xref: /linux/arch/powerpc/include/asm/book3s/64/pgtable.h (revision d85ddd1318e66c0c2665dbfcbc21a8b66c9152aa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4 
5 #include <asm-generic/pgtable-nop4d.h>
6 
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #endif
11 
12 /*
13  * Common bits between hash and Radix page table
14  */
15 #define _PAGE_BIT_SWAP_TYPE	0
16 
17 #define _PAGE_EXEC		0x00001 /* execute permission */
18 #define _PAGE_WRITE		0x00002 /* write access allowed */
19 #define _PAGE_READ		0x00004	/* read access allowed */
20 #define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23 
24 #define _PAGE_CACHE_CTL		0x00030 /* Bits for the folowing cache modes */
25 			/*	No bits set is normal cacheable memory */
26 			/*	0x00010 unused, is SAO bit on radix POWER9 */
27 #define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
28 #define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
29 
30 #define _PAGE_DIRTY		0x00080 /* C: page changed */
31 #define _PAGE_ACCESSED		0x00100 /* R: page referenced */
32 /*
33  * Software bits
34  */
35 #define _RPAGE_SW0		0x2000000000000000UL
36 #define _RPAGE_SW1		0x00800
37 #define _RPAGE_SW2		0x00400
38 #define _RPAGE_SW3		0x00200
39 #define _RPAGE_RSV1		0x00040UL
40 
41 #define _RPAGE_PKEY_BIT4	0x1000000000000000UL
42 #define _RPAGE_PKEY_BIT3	0x0800000000000000UL
43 #define _RPAGE_PKEY_BIT2	0x0400000000000000UL
44 #define _RPAGE_PKEY_BIT1	0x0200000000000000UL
45 #define _RPAGE_PKEY_BIT0	0x0100000000000000UL
46 
47 #define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
48 #define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
49 /*
50  * We need to mark a pmd pte invalid while splitting. We can do that by clearing
51  * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
52  * differentiate between two use a SW field when invalidating.
53  *
54  * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
55  *
56  * This is used only when _PAGE_PRESENT is cleared.
57  */
58 #define _PAGE_INVALID		_RPAGE_SW0
59 
60 /*
61  * Top and bottom bits of RPN which can be used by hash
62  * translation mode, because we expect them to be zero
63  * otherwise.
64  */
65 #define _RPAGE_RPN0		0x01000
66 #define _RPAGE_RPN1		0x02000
67 #define _RPAGE_RPN43		0x0080000000000000UL
68 #define _RPAGE_RPN42		0x0040000000000000UL
69 #define _RPAGE_RPN41		0x0020000000000000UL
70 
71 /* Max physical address bit as per radix table */
72 #define _RPAGE_PA_MAX		56
73 
74 /*
75  * Max physical address bit we will use for now.
76  *
77  * This is mostly a hardware limitation and for now Power9 has
78  * a 51 bit limit.
79  *
80  * This is different from the number of physical bit required to address
81  * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
82  * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
83  * number of sections we can support (SECTIONS_SHIFT).
84  *
85  * This is different from Radix page table limitation above and
86  * should always be less than that. The limit is done such that
87  * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
88  * for hash linux page table specific bits.
89  *
90  * In order to be compatible with future hardware generations we keep
91  * some offsets and limit this for now to 53
92  */
93 #define _PAGE_PA_MAX		53
94 
95 #define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
96 #define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
97 #define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
98 
99 /*
100  * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
101  * Instead of fixing all of them, add an alternate define which
102  * maps CI pte mapping.
103  */
104 #define _PAGE_NO_CACHE		_PAGE_TOLERANT
105 /*
106  * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
107  * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
108  * and every thing below PAGE_SHIFT;
109  */
110 #define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
111 /*
112  * set of bits not changed in pmd_modify. Even though we have hash specific bits
113  * in here, on radix we expect them to be zero.
114  */
115 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
116 			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
117 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
118 /*
119  * user access blocked by key
120  */
121 #define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
122 #define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
123 #define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
124 				 _PAGE_RW | _PAGE_EXEC)
125 /*
126  * _PAGE_CHG_MASK masks of bits that are to be preserved across
127  * pgprot changes
128  */
129 #define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
130 			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
131 			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
132 
133 /*
134  * We define 2 sets of base prot bits, one for basic pages (ie,
135  * cacheable kernel and user pages) and one for non cacheable
136  * pages. We always set _PAGE_COHERENT when SMP is enabled or
137  * the processor might need it for DMA coherency.
138  */
139 #define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
140 #define _PAGE_BASE	(_PAGE_BASE_NC)
141 
142 /* Permission masks used to generate the __P and __S table,
143  *
144  * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
145  *
146  * Write permissions imply read permissions for now (we could make write-only
147  * pages on BookE but we don't bother for now). Execute permission control is
148  * possible on platforms that define _PAGE_EXEC
149  */
150 #define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
151 #define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
152 #define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
153 #define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155 #define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
156 #define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
157 
158 /* Permission masks used for kernel mappings */
159 #define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
160 #define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
161 				 _PAGE_TOLERANT)
162 #define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
163 				 _PAGE_NON_IDEMPOTENT)
164 #define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
165 #define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
166 #define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
167 
168 /*
169  * Protection used for kernel text. We want the debuggers to be able to
170  * set breakpoints anywhere, so don't write protect the kernel text
171  * on platforms where such control is possible.
172  */
173 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
174 	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
175 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
176 #else
177 #define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
178 #endif
179 
180 /* Make modules code happy. We don't set RO yet */
181 #define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
182 #define PAGE_AGP		(PAGE_KERNEL_NC)
183 
184 #ifndef __ASSEMBLY__
185 /*
186  * page table defines
187  */
188 extern unsigned long __pte_index_size;
189 extern unsigned long __pmd_index_size;
190 extern unsigned long __pud_index_size;
191 extern unsigned long __pgd_index_size;
192 extern unsigned long __pud_cache_index;
193 #define PTE_INDEX_SIZE  __pte_index_size
194 #define PMD_INDEX_SIZE  __pmd_index_size
195 #define PUD_INDEX_SIZE  __pud_index_size
196 #define PGD_INDEX_SIZE  __pgd_index_size
197 /* pmd table use page table fragments */
198 #define PMD_CACHE_INDEX  0
199 #define PUD_CACHE_INDEX __pud_cache_index
200 /*
201  * Because of use of pte fragments and THP, size of page table
202  * are not always derived out of index size above.
203  */
204 extern unsigned long __pte_table_size;
205 extern unsigned long __pmd_table_size;
206 extern unsigned long __pud_table_size;
207 extern unsigned long __pgd_table_size;
208 #define PTE_TABLE_SIZE	__pte_table_size
209 #define PMD_TABLE_SIZE	__pmd_table_size
210 #define PUD_TABLE_SIZE	__pud_table_size
211 #define PGD_TABLE_SIZE	__pgd_table_size
212 
213 extern unsigned long __pmd_val_bits;
214 extern unsigned long __pud_val_bits;
215 extern unsigned long __pgd_val_bits;
216 #define PMD_VAL_BITS	__pmd_val_bits
217 #define PUD_VAL_BITS	__pud_val_bits
218 #define PGD_VAL_BITS	__pgd_val_bits
219 
220 extern unsigned long __pte_frag_nr;
221 #define PTE_FRAG_NR __pte_frag_nr
222 extern unsigned long __pte_frag_size_shift;
223 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
224 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
225 
226 extern unsigned long __pmd_frag_nr;
227 #define PMD_FRAG_NR __pmd_frag_nr
228 extern unsigned long __pmd_frag_size_shift;
229 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
230 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
231 
232 #define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
233 #define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
234 #define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
235 #define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
236 
237 /* PMD_SHIFT determines what a second-level page table entry can map */
238 #define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
239 #define PMD_SIZE	(1UL << PMD_SHIFT)
240 #define PMD_MASK	(~(PMD_SIZE-1))
241 
242 /* PUD_SHIFT determines what a third-level page table entry can map */
243 #define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
244 #define PUD_SIZE	(1UL << PUD_SHIFT)
245 #define PUD_MASK	(~(PUD_SIZE-1))
246 
247 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
248 #define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
249 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
250 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
251 
252 /* Bits to mask out from a PMD to get to the PTE page */
253 #define PMD_MASKED_BITS		0xc0000000000000ffUL
254 /* Bits to mask out from a PUD to get to the PMD page */
255 #define PUD_MASKED_BITS		0xc0000000000000ffUL
256 /* Bits to mask out from a PGD to get to the PUD page */
257 #define P4D_MASKED_BITS		0xc0000000000000ffUL
258 
259 /*
260  * Used as an indicator for rcu callback functions
261  */
262 enum pgtable_index {
263 	PTE_INDEX = 0,
264 	PMD_INDEX,
265 	PUD_INDEX,
266 	PGD_INDEX,
267 	/*
268 	 * Below are used with 4k page size and hugetlb
269 	 */
270 	HTLB_16M_INDEX,
271 	HTLB_16G_INDEX,
272 };
273 
274 extern unsigned long __vmalloc_start;
275 extern unsigned long __vmalloc_end;
276 #define VMALLOC_START	__vmalloc_start
277 #define VMALLOC_END	__vmalloc_end
278 
279 static inline unsigned int ioremap_max_order(void)
280 {
281 	if (radix_enabled())
282 		return PUD_SHIFT;
283 	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
284 }
285 #define IOREMAP_MAX_ORDER ioremap_max_order()
286 
287 extern unsigned long __kernel_virt_start;
288 extern unsigned long __kernel_io_start;
289 extern unsigned long __kernel_io_end;
290 #define KERN_VIRT_START __kernel_virt_start
291 #define KERN_IO_START  __kernel_io_start
292 #define KERN_IO_END __kernel_io_end
293 
294 extern struct page *vmemmap;
295 extern unsigned long pci_io_base;
296 #endif /* __ASSEMBLY__ */
297 
298 #include <asm/book3s/64/hash.h>
299 #include <asm/book3s/64/radix.h>
300 
301 #ifdef CONFIG_PPC_64K_PAGES
302 #include <asm/book3s/64/pgtable-64k.h>
303 #else
304 #include <asm/book3s/64/pgtable-4k.h>
305 #endif
306 
307 #include <asm/barrier.h>
308 /*
309  * IO space itself carved into the PIO region (ISA and PHB IO space) and
310  * the ioremap space
311  *
312  *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
313  *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
314  * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
315  */
316 #define FULL_IO_SIZE	0x80000000ul
317 #define  ISA_IO_BASE	(KERN_IO_START)
318 #define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
319 #define  PHB_IO_BASE	(ISA_IO_END)
320 #define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
321 #define IOREMAP_BASE	(PHB_IO_END)
322 #define IOREMAP_START	(ioremap_bot)
323 #define IOREMAP_END	(KERN_IO_END)
324 
325 /* Advertise special mapping type for AGP */
326 #define HAVE_PAGE_AGP
327 
328 #ifndef __ASSEMBLY__
329 
330 /*
331  * This is the default implementation of various PTE accessors, it's
332  * used in all cases except Book3S with 64K pages where we have a
333  * concept of sub-pages
334  */
335 #ifndef __real_pte
336 
337 #define __real_pte(e, p, o)		((real_pte_t){(e)})
338 #define __rpte_to_pte(r)	((r).pte)
339 #define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
340 
341 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
342 	do {							         \
343 		index = 0;					         \
344 		shift = mmu_psize_defs[psize].shift;		         \
345 
346 #define pte_iterate_hashed_end() } while(0)
347 
348 /*
349  * We expect this to be called only for user addresses or kernel virtual
350  * addresses other than the linear mapping.
351  */
352 #define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
353 
354 #endif /* __real_pte */
355 
356 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
357 				       pte_t *ptep, unsigned long clr,
358 				       unsigned long set, int huge)
359 {
360 	if (radix_enabled())
361 		return radix__pte_update(mm, addr, ptep, clr, set, huge);
362 	return hash__pte_update(mm, addr, ptep, clr, set, huge);
363 }
364 /*
365  * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
366  * We currently remove entries from the hashtable regardless of whether
367  * the entry was young or dirty.
368  *
369  * We should be more intelligent about this but for the moment we override
370  * these functions and force a tlb flush unconditionally
371  * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
372  * function for both hash and radix.
373  */
374 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
375 					      unsigned long addr, pte_t *ptep)
376 {
377 	unsigned long old;
378 
379 	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
380 		return 0;
381 	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
382 	return (old & _PAGE_ACCESSED) != 0;
383 }
384 
385 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
386 #define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
387 ({								\
388 	int __r;						\
389 	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
390 	__r;							\
391 })
392 
393 static inline int __pte_write(pte_t pte)
394 {
395 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
396 }
397 
398 #ifdef CONFIG_NUMA_BALANCING
399 #define pte_savedwrite pte_savedwrite
400 static inline bool pte_savedwrite(pte_t pte)
401 {
402 	/*
403 	 * Saved write ptes are prot none ptes that doesn't have
404 	 * privileged bit sit. We mark prot none as one which has
405 	 * present and pviliged bit set and RWX cleared. To mark
406 	 * protnone which used to have _PAGE_WRITE set we clear
407 	 * the privileged bit.
408 	 */
409 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
410 }
411 #else
412 #define pte_savedwrite pte_savedwrite
413 static inline bool pte_savedwrite(pte_t pte)
414 {
415 	return false;
416 }
417 #endif
418 
419 static inline int pte_write(pte_t pte)
420 {
421 	return __pte_write(pte) || pte_savedwrite(pte);
422 }
423 
424 static inline int pte_read(pte_t pte)
425 {
426 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
427 }
428 
429 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
430 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
431 				      pte_t *ptep)
432 {
433 	if (__pte_write(*ptep))
434 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
435 	else if (unlikely(pte_savedwrite(*ptep)))
436 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
437 }
438 
439 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
440 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
441 					   unsigned long addr, pte_t *ptep)
442 {
443 	/*
444 	 * We should not find protnone for hugetlb, but this complete the
445 	 * interface.
446 	 */
447 	if (__pte_write(*ptep))
448 		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
449 	else if (unlikely(pte_savedwrite(*ptep)))
450 		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
451 }
452 
453 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
454 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
455 				       unsigned long addr, pte_t *ptep)
456 {
457 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
458 	return __pte(old);
459 }
460 
461 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
462 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
463 					    unsigned long addr,
464 					    pte_t *ptep, int full)
465 {
466 	if (full && radix_enabled()) {
467 		/*
468 		 * We know that this is a full mm pte clear and
469 		 * hence can be sure there is no parallel set_pte.
470 		 */
471 		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
472 	}
473 	return ptep_get_and_clear(mm, addr, ptep);
474 }
475 
476 
477 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
478 			     pte_t * ptep)
479 {
480 	pte_update(mm, addr, ptep, ~0UL, 0, 0);
481 }
482 
483 static inline int pte_dirty(pte_t pte)
484 {
485 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
486 }
487 
488 static inline int pte_young(pte_t pte)
489 {
490 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
491 }
492 
493 static inline int pte_special(pte_t pte)
494 {
495 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
496 }
497 
498 static inline bool pte_exec(pte_t pte)
499 {
500 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
501 }
502 
503 
504 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
505 static inline bool pte_soft_dirty(pte_t pte)
506 {
507 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
508 }
509 
510 static inline pte_t pte_mksoft_dirty(pte_t pte)
511 {
512 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
513 }
514 
515 static inline pte_t pte_clear_soft_dirty(pte_t pte)
516 {
517 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
518 }
519 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
520 
521 #ifdef CONFIG_NUMA_BALANCING
522 static inline int pte_protnone(pte_t pte)
523 {
524 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
525 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
526 }
527 
528 #define pte_mk_savedwrite pte_mk_savedwrite
529 static inline pte_t pte_mk_savedwrite(pte_t pte)
530 {
531 	/*
532 	 * Used by Autonuma subsystem to preserve the write bit
533 	 * while marking the pte PROT_NONE. Only allow this
534 	 * on PROT_NONE pte
535 	 */
536 	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
537 		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
538 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
539 }
540 
541 #define pte_clear_savedwrite pte_clear_savedwrite
542 static inline pte_t pte_clear_savedwrite(pte_t pte)
543 {
544 	/*
545 	 * Used by KSM subsystem to make a protnone pte readonly.
546 	 */
547 	VM_BUG_ON(!pte_protnone(pte));
548 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
549 }
550 #else
551 #define pte_clear_savedwrite pte_clear_savedwrite
552 static inline pte_t pte_clear_savedwrite(pte_t pte)
553 {
554 	VM_WARN_ON(1);
555 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
556 }
557 #endif /* CONFIG_NUMA_BALANCING */
558 
559 static inline bool pte_hw_valid(pte_t pte)
560 {
561 	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
562 		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
563 }
564 
565 static inline int pte_present(pte_t pte)
566 {
567 	/*
568 	 * A pte is considerent present if _PAGE_PRESENT is set.
569 	 * We also need to consider the pte present which is marked
570 	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
571 	 * if we find _PAGE_PRESENT cleared.
572 	 */
573 
574 	if (pte_hw_valid(pte))
575 		return true;
576 	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
577 		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
578 }
579 
580 #ifdef CONFIG_PPC_MEM_KEYS
581 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
582 #else
583 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
584 {
585 	return true;
586 }
587 #endif /* CONFIG_PPC_MEM_KEYS */
588 
589 static inline bool pte_user(pte_t pte)
590 {
591 	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
592 }
593 
594 #define pte_access_permitted pte_access_permitted
595 static inline bool pte_access_permitted(pte_t pte, bool write)
596 {
597 	/*
598 	 * _PAGE_READ is needed for any access and will be
599 	 * cleared for PROT_NONE
600 	 */
601 	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
602 		return false;
603 
604 	if (write && !pte_write(pte))
605 		return false;
606 
607 	return arch_pte_access_permitted(pte_val(pte), write, 0);
608 }
609 
610 /*
611  * Conversion functions: convert a page and protection to a page entry,
612  * and a page entry and page directory to the page they refer to.
613  *
614  * Even if PTEs can be unsigned long long, a PFN is always an unsigned
615  * long for now.
616  */
617 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
618 {
619 	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
620 	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
621 
622 	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot));
623 }
624 
625 static inline unsigned long pte_pfn(pte_t pte)
626 {
627 	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
628 }
629 
630 /* Generic modifiers for PTE bits */
631 static inline pte_t pte_wrprotect(pte_t pte)
632 {
633 	if (unlikely(pte_savedwrite(pte)))
634 		return pte_clear_savedwrite(pte);
635 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
636 }
637 
638 static inline pte_t pte_exprotect(pte_t pte)
639 {
640 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
641 }
642 
643 static inline pte_t pte_mkclean(pte_t pte)
644 {
645 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
646 }
647 
648 static inline pte_t pte_mkold(pte_t pte)
649 {
650 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
651 }
652 
653 static inline pte_t pte_mkexec(pte_t pte)
654 {
655 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
656 }
657 
658 static inline pte_t pte_mkpte(pte_t pte)
659 {
660 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
661 }
662 
663 static inline pte_t pte_mkwrite(pte_t pte)
664 {
665 	/*
666 	 * write implies read, hence set both
667 	 */
668 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
669 }
670 
671 static inline pte_t pte_mkdirty(pte_t pte)
672 {
673 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
674 }
675 
676 static inline pte_t pte_mkyoung(pte_t pte)
677 {
678 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
679 }
680 
681 static inline pte_t pte_mkspecial(pte_t pte)
682 {
683 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
684 }
685 
686 static inline pte_t pte_mkhuge(pte_t pte)
687 {
688 	return pte;
689 }
690 
691 static inline pte_t pte_mkdevmap(pte_t pte)
692 {
693 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
694 }
695 
696 static inline pte_t pte_mkprivileged(pte_t pte)
697 {
698 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
699 }
700 
701 static inline pte_t pte_mkuser(pte_t pte)
702 {
703 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
704 }
705 
706 /*
707  * This is potentially called with a pmd as the argument, in which case it's not
708  * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
709  * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
710  * use in page directory entries (ie. non-ptes).
711  */
712 static inline int pte_devmap(pte_t pte)
713 {
714 	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
715 
716 	return (pte_raw(pte) & mask) == mask;
717 }
718 
719 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
720 {
721 	/* FIXME!! check whether this need to be a conditional */
722 	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
723 			 cpu_to_be64(pgprot_val(newprot)));
724 }
725 
726 /* Encode and de-code a swap entry */
727 #define MAX_SWAPFILES_CHECK() do { \
728 	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
729 	/*							\
730 	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
731 	 * We filter HPTEFLAGS on set_pte.			\
732 	 */							\
733 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
734 	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
735 	} while (0)
736 
737 #define SWP_TYPE_BITS 5
738 #define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
739 				& ((1UL << SWP_TYPE_BITS) - 1))
740 #define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
741 #define __swp_entry(type, offset)	((swp_entry_t) { \
742 				((type) << _PAGE_BIT_SWAP_TYPE) \
743 				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
744 /*
745  * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
746  * swap type and offset we get from swap and convert that to pte to find a
747  * matching pte in linux page table.
748  * Clear bits not found in swap entries here.
749  */
750 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
751 #define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
752 #define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
753 #define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
754 
755 #ifdef CONFIG_MEM_SOFT_DIRTY
756 #define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
757 #else
758 #define _PAGE_SWP_SOFT_DIRTY	0UL
759 #endif /* CONFIG_MEM_SOFT_DIRTY */
760 
761 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
762 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
763 {
764 	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
765 }
766 
767 static inline bool pte_swp_soft_dirty(pte_t pte)
768 {
769 	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
770 }
771 
772 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
773 {
774 	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
775 }
776 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
777 
778 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
779 {
780 	/*
781 	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
782 	 */
783 	if (access & ~ptev)
784 		return false;
785 	/*
786 	 * This check for access to privilege space
787 	 */
788 	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
789 		return false;
790 
791 	return true;
792 }
793 /*
794  * Generic functions with hash/radix callbacks
795  */
796 
797 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
798 					   pte_t *ptep, pte_t entry,
799 					   unsigned long address,
800 					   int psize)
801 {
802 	if (radix_enabled())
803 		return radix__ptep_set_access_flags(vma, ptep, entry,
804 						    address, psize);
805 	return hash__ptep_set_access_flags(ptep, entry);
806 }
807 
808 #define __HAVE_ARCH_PTE_SAME
809 static inline int pte_same(pte_t pte_a, pte_t pte_b)
810 {
811 	if (radix_enabled())
812 		return radix__pte_same(pte_a, pte_b);
813 	return hash__pte_same(pte_a, pte_b);
814 }
815 
816 static inline int pte_none(pte_t pte)
817 {
818 	if (radix_enabled())
819 		return radix__pte_none(pte);
820 	return hash__pte_none(pte);
821 }
822 
823 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
824 				pte_t *ptep, pte_t pte, int percpu)
825 {
826 	if (radix_enabled())
827 		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
828 	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
829 }
830 
831 #define pgprot_noncached pgprot_noncached
832 static inline pgprot_t pgprot_noncached(pgprot_t prot)
833 {
834 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
835 			_PAGE_NON_IDEMPOTENT);
836 }
837 
838 #define pgprot_noncached_wc pgprot_noncached_wc
839 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
840 {
841 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
842 			_PAGE_TOLERANT);
843 }
844 
845 #define pgprot_cached pgprot_cached
846 static inline pgprot_t pgprot_cached(pgprot_t prot)
847 {
848 	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
849 }
850 
851 #define pgprot_writecombine pgprot_writecombine
852 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
853 {
854 	return pgprot_noncached_wc(prot);
855 }
856 /*
857  * check a pte mapping have cache inhibited property
858  */
859 static inline bool pte_ci(pte_t pte)
860 {
861 	__be64 pte_v = pte_raw(pte);
862 
863 	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
864 	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
865 		return true;
866 	return false;
867 }
868 
869 static inline void pmd_clear(pmd_t *pmdp)
870 {
871 	*pmdp = __pmd(0);
872 }
873 
874 static inline int pmd_none(pmd_t pmd)
875 {
876 	return !pmd_raw(pmd);
877 }
878 
879 static inline int pmd_present(pmd_t pmd)
880 {
881 	/*
882 	 * A pmd is considerent present if _PAGE_PRESENT is set.
883 	 * We also need to consider the pmd present which is marked
884 	 * invalid during a split. Hence we look for _PAGE_INVALID
885 	 * if we find _PAGE_PRESENT cleared.
886 	 */
887 	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
888 		return true;
889 
890 	return false;
891 }
892 
893 static inline int pmd_is_serializing(pmd_t pmd)
894 {
895 	/*
896 	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
897 	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
898 	 *
899 	 * This condition may also occur when flushing a pmd while flushing
900 	 * it (see ptep_modify_prot_start), so callers must ensure this
901 	 * case is fine as well.
902 	 */
903 	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
904 						cpu_to_be64(_PAGE_INVALID))
905 		return true;
906 
907 	return false;
908 }
909 
910 static inline int pmd_bad(pmd_t pmd)
911 {
912 	if (radix_enabled())
913 		return radix__pmd_bad(pmd);
914 	return hash__pmd_bad(pmd);
915 }
916 
917 static inline void pud_clear(pud_t *pudp)
918 {
919 	*pudp = __pud(0);
920 }
921 
922 static inline int pud_none(pud_t pud)
923 {
924 	return !pud_raw(pud);
925 }
926 
927 static inline int pud_present(pud_t pud)
928 {
929 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
930 }
931 
932 extern struct page *pud_page(pud_t pud);
933 extern struct page *pmd_page(pmd_t pmd);
934 static inline pte_t pud_pte(pud_t pud)
935 {
936 	return __pte_raw(pud_raw(pud));
937 }
938 
939 static inline pud_t pte_pud(pte_t pte)
940 {
941 	return __pud_raw(pte_raw(pte));
942 }
943 #define pud_write(pud)		pte_write(pud_pte(pud))
944 
945 static inline int pud_bad(pud_t pud)
946 {
947 	if (radix_enabled())
948 		return radix__pud_bad(pud);
949 	return hash__pud_bad(pud);
950 }
951 
952 #define pud_access_permitted pud_access_permitted
953 static inline bool pud_access_permitted(pud_t pud, bool write)
954 {
955 	return pte_access_permitted(pud_pte(pud), write);
956 }
957 
958 #define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
959 static inline __be64 p4d_raw(p4d_t x)
960 {
961 	return pgd_raw(x.pgd);
962 }
963 
964 #define p4d_write(p4d)		pte_write(p4d_pte(p4d))
965 
966 static inline void p4d_clear(p4d_t *p4dp)
967 {
968 	*p4dp = __p4d(0);
969 }
970 
971 static inline int p4d_none(p4d_t p4d)
972 {
973 	return !p4d_raw(p4d);
974 }
975 
976 static inline int p4d_present(p4d_t p4d)
977 {
978 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
979 }
980 
981 static inline pte_t p4d_pte(p4d_t p4d)
982 {
983 	return __pte_raw(p4d_raw(p4d));
984 }
985 
986 static inline p4d_t pte_p4d(pte_t pte)
987 {
988 	return __p4d_raw(pte_raw(pte));
989 }
990 
991 static inline int p4d_bad(p4d_t p4d)
992 {
993 	if (radix_enabled())
994 		return radix__p4d_bad(p4d);
995 	return hash__p4d_bad(p4d);
996 }
997 
998 #define p4d_access_permitted p4d_access_permitted
999 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1000 {
1001 	return pte_access_permitted(p4d_pte(p4d), write);
1002 }
1003 
1004 extern struct page *p4d_page(p4d_t p4d);
1005 
1006 /* Pointers in the page table tree are physical addresses */
1007 #define __pgtable_ptr_val(ptr)	__pa(ptr)
1008 
1009 #define pud_page_vaddr(pud)	__va(pud_val(pud) & ~PUD_MASKED_BITS)
1010 #define p4d_page_vaddr(p4d)	__va(p4d_val(p4d) & ~P4D_MASKED_BITS)
1011 
1012 #define pte_ERROR(e) \
1013 	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1014 #define pmd_ERROR(e) \
1015 	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1016 #define pud_ERROR(e) \
1017 	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1018 #define pgd_ERROR(e) \
1019 	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1020 
1021 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1022 {
1023 	if (radix_enabled()) {
1024 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1025 		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1026 		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1027 #endif
1028 		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1029 	}
1030 	return hash__map_kernel_page(ea, pa, prot);
1031 }
1032 
1033 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1034 						   unsigned long page_size,
1035 						   unsigned long phys)
1036 {
1037 	if (radix_enabled())
1038 		return radix__vmemmap_create_mapping(start, page_size, phys);
1039 	return hash__vmemmap_create_mapping(start, page_size, phys);
1040 }
1041 
1042 #ifdef CONFIG_MEMORY_HOTPLUG
1043 static inline void vmemmap_remove_mapping(unsigned long start,
1044 					  unsigned long page_size)
1045 {
1046 	if (radix_enabled())
1047 		return radix__vmemmap_remove_mapping(start, page_size);
1048 	return hash__vmemmap_remove_mapping(start, page_size);
1049 }
1050 #endif
1051 
1052 static inline pte_t pmd_pte(pmd_t pmd)
1053 {
1054 	return __pte_raw(pmd_raw(pmd));
1055 }
1056 
1057 static inline pmd_t pte_pmd(pte_t pte)
1058 {
1059 	return __pmd_raw(pte_raw(pte));
1060 }
1061 
1062 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1063 {
1064 	return (pte_t *)pmd;
1065 }
1066 #define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1067 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1068 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1069 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1070 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1071 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1072 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1073 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1074 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1075 #define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1076 #define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1077 
1078 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1079 #define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1080 #define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1081 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1082 
1083 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1084 #define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1085 #define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1086 #define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1087 #endif
1088 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1089 
1090 #ifdef CONFIG_NUMA_BALANCING
1091 static inline int pmd_protnone(pmd_t pmd)
1092 {
1093 	return pte_protnone(pmd_pte(pmd));
1094 }
1095 #endif /* CONFIG_NUMA_BALANCING */
1096 
1097 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1098 #define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1099 #define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1100 
1101 #define pmd_access_permitted pmd_access_permitted
1102 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1103 {
1104 	/*
1105 	 * pmdp_invalidate sets this combination (which is not caught by
1106 	 * !pte_present() check in pte_access_permitted), to prevent
1107 	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1108 	 * synchronisation.
1109 	 *
1110 	 * This also catches the case where the PTE's hardware PRESENT bit is
1111 	 * cleared while TLB is flushed, which is suboptimal but should not
1112 	 * be frequent.
1113 	 */
1114 	if (pmd_is_serializing(pmd))
1115 		return false;
1116 
1117 	return pte_access_permitted(pmd_pte(pmd), write);
1118 }
1119 
1120 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1121 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1122 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1123 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1124 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1125 		       pmd_t *pmdp, pmd_t pmd);
1126 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1127 					unsigned long addr, pmd_t *pmd)
1128 {
1129 }
1130 
1131 extern int hash__has_transparent_hugepage(void);
1132 static inline int has_transparent_hugepage(void)
1133 {
1134 	if (radix_enabled())
1135 		return radix__has_transparent_hugepage();
1136 	return hash__has_transparent_hugepage();
1137 }
1138 #define has_transparent_hugepage has_transparent_hugepage
1139 
1140 static inline unsigned long
1141 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1142 		    unsigned long clr, unsigned long set)
1143 {
1144 	if (radix_enabled())
1145 		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1146 	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1147 }
1148 
1149 /*
1150  * returns true for pmd migration entries, THP, devmap, hugetlb
1151  * But compile time dependent on THP config
1152  */
1153 static inline int pmd_large(pmd_t pmd)
1154 {
1155 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1156 }
1157 
1158 /*
1159  * For radix we should always find H_PAGE_HASHPTE zero. Hence
1160  * the below will work for radix too
1161  */
1162 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1163 					      unsigned long addr, pmd_t *pmdp)
1164 {
1165 	unsigned long old;
1166 
1167 	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1168 		return 0;
1169 	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1170 	return ((old & _PAGE_ACCESSED) != 0);
1171 }
1172 
1173 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1174 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1175 				      pmd_t *pmdp)
1176 {
1177 	if (__pmd_write((*pmdp)))
1178 		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1179 	else if (unlikely(pmd_savedwrite(*pmdp)))
1180 		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1181 }
1182 
1183 /*
1184  * Only returns true for a THP. False for pmd migration entry.
1185  * We also need to return true when we come across a pte that
1186  * in between a thp split. While splitting THP, we mark the pmd
1187  * invalid (pmdp_invalidate()) before we set it with pte page
1188  * address. A pmd_trans_huge() check against a pmd entry during that time
1189  * should return true.
1190  * We should not call this on a hugetlb entry. We should check for HugeTLB
1191  * entry using vma->vm_flags
1192  * The page table walk rule is explained in Documentation/vm/transhuge.rst
1193  */
1194 static inline int pmd_trans_huge(pmd_t pmd)
1195 {
1196 	if (!pmd_present(pmd))
1197 		return false;
1198 
1199 	if (radix_enabled())
1200 		return radix__pmd_trans_huge(pmd);
1201 	return hash__pmd_trans_huge(pmd);
1202 }
1203 
1204 #define __HAVE_ARCH_PMD_SAME
1205 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1206 {
1207 	if (radix_enabled())
1208 		return radix__pmd_same(pmd_a, pmd_b);
1209 	return hash__pmd_same(pmd_a, pmd_b);
1210 }
1211 
1212 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1213 {
1214 	if (radix_enabled())
1215 		return radix__pmd_mkhuge(pmd);
1216 	return hash__pmd_mkhuge(pmd);
1217 }
1218 
1219 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1220 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1221 				 unsigned long address, pmd_t *pmdp,
1222 				 pmd_t entry, int dirty);
1223 
1224 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1225 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1226 				     unsigned long address, pmd_t *pmdp);
1227 
1228 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1229 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1230 					    unsigned long addr, pmd_t *pmdp)
1231 {
1232 	if (radix_enabled())
1233 		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1234 	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1235 }
1236 
1237 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1238 					unsigned long address, pmd_t *pmdp)
1239 {
1240 	if (radix_enabled())
1241 		return radix__pmdp_collapse_flush(vma, address, pmdp);
1242 	return hash__pmdp_collapse_flush(vma, address, pmdp);
1243 }
1244 #define pmdp_collapse_flush pmdp_collapse_flush
1245 
1246 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1247 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1248 				   unsigned long addr,
1249 				   pmd_t *pmdp, int full);
1250 
1251 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1252 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1253 					      pmd_t *pmdp, pgtable_t pgtable)
1254 {
1255 	if (radix_enabled())
1256 		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1257 	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1258 }
1259 
1260 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1261 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1262 						    pmd_t *pmdp)
1263 {
1264 	if (radix_enabled())
1265 		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1266 	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1267 }
1268 
1269 #define __HAVE_ARCH_PMDP_INVALIDATE
1270 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1271 			     pmd_t *pmdp);
1272 
1273 #define pmd_move_must_withdraw pmd_move_must_withdraw
1274 struct spinlock;
1275 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1276 				  struct spinlock *old_pmd_ptl,
1277 				  struct vm_area_struct *vma);
1278 /*
1279  * Hash translation mode use the deposited table to store hash pte
1280  * slot information.
1281  */
1282 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1283 static inline bool arch_needs_pgtable_deposit(void)
1284 {
1285 	if (radix_enabled())
1286 		return false;
1287 	return true;
1288 }
1289 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1290 
1291 
1292 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1293 {
1294 	if (radix_enabled())
1295 		return radix__pmd_mkdevmap(pmd);
1296 	return hash__pmd_mkdevmap(pmd);
1297 }
1298 
1299 static inline int pmd_devmap(pmd_t pmd)
1300 {
1301 	return pte_devmap(pmd_pte(pmd));
1302 }
1303 
1304 static inline int pud_devmap(pud_t pud)
1305 {
1306 	return 0;
1307 }
1308 
1309 static inline int pgd_devmap(pgd_t pgd)
1310 {
1311 	return 0;
1312 }
1313 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1314 
1315 static inline int pud_pfn(pud_t pud)
1316 {
1317 	/*
1318 	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1319 	 * check so this should never be used. If it grows another user we
1320 	 * want to know about it.
1321 	 */
1322 	BUILD_BUG();
1323 	return 0;
1324 }
1325 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1326 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1327 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1328 			     pte_t *, pte_t, pte_t);
1329 
1330 /*
1331  * Returns true for a R -> RW upgrade of pte
1332  */
1333 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1334 {
1335 	if (!(old_val & _PAGE_READ))
1336 		return false;
1337 
1338 	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1339 		return true;
1340 
1341 	return false;
1342 }
1343 
1344 /*
1345  * Like pmd_huge() and pmd_large(), but works regardless of config options
1346  */
1347 #define pmd_is_leaf pmd_is_leaf
1348 #define pmd_leaf pmd_is_leaf
1349 static inline bool pmd_is_leaf(pmd_t pmd)
1350 {
1351 	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1352 }
1353 
1354 #define pud_is_leaf pud_is_leaf
1355 #define pud_leaf pud_is_leaf
1356 static inline bool pud_is_leaf(pud_t pud)
1357 {
1358 	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1359 }
1360 
1361 #define p4d_is_leaf p4d_is_leaf
1362 #define p4d_leaf p4d_is_leaf
1363 static inline bool p4d_is_leaf(p4d_t p4d)
1364 {
1365 	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1366 }
1367 
1368 #endif /* __ASSEMBLY__ */
1369 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1370