprot));
605 }
606 
607 static inline unsigned long pte_pfn(pte_t pte)
608 {
609 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
610 }
611 
612 /* Generic modifiers for PTE bits */
613 static inline pte_t pte_wrprotect(pte_t pte)
614 {
615 	if (unlikely(pte_savedwrite(pte)))
616 		return pte_clear_savedwrite(pte);
617 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
618 }
619 
620 static inline pte_t pte_exprotect(pte_t pte)
621 {
622 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
623 }
624 
625 static inline pte_t pte_mkclean(pte_t pte)
626 {
627 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
628 }
629 
630 static inline pte_t pte_mkold(pte_t pte)
631 {
632 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
633 }
634 
635 static inline pte_t pte_mkexec(pte_t pte)
636 {
637 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
638 }
639 
640 static inline pte_t pte_mkpte(pte_t pte)
641 {
642 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
643 }
644 
645 static inline pte_t pte_mkwrite(pte_t pte)
646 {
647 	/*
648 	 * write implies read, hence set both
649 	 */
650 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
651 }
652 
653 static inline pte_t pte_mkdirty(pte_t pte)
654 {
655 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
656 }
657 
658 static inline pte_t pte_mkyoung(pte_t pte)
659 {
660 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
661 }
662 
663 static inline pte_t pte_mkspecial(pte_t pte)
664 {
665 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
666 }
667 
668 static inline pte_t pte_mkhuge(pte_t pte)
669 {
670 	return pte;
671 }
672 
673 static inline pte_t pte_mkdevmap(pte_t pte)
674 {
675 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
676 }
677 
678 static inline pte_t pte_mkprivileged(pte_t pte)
679 {
680 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
681 }
682 
683 static inline pte_t pte_mkuser(pte_t pte)
684 {
685 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
686 }
687 
688 /*
689  * This is potentially called with a pmd as the argument, in which case it's not
690  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
691  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
692  * use in page directory entries (ie. non-ptes).
693  */
694 static inline int pte_devmap(pte_t pte)
695 {
696 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
697 
698 	return (pte_raw(pte) & mask) == mask;
699 }
700 
701 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
702 {
703 	/* FIXME!! check whether this need to be a conditional */
704 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
705 			 cpu_to_be64(pgprot_val(newprot)));
706 }
707 
708 /* Encode and de-code a swap entry */
709 #define MAX_SWAPFILES_CHECK() do { \
710 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
711 	/*							\
712 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
713 	 * We filter HPTEFLAGS on set_pte.			\
714 	 */							\
715 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
716 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
717 	} while (0)
718 /*
719  * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
720  */
721 #define SWP_TYPE_BITS 5
722 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
723 				& ((1UL << SWP_TYPE_BITS) - 1))
724 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
725 #define __swp_entry(type, offset)	((swp_entry_t) { \
726 				((type) << _PAGE_BIT_SWAP_TYPE) \
727 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
728 /*
729  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
730  * swap type and offset we get from swap and convert that to pte to find a
731  * matching pte in linux page table.
732  * Clear bits not found in swap entries here.
733  */
734 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
735 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
736 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
737 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
738 
739 #ifdef CONFIG_MEM_SOFT_DIRTY
740 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
741 #else
742 #define _PAGE_SWP_SOFT_DIRTY	0UL
743 #endif /* CONFIG_MEM_SOFT_DIRTY */
744 
745 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
746 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
747 {
748 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
749 }
750 
751 static inline bool pte_swp_soft_dirty(pte_t pte)
752 {
753 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
754 }
755 
756 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
757 {
758 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
759 }
760 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
761 
762 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
763 {
764 	/*
765 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
766 	 */
767 	if (access & ~ptev)
768 		return false;
769 	/*
770 	 * This check for access to privilege space
771 	 */
772 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
773 		return false;
774 
775 	return true;
776 }
777 /*
778  * Generic functions with hash/radix callbacks
779  */
780 
781 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
782 					   pte_t *ptep, pte_t entry,
783 					   unsigned long address,
784 					   int psize)
785 {
786 	if (radix_enabled())
787 		return radix__ptep_set_access_flags(vma, ptep, entry,
788 						    address, psize);
789 	return hash__ptep_set_access_flags(ptep, entry);
790 }
791 
792 #define __HAVE_ARCH_PTE_SAME
793 static inline int pte_same(pte_t pte_a, pte_t pte_b)
794 {
795 	if (radix_enabled())
796 		return radix__pte_same(pte_a, pte_b);
797 	return hash__pte_same(pte_a, pte_b);
798 }
799 
800 static inline int pte_none(pte_t pte)
801 {
802 	if (radix_enabled())
803 		return radix__pte_none(pte);
804 	return hash__pte_none(pte);
805 }
806 
807 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
808 				pte_t *ptep, pte_t pte, int percpu)
809 {
810 	if (radix_enabled())
811 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
812 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
813 }
814 
815 #define _PAGE_CACHE_CTL	(_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
816 
817 #define pgprot_noncached pgprot_noncached
818 static inline pgprot_t pgprot_noncached(pgprot_t prot)
819 {
820 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
821 			_PAGE_NON_IDEMPOTENT);
822 }
823 
824 #define pgprot_noncached_wc pgprot_noncached_wc
825 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
826 {
827 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
828 			_PAGE_TOLERANT);
829 }
830 
831 #define pgprot_cached pgprot_cached
832 static inline pgprot_t pgprot_cached(pgprot_t prot)
833 {
834 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
835 }
836 
837 #define pgprot_writecombine pgprot_writecombine
838 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
839 {
840 	return pgprot_noncached_wc(prot);
841 }
842 /*
843  * check a pte mapping have cache inhibited property
844  */
845 static inline bool pte_ci(pte_t pte)
846 {
847 	__be64 pte_v = pte_raw(pte);
848 
849 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
850 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
851 		return true;
852 	return false;
853 }
854 
855 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
856 {
857 	*pmdp = __pmd(val);
858 }
859 
860 static inline void pmd_clear(pmd_t *pmdp)
861 {
862 	*pmdp = __pmd(0);
863 }
864 
865 static inline int pmd_none(pmd_t pmd)
866 {
867 	return !pmd_raw(pmd);
868 }
869 
870 static inline int pmd_present(pmd_t pmd)
871 {
872 	/*
873 	 * A pmd is considerent present if _PAGE_PRESENT is set.
874 	 * We also need to consider the pmd present which is marked
875 	 * invalid during a split. Hence we look for _PAGE_INVALID
876 	 * if we find _PAGE_PRESENT cleared.
877 	 */
878 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
879 		return true;
880 
881 	return false;
882 }
883 
884 static inline int pmd_bad(pmd_t pmd)
885 {
886 	if (radix_enabled())
887 		return radix__pmd_bad(pmd);
888 	return hash__pmd_bad(pmd);
889 }
890 
891 static inline void pud_set(pud_t *pudp, unsigned long val)
892 {
893 	*pudp = __pud(val);
894 }
895 
896 static inline void pud_clear(pud_t *pudp)
897 {
898 	*pudp = __pud(0);
899 }
900 
901 static inline int pud_none(pud_t pud)
902 {
903 	return !pud_raw(pud);
904 }
905 
906 static inline int pud_present(pud_t pud)
907 {
908 	return (pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
909 }
910 
911 extern struct page *pud_page(pud_t pud);
912 extern struct page *pmd_page(pmd_t pmd);
913 static inline pte_t pud_pte(pud_t pud)
914 {
915 	return __pte_raw(pud_raw(pud));
916 }
917 
918 static inline pud_t pte_pud(pte_t pte)
919 {
920 	return __pud_raw(pte_raw(pte));
921 }
922 #define pud_write(pud)		pte_write(pud_pte(pud))
923 
924 static inline int pud_bad(pud_t pud)
925 {
926 	if (radix_enabled())
927 		return radix__pud_bad(pud);
928 	return hash__pud_bad(pud);
929 }
930 
931 #define pud_access_permitted pud_access_permitted
932 static inline bool pud_access_permitted(pud_t pud, bool write)
933 {
934 	return pte_access_permitted(pud_pte(pud), write);
935 }
936 
937 #define pgd_write(pgd)		pte_write(pgd_pte(pgd))
938 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
939 {
940 	*pgdp = __pgd(val);
941 }
942 
943 static inline void pgd_clear(pgd_t *pgdp)
944 {
945 	*pgdp = __pgd(0);
946 }
947 
948 static inline int pgd_none(pgd_t pgd)
949 {
950 	return !pgd_raw(pgd);
951 }
952 
953 static inline int pgd_present(pgd_t pgd)
954 {
955 	return (pgd_raw(pgd) & cpu_to_be64(_PAGE_PRESENT));
956 }
957 
958 static inline pte_t pgd_pte(pgd_t pgd)
959 {
960 	return __pte_raw(pgd_raw(pgd));
961 }
962 
963 static inline pgd_t pte_pgd(pte_t pte)
964 {
965 	return __pgd_raw(pte_raw(pte));
966 }
967 
968 static inline int pgd_bad(pgd_t pgd)
969 {
970 	if (radix_enabled())
971 		return radix__pgd_bad(pgd);
972 	return hash__pgd_bad(pgd);
973 }
974 
975 #define pgd_access_permitted pgd_access_permitted
976 static inline bool pgd_access_permitted(pgd_t pgd, bool write)
977 {
978 	return pte_access_permitted(pgd_pte(pgd), write);
979 }
980 
981 extern struct page *pgd_page(pgd_t pgd);
982 
983 /* Pointers in the page table tree are physical addresses */
984 #define __pgtable_ptr_val(ptr)	__pa(ptr)
985 
986 #define pmd_page_vaddr(pmd)	__va(pmd_val(pmd) & ~PMD_MASKED_BITS)
987 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
988 #define pgd_page_vaddr(pgd)	__va(pgd_val(pgd) & ~PGD_MASKED_BITS)
989 
990 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
991 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
992 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
993 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
994 
995 /*
996  * Find an entry in a page-table-directory.  We combine the address region
997  * (the high order N bits) and the pgd portion of the address.
998  */
999 
1000 #define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
1001 
1002 #define pud_offset(pgdp, addr)	\
1003 	(((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
1004 #define pmd_offset(pudp,addr) \
1005 	(((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
1006 #define pte_offset_kernel(dir,addr) \
1007 	(((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
1008 
1009 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
1010 #define pte_unmap(pte)			do { } while(0)
1011 
1012 /* to find an entry in a kernel page-table-directory */
1013 /* This now only contains the vmalloc pages */
1014 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1015 
1016 #define pte_ERROR(e) \
1017 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1018 #define pmd_ERROR(e) \
1019 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1020 #define pud_ERROR(e) \
1021 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1022 #define pgd_ERROR(e) \
1023 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1024 
1025 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1026 {
1027 	if (radix_enabled()) {
1028 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1029 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1030 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1031 #endif
1032 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1033 	}
1034 	return hash__map_kernel_page(ea, pa, prot);
1035 }
1036 
1037 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1038 						   unsigned long page_size,
1039 						   unsigned long phys)
1040 {
1041 	if (radix_enabled())
1042 		return radix__vmemmap_create_mapping(start, page_size, phys);
1043 	return hash__vmemmap_create_mapping(start, page_size, phys);
1044 }
1045 
1046 #ifdef CONFIG_MEMORY_HOTPLUG
1047 static inline void vmemmap_remove_mapping(unsigned long start,
1048 					  unsigned long page_size)
1049 {
1050 	if (radix_enabled())
1051 		return radix__vmemmap_remove_mapping(start, page_size);
1052 	return hash__vmemmap_remove_mapping(start, page_size);
1053 }
1054 #endif
1055 struct page *realmode_pfn_to_page(unsigned long pfn);
1056 
1057 static inline pte_t pmd_pte(pmd_t pmd)
1058 {
1059 	return __pte_raw(pmd_raw(pmd));
1060 }
1061 
1062 static inline pmd_t pte_pmd(pte_t pte)
1063 {
1064 	return __pmd_raw(pte_raw(pte));
1065 }
1066 
1067 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1068 {
1069 	return (pte_t *)pmd;
1070 }
1071 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1072 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1073 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1074 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1075 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1076 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1077 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1078 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1079 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1080 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1081 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1082 
1083 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1084 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1085 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1086 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1087 
1088 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1089 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1090 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1091 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1092 #endif
1093 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1094 
1095 #ifdef CONFIG_NUMA_BALANCING
1096 static inline int pmd_protnone(pmd_t pmd)
1097 {
1098 	return pte_protnone(pmd_pte(pmd));
1099 }
1100 #endif /* CONFIG_NUMA_BALANCING */
1101 
1102 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1103 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1104 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1105 
1106 #define pmd_access_permitted pmd_access_permitted
1107 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1108 {
1109 	return pte_access_permitted(pmd_pte(pmd), write);
1110 }
1111 
1112 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1113 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1114 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1115 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1116 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1117 		       pmd_t *pmdp, pmd_t pmd);
1118 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
1119 				 pmd_t *pmd);
1120 extern int hash__has_transparent_hugepage(void);
1121 static inline int has_transparent_hugepage(void)
1122 {
1123 	if (radix_enabled())
1124 		return radix__has_transparent_hugepage();
1125 	return hash__has_transparent_hugepage();
1126 }
1127 #define has_transparent_hugepage has_transparent_hugepage
1128 
1129 static inline unsigned long
1130 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1131 		    unsigned long clr, unsigned long set)
1132 {
1133 	if (radix_enabled())
1134 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1135 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1136 }
1137 
1138 /*
1139  * returns true for pmd migration entries, THP, devmap, hugetlb
1140  * But compile time dependent on THP config
1141  */
1142 static inline int pmd_large(pmd_t pmd)
1143 {
1144 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1145 }
1146 
1147 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1148 {
1149 	return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1150 }
1151 /*
1152  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1153  * the below will work for radix too
1154  */
1155 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1156 					      unsigned long addr, pmd_t *pmdp)
1157 {
1158 	unsigned long old;
1159 
1160 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1161 		return 0;
1162 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1163 	return ((old & _PAGE_ACCESSED) != 0);
1164 }
1165 
1166 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1167 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1168 				      pmd_t *pmdp)
1169 {
1170 	if (__pmd_write((*pmdp)))
1171 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1172 	else if (unlikely(pmd_savedwrite(*pmdp)))
1173 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1174 }
1175 
1176 /*
1177  * Only returns true for a THP. False for pmd migration entry.
1178  * We also need to return true when we come across a pte that
1179  * in between a thp split. While splitting THP, we mark the pmd
1180  * invalid (pmdp_invalidate()) before we set it with pte page
1181  * address. A pmd_trans_huge() check against a pmd entry during that time
1182  * should return true.
1183  * We should not call this on a hugetlb entry. We should check for HugeTLB
1184  * entry using vma->vm_flags
1185  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1186  */
1187 static inline int pmd_trans_huge(pmd_t pmd)
1188 {
1189 	if (!pmd_present(pmd))
1190 		return false;
1191 
1192 	if (radix_enabled())
1193 		return radix__pmd_trans_huge(pmd);
1194 	return hash__pmd_trans_huge(pmd);
1195 }
1196 
1197 #define __HAVE_ARCH_PMD_SAME
1198 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1199 {
1200 	if (radix_enabled())
1201 		return radix__pmd_same(pmd_a, pmd_b);
1202 	return hash__pmd_same(pmd_a, pmd_b);
1203 }
1204 
1205 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1206 {
1207 	if (radix_enabled())
1208 		return radix__pmd_mkhuge(pmd);
1209 	return hash__pmd_mkhuge(pmd);
1210 }
1211 
1212 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1213 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1214 				 unsigned long address, pmd_t *pmdp,
1215 				 pmd_t entry, int dirty);
1216 
1217 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1218 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1219 				     unsigned long address, pmd_t *pmdp);
1220 
1221 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1222 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1223 					    unsigned long addr, pmd_t *pmdp)
1224 {
1225 	if (radix_enabled())
1226 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1227 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1228 }
1229 
1230 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1231 					unsigned long address, pmd_t *pmdp)
1232 {
1233 	if (radix_enabled())
1234 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1235 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1236 }
1237 #define pmdp_collapse_flush pmdp_collapse_flush
1238 
1239 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1240 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1241 					      pmd_t *pmdp, pgtable_t pgtable)
1242 {
1243 	if (radix_enabled())
1244 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1245 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1246 }
1247 
1248 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1249 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1250 						    pmd_t *pmdp)
1251 {
1252 	if (radix_enabled())
1253 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1254 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1255 }
1256 
1257 #define __HAVE_ARCH_PMDP_INVALIDATE
1258 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1259 			     pmd_t *pmdp);
1260 
1261 #define pmd_move_must_withdraw pmd_move_must_withdraw
1262 struct spinlock;
1263 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1264 					 struct spinlock *old_pmd_ptl,
1265 					 struct vm_area_struct *vma)
1266 {
1267 	if (radix_enabled())
1268 		return false;
1269 	/*
1270 	 * Archs like ppc64 use pgtable to store per pmd
1271 	 * specific information. So when we switch the pmd,
1272 	 * we should also withdraw and deposit the pgtable
1273 	 */
1274 	return true;
1275 }
1276 
1277 
1278 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1279 static inline bool arch_needs_pgtable_deposit(void)
1280 {
1281 	if (radix_enabled())
1282 		return false;
1283 	return true;
1284 }
1285 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1286 
1287 
1288 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1289 {
1290 	return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
1291 }
1292 
1293 static inline int pmd_devmap(pmd_t pmd)
1294 {
1295 	return pte_devmap(pmd_pte(pmd));
1296 }
1297 
1298 static inline int pud_devmap(pud_t pud)
1299 {
1300 	return 0;
1301 }
1302 
1303 static inline int pgd_devmap(pgd_t pgd)
1304 {
1305 	return 0;
1306 }
1307 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1308 
1309 static inline const int pud_pfn(pud_t pud)
1310 {
1311 	/*
1312 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1313 	 * check so this should never be used. If it grows another user we
1314 	 * want to know about it.
1315 	 */
1316 	BUILD_BUG();
1317 	return 0;
1318 }
1319 
1320 #endif /* __ASSEMBLY__ */
1321 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1322